世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

電気自動車とフリート向け充電インフラ2025-2035年:市場、技術、予測

電気自動車とフリート向け充電インフラ2025-2035年:市場、技術、予測


Charging Infrastructure for Electric Vehicles and Fleets 2025-2035: Markets, Technologies, and Forecasts

EV充電インフラの未来: 市場動向、イノベーション、ビジネスチャンス 電気自動車(EV)革命は急速に加速しており、効率的で信頼性が高く、スケーラブルな充電インフラへのニーズが高まっている。... もっと見る

 

 

出版社 出版年月 電子版価格 納期 ページ数 言語
IDTechEx
アイディーテックエックス
2024年9月24日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
お問合わせください 509 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。


 

サマリー

EV充電インフラの未来: 市場動向、イノベーション、ビジネスチャンス
電気自動車(EV)革命は急速に加速しており、効率的で信頼性が高く、スケーラブルな充電インフラへのニーズが高まっている。EVの普及が進むにつれ、自動車、エネルギー、テクノロジー分野の関係者は、戦略や投資を策定するための詳細な洞察を求めています。EV充電インフラ市場に関する本レポートは、様々な側面から技術的な深さと分析を提供しており、この進化する市場で優位に立ちたいと考える企業、投資家、政策立案者、業界専門家にとって有用なリソースとなっています。
 
本レポートは、基本的な分析にとどまらず、実用的な洞察と、進化するEV充電の状況をナビゲートするための戦略的ロードマップを提供します。プライベートAC充電、パブリックDC充電、メガワット充電、バッテリースワップ、ワイヤレス充電など、複数のタイプのEV充電ソリューションを網羅している。電動化が複数の自動車市場に浸透するにつれ、必要とされる充電インフラのタイプも進化している。車両プラットフォームの電圧は400Vから800Vのアーキテクチャに移行しており、さらに高い充電出力が可能になる一方で、熱に関する新たな課題も生じている。IDTechExの調査は、現在利用可能なさまざまな技術と、将来破壊の可能性を秘めた新興技術について明らかにすることを目的としている。デスティネーション型やウォールボックス型DC充電器、分散型とスタンドアロン型のアーキテクチャ、メガワット充電、SiCパワーモジュール、ロボット充電、バッテリーバッファ充電、オフグリッドソーラー充電、モバイル充電などの技術は、新たなEV充電ソリューションの一例である。本レポートでは、これらの分野の主要プレーヤーを網羅し、各社の製品をベンチマークし、その採用に関する市場展望を提供しています。
 
主要市場セグメントを包括的にカバー
本レポートは、公共および民間の充電ソリューション、フリートインフラ、革新的技術を網羅し、世界のEV充電インフラ市場の完全な概要を提供しています。中国、欧州、米国など主要地域の市場ダイナミクスを分析し、地域政策、消費者行動、技術進歩がどのように市場を形成しているかについての洞察を提供しています。製品ベンチマークや競合分析を含む、低出力の目的地型DC充電器と高出力のDC急速充電器の詳細な分析により、主要企業の強み、弱み、市場でのポジショニングを明確に理解することができます。
 
新興技術とイノベーションの深堀り:
本レポートでは、オフグリッドソーラー充電、バッテリー一体型DC充電、ロボットシステムなど、EV充電分野で最も有望なイノベーションを調査しています。これらの技術はEV充電の次のフロンティアであり、レポートでは市場に与える潜在的な影響について考察している。また、ワイヤレス充電やバッテリー交換などの代替充電ソリューションについてもケーススタディを通じて検証し、これらの新技術が充電体験をどのように再定義しうるかについて、将来を見据えた視点を提供している。
 
また、オールインワン充電システムと分散型充電システムの間の議論についても調査し、コスト、拡張性、メンテナンスの面でのトレードオフを説明するベンチマークデータを提供している。この分析は、関係者がプロジェクトに最適なサイト・アーキテクチャを選択する際の指針となる。
 
充電のニーズはさまざまであり、さまざまな市場ニーズに対応するため、現在では複数のEV充電ソリューションが存在している。出典 IDTechEx
 
メガワット(MW)充電とMCS規格の専門家分析:
大型電気トラックやバスの増加に伴い、メガワット充電はますます重要になってきています。本レポートでは、メガワット充電システム(MCS)規格を詳細に分析し、技術的課題、コネクタ設計の革新、競合状況を検証しています。情報の大半は、イベントに出向いたり、MWバリューチェーンのプレーヤーに話を聞いたりして収集したものである。また、メガワット充電インフラの展開、主要課題、主要プレーヤー、進行中のプロジェクト、将来の投資動向についても予測している。本レポートによると、現在、送電網の容量に余裕があることが、MW出力レベルの充電普及を制限している。1000V/500Aの中電力供給インフラはすでに限られており、送電網のアップグレードには時間とコストがかかる。
 
MCSは電流を500%、電圧を20%増加させる。MWレベルの充電が可能なeTruckは数モデルしかない。注:ここでの値は、可能なものとして文書化されたものであるが、典型的な設備では実施されない可能性がある。出典:IDTechEx IDTechEx
 
市場の統合と競争環境:
EV充電市場の成熟に伴い、統合が競争環境を再構築している。本レポートでは、製品ポートフォリオ、最近のM&A、戦略的ポジショニングなど、主要な市場プレイヤーを紹介しています。全く新しいIDTechExのリーダーボードは、戦略と実行に基づいて企業をランク付けし、市場におけるトップパフォーマーと挑戦者の明確な見解を提供しています。このベンチマークは、企業が潜在的なパートナー、競合他社、買収ターゲットを特定するのに役立ちます。
 
スマート充電とV2Xソリューションに関する洞察:
V2X(Vehicle-to-Everything)技術は、エネルギーグリッドと自動車との相互作用の方法に革命をもたらすと考えられており、本レポートは、AC vs DC V2G(Vehicle-to-Grid)システムを含むV2Xソリューションの包括的な分析を提供しています。本レポートでは、Vehicle-to-Home(V2H)導入の課題を議論し、双方向通信可能なバッテリー電気自動車(BEV)の展望を提供することで、V2X技術の将来的な可能性を洞察しています。
 
未来予測:10年間の市場予測:
本レポートには10年間の市場予測が含まれており、公共、民間、フリート部門における充電設備の成長予測について詳述しています。予測は、電力レベルと充電タイプ(ACとDC)別に分類されており、関係者が十分な情報に基づいた意思決定を行うのに役立つ詳細な洞察を提供しています。中国、欧州、米国を中心に、ACとDCのタイプ別に区分した公共充電設備の地域別予測も提供している。市場参入や拡大戦略を計画している企業にとって、このレベルの詳細情報は貴重です。
 
ビジネスモデル、収益プール、サプライチェーン:
本レポートでは、サブスクリプションサービスから広告ベースの収益源まで、EV充電分野におけるさまざまなビジネスモデルを検証し、企業が参入できる主要な収益源を明らかにしています。このセクションでは、EV充電の背後にある経済的促進要因を明確に理解し、企業が戦略を最適化するための知識を提供します。さらに、マルチベンダー戦略を採用することが多い様々なCPOが採用しているホワイトラベリング・アプローチも取り上げている。主要部品(半導体、パワーモジュールなど)の不足などの混乱は、生産スケジュールやコストに深刻な影響を与える可能性があるため、グローバルサプライチェーンに関する洞察は有用である。サプライチェーンを理解することで、企業は潜在的なボトルネックを特定し、サプライヤーを多様化し、リスクを軽減するためのコンティンジェンシープランを策定することができます。
 
本レポートの対象者:
  • 自動車およびエネルギー企業: EV充電の未来を形作る最新のトレンド、技術、市場力学を理解することで、戦略的優位性を得ることができます。この詳細な分析は、製品開発、パートナーシップ、市場参入戦略の指針となります。
  • 投資家および財務アナリスト詳細な市場予測と企業ベンチマーキングにより、高成長の機会を特定し、競合状況を評価することができます。本レポートは、急速に進化するEV充電セクターにおいて、十分な情報に基づいた投資判断を下すために必要な洞察を提供します。
  • 政策立案者と規制当局者 充電インフラ配備の地域差と、市場成長に対する政策イニシアチブの影響を理解する。本レポートの分析は、電動モビリティへの移行を支援する政策決定に役立ちます。
  • テクノロジープロバイダーと新興企業:技術革新の包括的なカバレッジにより、業界リーダーに対する製品のベンチマーク、潜在的なコラボレーションの機会の特定、市場トレンドの先取りが可能です。
本レポートは、EV充電インフラ市場に関する最も包括的で実用的な洞察へのアクセスを提供します。専門家による分析は、戦略的な意思決定を後押しし、有利なビジネスチャンスを特定し、この急成長産業の複雑さを乗り越えるためのナビゲーションとなります。
 
市場への参入、既存事業の拡大、EV充電における次の大きなイノベーションへの投資など、本レポートは電動モビリティの未来に不可欠なガイドとなります。
 
主要な側面
本レポートでは、EV充電インフラ市場について、以下の側面から概観する:
1. 主要地域における公共充電インフラの展開
2. 低電力先DCまたはDCウォールボックス充電器 - 主要企業、製品ベンチマーク、市場展望
3. 高出力 DC 充電器-製品ベンチマーク、ケーブルとコネクターの熱管理戦略、パワーモジュール市場動向
4. サイトアーキテクチャ - オールインワンシステム対分散システム(オールインワンシステムのベンチマークを含む
5. メガワット充電(MW)-MCS標準、コネクター設計、課題、プレーヤーの状況、MWプロジェクトと投資、展開予測
6. 導電性充電の革新 - オフグリッドソーラー充電、モバイル/ポータブルDC充電、バッテリー一体型DC充電、ロボット充電、リニアジェネレーター7. 導電性充電に代わる新たな選択肢 - ワイヤレス充電、バッテリースワッピング
8. フリート用インフラ
9. 主要市場プレーヤー - 企業情報、製品ポートフォリオ、IDTechEx リーダーボード、業界統合10.EV充電サプライチェーン - マルチベンダー戦略
11. 主要地域のネットワーク事業者による公共充電インフラの市場シェア
12. EV充電のビジネスモデルと収益プール13.スマート充電とV2X - AC vs DC V2G、V2H導入の課題、双方向充電可能なBEVの展望。
14. 10年間の市場予測と分析:
  • セクター別充電設備 - 公共、民間、フリート。タイプ別充電設備 - AC、DC。
  • 電力分割別充電設備 - 10 kW未満および10~22 kW(AC)+ 20~100 kW、101~250 kW、251~750 kW、751~3 MW(DC).
  • 地域別の公共充電設備 - 中国、欧州、米国(ACとDCを含む)。
  • 充電市場価値 - 単位:米ドル。

 



 

ページTOPに戻る


 

Summary

この調査レポート2025-2035年の電気自動車とフリート向け充電インフラについて詳細に調査・分析しています。実用的な洞察と、進化するEV充電の状況をナビゲートするための戦略的ロードマップを提供しています。
 
主な掲載内容(目次より抜粋)
  • 地域別の充電インフラストラクチャ
  • 充電コネクタの規格
  • 電気自動車の充電インフラと主要技術
  • 主要な市場プレーヤー
  • 電気自動車充電のバリューチェーンとビジネスモデル
 
Report Summary
The Future of EV Charging Infrastructure: Market Trends, Innovations, and Opportunities
The electric vehicle (EV) revolution is accelerating rapidly, driving the need for efficient, reliable, and scalable charging infrastructure. As EV adoption grows, stakeholders across automotive, energy, and technology sectors are in search of detailed insights to shape their strategies and investments. This report on the EV Charging Infrastructure Market offers technical depth and analysis into various aspects making it a useful resource for businesses, investors, policymakers, and industry professionals who want to stay ahead in this evolving market.
 
This report goes beyond basic analysis to deliver actionable insights and a strategic roadmap for navigating the evolving EV charging landscape. It covers multiple types of EV charging solutions including private AC charging, public DC charging, megawatt charging, battery swapping, and wireless charging. As electrification penetrates multiple vehicle markets, the type of charging infrastructure needed is also evolving. Vehicle platform voltages are shifting from 400 to 800 V architectures, unlocking even higher charging powers, while bringing new thermal challenges. IDTechEx research aims to provide clarity on the different technologies available today and those emerging with potential for disruption in the future. Technologies like destination or wallbox DC chargers, distributed vs standalone architectures, megawatt charging, SiC power modules, robotic charging, battery-buffered charging, off-grid solar charging, and mobile charging are some examples of the emerging EV charging solutions. This report covers the key players within these fields, benchmarks their products, and provides a market outlook for their adoption.
 
Comprehensive Coverage of Key Market Segments
The report provides a complete overview of the global EV charging infrastructure market, covering public and private charging solutions, fleet infrastructure, and innovative technologies. It analyses market dynamics across key regions, including China, Europe, and the US, offering insights into how regional policies, consumer behavior, and technological advancements are shaping the market. Detailed analysis of both low-power destination DC chargers and high-power DC fast chargers, including product benchmarking and competitive analysis, enables a clear understanding of the strengths, weaknesses, and market positioning of key players.
 
Deep Dive into Emerging Technologies and Innovations:
The report explores the most promising innovations in the EV charging space, including off-grid solar charging, battery-integrated DC charging, and robotic systems. These technologies represent the next frontier in EV charging, and the report provides insights into their potential impacts on the market. Alternative charging solutions like wireless charging and battery swapping are also examined via case studies, offering a forward-looking perspective on how these emerging technologies could redefine the charging experience.
 
The report also explores the debate between all-in-one and distributed charging systems, providing benchmarking data that explains the trade-offs in terms of cost, scalability, and maintenance. This analysis guides stakeholders in selecting the optimal site architecture for their projects.
 
Charging needs vary and multiple EV charging solutions exist today to serve different market needs. Source: IDTechEx
 
Expert Analysis of Megawatt (MW) Charging and the MCS Standard:
With the rise of heavy-duty electric trucks and buses, megawatt charging is becoming increasingly critical. The report provides an in-depth look at the Megawatt Charging System (MCS) standard, examining technical challenges, connector design innovations, and the competitive landscape. Most of the information is gathered via travelling to events and speaking to players in the MW value chain. It also forecasts the deployment of megawatt charging infrastructure, key challenges, key players, ongoing projects, and future investment trends. The report finds that Spare grid capacity is currently limiting MW power level charging rollout. Infrastructure for 1000V/500A medium power supply is already limited and grid upgrades are both time consuming and costly.
 
MCS increases current by 500%, voltage by 20%. Another challenge lies in vehicles being able to accept such high charging powers, with only a few eTruck models capable of MW level charging. Note: the values here are documented as possible but may not be implemented in typical installations. Source: IDTechEx
 
Market Consolidation and Competitive Landscape:
As the EV charging market matures, consolidation is reshaping the competitive landscape. The report profiles key market players, including their product portfolios, recent mergers and acquisitions, and strategic positioning. An all new IDTechEx leaderboard ranks companies based on strategy and execution, offering a clear view of the top performers and challengers in the market. This benchmarking helps businesses identify potential partners, competitors, and acquisition targets.
 
Insights into Smart Charging and V2X Solutions:
Vehicle-to-Everything (V2X) technology is set to revolutionize the way energy grids interact with vehicles, and this report provides a comprehensive analysis of V2X solutions, including AC vs. DC V2G (Vehicle-to-Grid) systems. The report discusses the challenges of Vehicle-to-Home (V2H) adoption and provides an outlook for bidirectional-capable battery electric vehicles (BEVs), offering insights into the future potential of V2X technologies.
 
Forecasting the Future: 10-Year Market Projections:
The report includes a 10-year market forecast, detailing projected growth in charging installations across public, private, and fleet sectors. Forecasts are broken down by power level and charging type (AC and DC), providing granular insights that help stakeholders make informed decisions. Region-specific forecasts for public charging installations are also provided, segmented by AC and DC types, with a focus on China, Europe, and the US. This level of detail is invaluable for businesses planning market entry or expansion strategies.
 
Business Models, Revenue Pools, and Supply Chain:
The report examines various business models within the EV charging sector, from subscription services to ad-based revenue streams, highlighting the key revenue pools that companies can tap into. This section provides a clear understanding of the economic drivers behind EV charging, equipping businesses with the knowledge to optimize their strategies. Furthermore, it covers the white labelling approach used by various CPOs that often adopt a multi-vendor strategy. Insights into the global supply chain can be useful as disruptions, such as shortages of key components (e.g., semiconductors, power modules), can severely impact production timelines and costs. Understanding the supply chain allows businesses to identify potential bottlenecks, diversify suppliers, and develop contingency plans to mitigate risks.
 
Who Will Benefit from This Report:
  • Automotive and Energy Companies: Gain a strategic edge by understanding the latest trends, technologies, and market dynamics that are shaping the future of EV charging. This in-depth analysis will guide product development, partnerships, and market entry strategies.
  • Investors and Financial Analysts: Identify high-growth opportunities and assess the competitive landscape with detailed market forecasts and company benchmarking. The report provides the insights needed to make informed investment decisions in the rapidly evolving EV charging sector.
  • Policymakers and Regulators: Understand regional differences in charging infrastructure deployment and the impact of policy initiatives on market growth. The analysis within this report can inform policy decisions that support the transition to electric mobility.
  • Technology Providers and Startups: Benchmark products against industry leaders, identify potential collaboration opportunities, and stay ahead of market trends with comprehensive coverage of technological innovations.
This report provides access to the most comprehensive and actionable insights on the EV charging infrastructure market. The expert analysis empowers strategic decision-making, identifies lucrative opportunities, and guides navigation through the complexities of this rapidly growing industry.
 
Whether planning to enter the market, expand existing business operations, or invest in the next big innovation in EV charging, this report serves as an essential guide to the future of electric mobility.
 
Key Aspects
This report provides an overview of the EV charging infrastructure market covering the following aspects:
1. Public charging infrastructure deployment in key regions
2. Low power destination DC or DC wallbox chargers - key players, product benchmarking, market outlook
3. High power DC chargers - product benchmarking, cable and connector thermal management strategies, and power module market trends
4. Site architecture - all-in-one vs distributed systems including benchmarking all-in-one systems
5. Megawatt charging (MW) - MCS standard, connector design, challenges, player landscape, MW projects and investments, forecast for deployment
6. Innovations in conductive charging - off-grid solar charging, mobile/portable DC charging, battery-integrated DC charging, robotic charging, and linear generators
7. Emerging alternatives to conductive charging - wireless charging and battery swapping
8. Infrastructure for fleets
9. Key market players - company information, product portfolio, IDTechEx leaderboard, industry consolidation
10. EV charging supply chain - multi-vendor strategies
11. Market share of public charging infrastructure by network operators in key regions
12. Business models and revenue pools in EV charging
13. Smart charging and V2X - AC vs DC V2G, challenges with V2H adoption, outlook for bidirectional capable BEVs.
14. 10 Year Market Forecasts & Analysis:
  • Charging installations by sector - public, private and fleet.
  • Charging installations by type - AC and DC.
  • Charging installations by power split - <10 kW and 10-22 kW (AC) + 20-100 kW, 101-250 kW, 251-750 kW, 751-3 MW (DC).
  • Public charging installations by region - China, Europe and US (with AC and DC split).
  • Charging market value - in US$.

地域別の充電インフラストラクチャ 充電コネクタの規格 電気自動車の充電インフラと主要技術 主要な市場プレーヤー 電気自動車充電のバリューチェーンとビジネスモデル 予報 会社概要



ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Overview of charging levels
1.2. EV charging ecosystem
1.3. EV charging experiencing continued growth
1.4. Six key market trends in EV charging
1.5. General points about the EV charging market
1.6. DC fast charging levels
1.7. Cost per kW of installing chargers varies
1.8. Public charging pain points still exist
1.9. Charging is complex, especially at scale
1.10. Delays in DCFC deployment due to utility-side upgrades and supply-chain constraints
1.11. Generation landscape - off-grid operation
1.12. Comparison of off-grid charging technologies
1.13. Megawatt charging: a new segment of high-power DC fast charging
1.14. Destination DC charging: a new product class for EVSE manufacturers
1.15. Site architecture: distributed vs all-in-one solutions
1.16. SiC enables future EV charging power trends
1.17. Alternate charging strategies emerging
1.18. Evaluation of different charging strategies
1.19. Outlook for EV Charging Technologies
1.20. The landscape for charging infrastructure is getting competitive
1.21. IDTechEx EV charging leaderboard
1.22. AC/DC V2G system SWOT analysis
1.23. List of BEVs capable of V2X
1.24. Share of V2X-capable vs. unidirectional EV sales
1.25. Why V2H will drive V2X adoption
1.26. Cost of V2H system still not attractive
1.27. Global charging infrastructure installations
1.28. Total car and fleet charging outlets in-use 2015-2035
1.29. New charging installations by power class 2015-2035
1.30. Level 2 AC charging speeds are on the rise
1.31. Level 3 DC fast charging power envelope pushing further
1.32. Total charging installations by region 2015-2035
1.33. EV charging market: a US$104 billion market by 2035
2. INTRODUCTION
2.1. Charging levels
2.2. Charging modes
2.3. Basics of electric vehicle charging mechanisms
2.4. How long does it take to charge an electric vehicle?
2.5. Factors that affect charging speed
2.6. The trend towards DC fast charging
2.7. Charging methods
2.8. Charging infrastructure coverage and demand
2.9. Number of public chargers required for plug-in EVs?
2.10. Private versus public charging
2.11. Charger infrastructure terminology
2.12. Market trends in EV charging (1)
2.13. Market trends in EV charging (2)
2.14. Market trends in EV charging (3)
2.15. Market trends in EV charging (4)
2.16. Market trends in EV charging (5)
3. CHARGING INFRASTRUCTURE BY REGION
3.1.1. Global charging infrastructure installations
3.2. Charging Infrastructure by Region - U.S.
3.2.1. Growth of EV charging infrastructure in US
3.2.2. The state of public charging stations in US (I)
3.2.3. The state of public charging stations in US (II)
3.2.4. Growth of public DC fast chargers in US
3.2.5. NACS to become the dominant connector type in US
3.2.6. US DC fast charger market challenges
3.2.7. Private and public charging penetration in US
3.2.8. EV charging utilisation trends in US
3.3. Charging Infrastructure by Region - Europe
3.3.1. Key takeaways for Europe
3.3.2. The state of EV charging infrastructure in Europe
3.3.3. Growth of EV charging infrastructure in EU
3.3.4. Segmentation of public chargers in EU by power
3.3.5. AC/DC split by EU country
3.3.6. EU charging infrastructure rollout lagging
3.3.7. Policy for EV charging Infrastructure in EU
3.3.8. Some countries need to significantly over comply with their AFIR targets
3.3.9. Private and public charging penetration in Europe
3.4. Charging Infrastructure by Region - China
3.4.1. The status of public charging in China
3.4.2. Public charging rollout in China keeping up the pace with EV sales
3.4.3. Public charging installations in China by province and municipalities
3.4.4. China utilisation numbers are low
3.4.5. Private and public charging penetration in China
4. CHARGING CONNECTOR STANDARDS
4.1.1. Overview of EV charging connector standards
4.1.2. EV charging infrastructure standard organizations
4.1.3. Key standards involved in EV charging
4.1.4. EV charging infrastructure standards: ISO/IEC
4.1.5. EV charging infrastructure standards: SAE
4.1.6. DC charging standard: CCS
4.1.7. DC charging standard: CHAdeMO
4.1.8. EV charging infrastructure standard in China: GB
4.1.9. Why EV connectors will not use household outlets
4.1.10. Types of EV charging plugs (I)
4.1.11. Types of EV charging plugs (II)
4.1.12. EV charging systems comparison
4.1.13. Summary of charging levels and regional standards
4.1.14. Connector types summary
4.1.15. Overview of EV charging standards by region
4.2. Harmonisation of Charging Connector Standards
4.2.1. The dilemma of charging connectors
4.2.2. Choosing the right connector
4.2.3. Migration of US automakers to Tesla's connector
4.2.4. Competition for global acceptance
4.2.5. NACS construction
4.2.6. Tesla NACS vs CCS
4.2.7. NACS AC and DC pin sharing
4.2.8. Tesla cable thermal management
4.2.9. NACS drivers
4.2.10. Charging hardware suppliers and CPOs adopting NACS in North America
4.2.11. ChaoJi (CHAdeMO 3.0) and the current charging standards
4.2.12. China approves new DC charging standard ChaoJi-1
4.2.13. Achieving harmonisation of standards
4.2.14. Harmonisation of standards will be key
4.3. Communication Protocols
4.3.1. What are communication protocols?
4.3.2. Communication protocols and standards
4.3.3. Communication systems for EV charging
4.3.4. Communication interfaces (I)
4.3.5. Communication interfaces (II)
4.3.6. Types of communication protocols
4.3.7. Overview: OCPP versions and benefits
4.4. Plug and Charge
4.4.1. The next big step in EV fast charging is Plug and Charge
4.4.2. What is Plug and Charge? What are the benefits?
4.4.3. How does Plug and Charge work? (I)
4.4.4. How does Plug and Charge work? (II)
4.4.5. Public key infrastructure is the basis of Plug and Charge
4.4.6. Functionalities enabled by ISO 15118
4.4.7. Plug and charge aims to be more customer centric than the Tesla ecosystem
4.4.8. Ramp up phase 2018-2022
4.4.9. State of Plug and Charge deployment in 2024
4.4.10. Plug and Charge SWOT
5. ELECTRIC VEHICLE CHARGING INFRASTRUCTURE AND KEY TECHNOLOGIES
5.1. Overview of Electric Vehicle Charging Infrastructure
5.1.1. EV charging infrastructure: technology overview
5.1.2. Different types of EV charging infrastructure
5.1.3. Architecture of EV charging infrastructure
5.1.4. EV charging technologies by application
5.2. Conductive Charging
5.2.1. Conductive charging technologies by application
5.2.2. AC charging versus DC charging (I)
5.2.3. AC charging versus DC charging (II)
5.2.4. Electric vehicle on-board charger (OBC)
5.2.5. Types of OBC
5.2.6. Working of an OBC
5.2.7. Role of the OBC
5.2.8. EV OEM onboard charger examples
5.2.9. Conductive charging at Level 1
5.2.10. Conductive charging at Level 2
5.2.11. Conductive charging at Level 3
5.2.12. Summary of charging levels
5.2.13. Behind the plug: what's in a charging station?
5.2.14. EV Charger Components
5.2.15. Residential charging
5.2.16. Workplace charging - an essential complement to residential charging
5.2.17. How workplace charging can help alleviate grid pressure
5.2.18. Destination DC charging
5.2.19. List of destination/residential DC chargers
5.2.20. Applications for destination DC chargers
5.2.21. Benchmarking destination DC chargers (1)
5.2.22. Benchmarking destination DC chargers (2)
5.2.23. Auto OEMs to remove OBCs if destination DC chargers installed?
5.2.24. Outlook for destination DC chargers
5.3. High Power Conductive Charging
5.3.1. Current charging needs
5.3.2. CHAdeMO is preparing for 900 kW high power charging
5.3.3. Is 350 kW needed?
5.3.4. High power charging is the new premium charging solution
5.3.5. Benefits of high power charging
5.3.6. High power charging infrastructure
5.3.7. HPC Units by various manufacturers
5.3.8. High output chargers require significant power capacity
5.3.9. 800 V architecture for EVs
5.3.10. Borg Warner: effects on charging when increasing system voltage beyond 800 V (1)
5.3.11. Borg Warner: effects on charging when increasing system voltage beyond 800 V (2)
5.3.12. Megawatt charging impacts on commercial vehicle system voltage
5.3.13. Preh - charging technology for 800V EVs
5.3.14. Charging 800V battery: market solutions
5.3.15. Technical specification of HPCs by equipment manufacturer
5.3.16. Do HPCs require a large installation footprint?
5.3.17. Solving the installation issue
5.3.18. Commercial charger benchmark: power and voltage levels
5.3.19. Commercial charger benchmark: voltage and current levels
5.3.20. Commercial charger benchmark: cooling technology
5.3.21. Site architecture: distributed vs all-in-one solutions
5.3.22. Advantages & disadvantages of all-in-one systems
5.3.23. Advantages & disadvantages of distributed systems
5.3.24. Commercial charger benchmark: all-in-one units (1)
5.3.25. Commercial charger benchmark: all-in-one units (2)
5.3.26. Commercial charger benchmark: all-in-one units (3)
5.3.27. Estimated total cost of ownership
5.3.28. Challenges for high power charging
5.3.29. Impacts of fast charging on battery lifespan
5.3.30. Efforts to improve fast charging performance
5.3.31. Why preheat batteries?
5.3.32. Intelligent battery management to enable fast charging
5.3.33. Thermal management strategies in HPC
5.3.34. EV charging cables
5.3.35. Cable cooling to achieve high power charging
5.3.36. Air-cooled vs liquid-cooled DC charging cables
5.3.37. Liquid phase change cooled cables and connectors
5.3.38. Phoenix Contact - Liquid Cooling for Fast Charging
5.3.39. Brugg eConnect cooling units
5.3.40. TE Connectivity - Thermal Management Opportunities (I)
5.3.41. TE Connectivity - Thermal Management Opportunities (II)
5.3.42. CPC - Liquid Cooling for EV Charging (I)
5.3.43. CPC - Liquid Cooling for EV Charging (II)
5.3.44. Tesla liquid-cooled connector for ultra fast charging
5.3.45. Tesla adopts liquid-cooled cable for its Supercharger
5.3.46. ITT Cannon's liquid-cooled HPC solution
5.3.47. Umicore: materials for high voltage EV charging
5.3.48. Umicore: silver graphite composite plating
5.3.49. Umicore vs. TE Connectivity: silver plated contacts
5.3.50. Modularity
5.3.51. Power modules for HPCs
5.3.52. Power module market trends (1)
5.3.53. Power module market trends (2)
5.3.54. Chinese power module manufacturers
5.3.55. Why SiC: SiC enables typically about 2% efficiency gain in DC EV charger applications compared to Si-based solutions
5.3.56. SiC enables future EV charging power trends
5.3.57. PCB dip coating vs. potting for power modules
5.3.58. High power charging roadmap
5.3.59. High power charging SWOT
5.3.60. Public charger reliability and uptime
5.3.61. Common causes of public charger outages
5.3.62. The cost of maintenance
5.3.63. Strategies for maintaining charger uptimes
5.4. Megawatt charging
5.4.1. Megawatt Charging System (MCS) announcement
5.4.2. Why megawatt charging is important
5.4.3. MCS Specifications and Comparison
5.4.4. MCS Power levels
5.4.5. MCS Charging connector
5.4.6. Challenges in Implementing MCS
5.4.7. MCS Player Landscape
5.4.8. MW charging announcements
5.4.9. List of MW charging projects
5.4.10. Milence
5.4.11. Megawatt charging in China
5.4.12. Tesla MW charging
5.4.13. Tesla proprietary plug...again?
5.4.14. Tesla high power charging solutions
5.4.15. Charge America (WattEV)
5.4.16. Charge America Product Roadmap
5.4.17. Kempower
5.4.18. Zerova
5.4.19. Power Electronics
5.4.20. ChargePoint
5.4.21. Other Companies Working On MCS Product
5.4.22. Grid impacts of MW charging
5.4.23. MW charging market rollout is around the corner
5.4.24. MW charging summary
5.4.25. Megawatt class chargers forecast
5.5. Innovations in Conductive Charging
5.5.1. Innovative charging solutions overview
5.5.2. Traction integrated on-board charging
5.5.3. Visual representation: status quo vs integrated charging
5.5.4. Benefits and implications of traction iOBC
5.5.5. Historic traction integrated charging examples
5.5.6. BYD and Hitachi solutions
5.5.7. Passenger vehicle examples (1)
5.5.8. Passenger vehicle examples (2)
5.5.9. Traction integrated OBCs going mainstream
5.5.10. Traction iOBC suppliers
5.5.11. DOE funding highlights traction integrated charging
5.5.12. Traction integrated OBCs summary
5.5.13. Off-grid electric vehicle charging
5.5.14. Off-grid charging, why it is necessary
5.5.15. Off-Grid - Two Main Motivators
5.5.16. Off-Grid vs Grid-Tied Charging
5.5.17. Generation landscape - off-grid operation
5.5.18. Comparison of off-grid charging technologies
5.5.19. Comparison Benchmarking - Installation Area vs Peak Power Output
5.5.20. Off-grid charging market landscape - technological overview
5.5.21. The attraction of fuel cell generators
5.5.22. Hydrogen EV generator - scalable
5.5.23. Off-grid charging market dominated by hydrogen in 2034
5.5.24. Linear generators: suppliers finding new markets in infrastructure gaps for EVs
5.5.25. Hyliion Karno Generator
5.5.26. Mainspring Linear Generator
5.5.27. Mobile charging - a new business model for electric vehicle charging
5.5.28. Modular mobile charger by SparkCharge
5.5.29. Mobile charging station installed in cargo vans
5.5.30. Power Mobile charging service by NIOPower
5.5.31. Challenges and limitations of battery powered mobile chargers
5.5.32. Grid connected mobile DC fast chargers
5.5.33. The case for portable DC chargers
5.5.34. List of mobile DC fast chargers
5.5.35. Technical specifications of mobile DC fast chargers
5.5.36. Benchmarking mobile DC fast chargers
5.5.37. Pathways for installing DC fast charging stations
5.5.38. Why do we need battery integrated charging infrastructure?
5.5.39. Charging without a grid connection - the launch of Infrastructure-as-a-service (IaaS)
5.5.40. How battery integrated EV charging works
5.5.41. Jolt - MerlinOne
5.5.42. E.ON - Drive Booster
5.5.43. FEV - Mobile Fast Charging (MFC) solution
5.5.44. FreeWire - Boost Charger
5.5.45. FreeWire facing strong headwinds
5.5.46. Benchmarking battery buffered EV fast chargers
5.5.47. Summary of battery buffered EV charging projects
5.5.48. How will autonomous EVs refuel?
5.5.49. Autonomous charging of electric vehicles with robotics
5.5.50. Autonomous charging of electric vehicles with robotics: how it works
5.5.51. Autonomous charging: historic conductive robotic charging solutions
5.5.52. VW's mobile charging robots
5.5.53. Electrify America to deploy robotic chargers
5.5.54. Easelink's autonomous conductive charging system
5.5.55. Volterio
5.5.56. Hyundai automatic charging robot
5.5.57. Ford robotic charging prototype
5.5.58. NaaS automatic charging robot
5.5.59. Automatic Charging at EVS35
5.5.60. ROCIN-ECO, a robotic charging consortium
5.6. Wireless Charging
5.6.1. Introduction to wireless charging for EVs
5.6.2. Resonant inductive coupling - the principle behind wireless EV charging
5.6.3. Wireless charging will use magnetic as opposed to electric fields
5.6.4. Enabling componentry
5.6.5. Wireless charging addressable markets
5.6.6. Wireless charging overview
5.6.7. Benchmarking wireless coil designs
5.6.8. Key points about different coil topologies
5.6.9. Commercially deployed wireless chargers
5.6.10. OEMs with wireless charging pilot projects
5.6.11. Wireless charging trials are underway
5.6.12. Wireless charging players overview
5.6.13. Wireless charging player benchmarking
5.6.14. Cabled-chargers are not on their way out
5.6.15. Componentry cost and volumes
5.6.16. Wireless vs plug-in TCO analysis
5.6.17. Dynamic wireless charging remains experimental
5.6.18. Dynamic charging trials underway
5.6.19. Wireless charging aids V2G and battery downsizing
5.6.20. Wireless charging SWOT analysis
5.6.21. Wireless charging units by vehicle segment 2021-2033
5.6.22. Wireless charging for EVs: conclusions
5.7. Battery Swapping
5.7.1. Battery swapping: charge it or change it?
5.7.2. There are many ways to charge your EV - charging modes comparison
5.7.3. Swap-capable EVs entering the market
5.7.4. Battery swapping pathways for different types of EVs
5.7.5. Car swapping process overview
5.7.6. Battery swapping market for cars in China is getting competitive
5.7.7. Swapping is more expensive than AC or DC charging
5.7.8. Swapping station deployment will rise over the next 5 years
5.7.9. Battery as a Service (BaaS) business model - a disintegrated approach
5.7.10. Two and three-wheelers use small capacity, self-service swap models
5.7.11. Two wheeler battery swapping is successfully being carried out in population-dense regions of APAC
5.7.12. Commercial heavy duty battery swapping is in its early stages
5.7.13. The Rise of Battery Swapping in Chinese Trucks
5.7.14. The Swapping Ecosystem
5.7.15. Heavy Duty Battery Swapping Players
5.7.16. Chinese swapping players overview (car market)
5.7.17. BSS deployment on the rise
5.7.18. Nio leading the battery swapping race
5.7.19. Nio swapping technology in its third iteration
5.7.20. CATL EVOGO showing slow uptake
5.7.21. Aulton expansion as taxis electrify
5.7.22. Battery swapping benefits and scepticism
5.7.23. Battery swapping SWOT analysis
5.7.24. Global cumulative swap station deployment by segment 2021-2032
5.7.25. Battery swapping for EVs: conclusions
5.8. Charging Infrastructure for Electric Vehicle Fleets
5.8.1. The rising demand for fleet charging
5.8.2. What is driving fleet electrification?
5.8.3. The rising population of electric vehicle fleets
5.8.4. Charging infrastructure for electric buses
5.8.5. Charging electric buses: depot versus opportunity charging
5.8.6. Type of fleet charging depends on use case and vehicle class
5.8.7. Heliox: public transport and heavy-duty vehicle charging
5.8.8. Heliox's 13 MW charging network for electric buses
5.8.9. SprintCharge: battery-buffered opportunity charging for electric buses
5.8.10. ABB's smart depot charging solution for large fleets
5.8.11. ABB: opportunity charging for electric buses
5.8.12. Siemens: electric bus and truck charging infrastructure
5.8.13. Siemens autonomous charging system
5.8.14. Greenlane: Daimler lead public charging network
5.8.15. Case study: wireless charging for electric bus fleets
5.8.16. WAVE - wireless charging for electric buses
5.8.17. WAVE wireless charging impact on vehicle cost
5.8.18. Data center strategies for powering high-capacity EV charging stations (1)
5.8.19. Data center strategies for powering high-capacity EV charging stations (2)
5.8.20. Summary of commercial electric fleet wired DC charging options
5.8.21. Charging solutions for heavy duty fleet: high level findings
5.8.22. Outlook for EV Charging Technologies
5.9. Electric Road Systems for Electric Vehicle Charging
5.9.1. Types of electric road systems
5.9.2. Electric road systems: conductive versus inductive
5.9.3. Configuration of ERS infrastructure
5.9.4. Benefits of ERS
5.9.5. Electric road systems: Korea
5.9.6. Electric road systems: Sweden
5.9.7. Germany tests its first electric highway for trucks
5.9.8. Real world testing
5.9.9. Electric road systems: market and challenges
6. KEY MARKET PLAYERS
6.1. Market players summary
6.2. Charging infrastructure market is ripe for consolidation
6.3. IDTechEx EV charging leaderboard
6.4. ABB
6.5. ABB's heavy commercial vehicle charging product portfolio
6.6. ABB A400 all-in-one DC fast charger
6.7. Alpitronic
6.8. Bosch Mobility Solutions
6.9. Bosch does away with the "charging brick"
6.10. BP Pulse
6.11. ChargePoint
6.12. ChargePoint product series
6.13. ChargePoint financials
6.14. DBT-CEV
6.15. Eaton
6.16. Efacec
6.17. Electrify America
6.18. Electrify America charger utilisation up
6.19. Ekoenergetyka
6.20. EVBox
6.21. EVgo
6.22. Flo
6.23. Huawei Digital Power Technology
6.24. Ionity
6.25. Ionity insights on lead time and growth rate per country
6.26. IONITY supply chain
6.27. Ionna
6.28. Kempower
6.29. Pod Point
6.30. StarCharge
6.31. StarCharge US expansion
6.32. TELD
6.33. Tesla supercharging network
6.34. Improvements in per kWh cost of charging
6.35. Supercharger manufacturing
6.36. Tesla pre-fabricated supercharger units (PSUs)
6.37. Tesla Supercharger layoffs sends ripples across the industry
6.38. Tesla hints at wireless charging
6.39. Tritium
6.40. Tritium acquisition - Exicom
6.41. Wallbox
6.42. Webasto
6.43. Manufacturers by region
6.44. OEMs building own charging hardware
7. VALUE CHAIN AND BUSINESS MODELS FOR ELECTRIC VEHICLE CHARGING
7.1.1. The emergence of electric vehicle charging value chain
7.1.2. The electric vehicle charging value chain
7.1.3. Entering the high power charging value chain
7.1.4. Key market players along the EV charging value chain
7.1.5. Barriers to entry for commercial charging
7.1.6. Chargepoint operators (CPO) / charging network operators
7.1.7. Market share of public charging infrastructure by network operator: China
7.1.8. Market share of public charging infrastructure by network operator: Europe
7.1.9. USA market shares; Tesla leads DCFC
7.1.10. EV charging billing models
7.1.11. Supply chain
7.1.12. US building up domestic manufacturing base for EV charging
7.1.13. The electric vehicle charging value chain
7.1.14. Business models of charging network operators
7.1.15. Current business models
7.1.16. Future business models and revenue streams
7.2. Smart Charging and V2X
7.2.1. Smart charging: A (load) balancing act
7.2.2. Emerging business models for new services: V2X
7.2.3. Technology behind V2X
7.2.4. Different forms of V2G
7.2.5. AC/DC V2G system SWOT analysis (1)
7.2.6. AC/DC V2G system SWOT analysis (2)
7.2.7. List of BEVs capable of V2X
7.2.8. Share of V2X-capable vs. unidirectional EV sales
7.2.9. Key challenges in V2X adoption
7.2.10. Why V2H will drive V2X adoption
7.2.11. V2X global market insights
7.2.12. Cost of V2H system still not attractive
7.2.13. V2G: Nuvve
7.2.14. The V2G architecture
7.2.15. Nuvve targets electric school buses for V2G
7.2.16. V2G: OVO Energy
7.2.17. Nissan "Energy Share" V2X solutions
7.2.18. V2G: Keysight Technologies
7.2.19. V2G accelerates battery degradation?
7.2.20. V2G can extend the longevity of the electric vehicle battery
7.2.21. V2G projects by type of service
7.2.22. V2G projects by vehicle and EVSE manufacturers
7.2.23. Summary of smart charging and V2X implementations
8. FORECASTS
8.1. Forecast methodology
8.2. Forecast assumptions (I)
8.3. Global plug-in electric vehicles in-use 2015-2035
8.4. Total car and fleet charging outlets in-use 2015-2035
8.5. New car and fleet charging outlets installed 2015-2035
8.6. New charging installations by power class 2015-2035
8.7. Total public charging installations in China (AC & DC)
8.8. Total public charging installations in Europe (AC & DC)
8.9. Total public charging installations in US (AC & DC)
8.10. AC charging installations by power split
8.11. DC charging installations by power split
8.12. EV charging market value 2015-2035 ($ billion)
8.13. Total charging installations by region 2015-2035
8.14. New charging installations by region 2015-2034
8.15. Total public charging installations in Europe by country 2015-2035
8.16. Total private charging installations in Europe by country 2015-2035
9. COMPANY PROFILES
9.1. Tritium
9.2. Charge America
9.3. Staubli
9.4. Akkodis
9.5. ADS-TEC Energy
9.6. Rocysys
9.7. Technotrans
9.8. WiPowerOne
9.9. Elywhere
9.10. AddEnergie (Flo)
9.11. ChargePoint
9.12. Electrify America
9.13. Unico Power
9.14. Nio
9.15. Nuvve
9.16. Mer
9.17. Driivz
9.18. Easelink
9.19. WiTricity
9.20. FreeWire
9.21. InductEV
 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(自動車)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/01/21 10:26

157.10 円

163.44 円

195.63 円

ページTOPに戻る