Second-life Electric Vehicle Batteries 2023-2033電気自動車用二次電池 2023-2033年 この調査レポートは、2023-2033年の二次電池市場、プレーヤー、ビジネスモデル、技術について詳細に調査・分析しています。 主な掲載内容(目次より抜粋) 電気自動車用セカ... もっと見る
※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
Summary
この調査レポートは、2023-2033年の二次電池市場、プレーヤー、ビジネスモデル、技術について詳細に調査・分析しています。
主な掲載内容(目次より抜粋)
Report Summary
IDTechEx forecasts the second-life EV battery market to reach US$7B by 2033. This report gives a holistic overview of the second-life battery market, players, business models and technologies. It assesses the techno-economic feasibility of remanufacturing EV batteries, regional regulations related to End-of-Life batteries, and trends in battery design, chemistry, and wider technology developments.
The second-life EV battery market is one of great importance for many reasons. These include adding value to future energy infrastructure, creating a circular economy for electric vehicle (EV) batteries, and providing a lower levelized cost of storage compared to new batteries. The bulk of EVs currently use Li-ion battery chemistries, and once their eight-to-ten-year initial lifetime has expired, they are usually unsuitable for future EV use. However, battery second use (B2U) extends the lifetime of the EV battery, though several considerations must be made when repurposing retired EV batteries. This includes assessing the health and degradation of retired EV batteries, to ensure their suitability for second-life applications. Depending on performance characteristics, such as battery State of Health (SOH), second-life batteries can be further utilised in less demanding applications, such as stationary energy storage and lower-power electromobility applications.
Li-ion battery circular economy. Source: IDTechEx
The Li-ion EV battery circular economy comprises multiple important steps, requiring decisions from key stakeholders at any one part. Second-life batteries created through a remanufacturing process offer benefits of maximizing battery value and extending battery life, whereas recycling results in batteries losing this value prematurely. A chapter in the report gives a techno-economic analysis of the remanufacturing process, with operations that remanufacturers must consider such as battery procurement, depth of disassembly, testing/grading, and reassembly procedures. Further considerations assess how these processes impact the final pricing of second-life BESS, to be competitive with new BESS. Some repurposer players choose to integrate second-life BESS at pack-level, bypassing a strict remanufacturing process stream. The report elaborates on the various benefits this creates, as well as the considerations that must be made with such a process, e.g., relying more on battery monitoring software during operation.
Within this young yet competitive market, key players are involved in both second-life battery repurposing and retired EV battery health and performance grading. A growing number of repurposer and battery diagnostician start-ups are starting to establish robust supply chains with automotive OEMs. This is to facilitate the streamlined supply of similarly designed batteries into repurposing and battery performance modeling procedures. For modelers, having a large batch of the same type of battery helps with training a data-driven model. For repurposers, having more batteries of similar designs can help with standardizing complex battery disassembly procedures. These start-ups have, combined, received tens of millions of dollars in funding, to help with scaling up operations and developing technology capabilities. For example, several repurposers are looking to develop larger MWh-scale second-life battery systems suitable for front-of-the-meter (FTM) applications.
The capabilities that a second-life battery repurposer presently provide vary significantly. The report analyses these capabilities, which could range from a repurposer only deploying proof-of-concept second-life BESS projects, through to full-service providers who have extensive End-of-Life battery management capabilities. Extensive capabilities could include extending a battery's life for use in a new EV, battery health grading technologies, through to means of providing battery data traceability and visibility to relevant stakeholders, and potentially any recycling capabilities in-house. Typically, these players, who are described as 'market leaders' in the report, have partnered with automotive OEMs to ensure a streamlined supply of retired EV batteries are fed into their repurposing processes.
Analysis matrix, clustering key players in the second-life EV battery market. Source: IDTechEx
A few start-ups' business model is to solely develop and use their proprietary technologies to assess battery health, but they are in the minority. There are various methods to model battery health, performance, and degradation, though none are perfect. These methods include data-driven methods (e.g., with machine learning), physics-based models, and combinations of approaches. The report analyzes player activity in this sub-market sector, and the underlying technologies used to measure retired EV battery performance.
The level of involvement of any one company in the value chain varies, and it is not yet clear which business model will prove most successful in the long-term.
IDTechEx has observed that the US and Europe are key regions with players making great advancement in deploying second-life BESS. 'Large' second-life BESS deployments in China are unlikely to be seen over the next few years, amid a ban from China's National Energy Administration in 2021. However, there is great demand in China for 'small' second-life batteries to be used for backup energy purposes for telecom towers. As repurposers in the US and Europe look to deploy more second-life BESS, the regional distribution of total second-life battery deployments could shift over the next decade.
IDTechEx has continued to follow trends such as EV battery design, cathode use in EV batteries, and battery pack designs. The report addresses how these trends impact the second-life battery market, such as availability of retired EV LFP batteries, ease of serviceability of batteries, and retired EV battery State of Health. For example, the introduction of more cell-to-pack EV batteries could facilitate a faster disassembly process, reducing remanufacturing costs.
Battery End-of-Life issues are recognised as a key topic for the sustainability of the EV industry. While there are some regulations on the recycling/disposal of batteries in general, few regulations exist that specially address the second use of EV batteries. Realising the importance and the potential value brought by second-life batteries, regions including Europe, China and the US are working on their regulatory frameworks to facilitate B2U. The report discusses EU, Chinese and US legislation, including IDTechEx's views on the soon-to-be-adopted EU Battery Regulation and how introduction of the battery passport could cause shifts in player activity.
Legislative activity by region. Source: IDTechEx
10-year market forecasts until 2033 are provided for the second-life EV battery market in system installations (GWh) by application and region, as well as BEV + PHEV battery availability forecasts for this period.
This report also includes over 20 company profiles in the "Company Profile" section, offering further insights such as technology analysis, business models, finances/funding, competitor outlook, and company SWOT analyses.
This report provides the following information:
Techno-economic analysis of the remanufacturing process:
Battery performance testing and modeling:
Market landscape:
Regulatory landscape:
Market Forecasts & Analysis:
Table of Contents
|
詳細検索
2024/11/15 10:26 157.84 円 166.62 円 202.61 円 |