世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

電気自動車用二次電池2025-2035年:市場、予測、プレーヤー、技術


Second-life Electric Vehicle Batteries 2025-2035: Markets, Forecasts, Players, and Technologies

引退したEV用バッテリーの利用可能性が今後10年間で高まることから、IDTechExはEV用セカンドライフ・バッテリー市場が2035年までに42億米ドルになると予測している。   電気自動車(EV)バッテリ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2024年12月3日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
296 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。


 

サマリー

引退したEV用バッテリーの利用可能性が今後10年間で高まることから、IDTechExはEV用セカンドライフ・バッテリー市場が2035年までに42億米ドルになると予測している。
 
電気自動車(EV)バッテリーは、EVの性能要件を満たさなくなると、最終的には寿命が尽きて廃棄される。これらのリチウムイオンバッテリーをリサイクルすることで、貴重で重要な原材料を回収し、新しいEVバッテリーに再導入することができる。しかし、リサイクルする前に、これらのバッテリーを第二の用途に再利用することで、EVバッテリーの価値を最大化し、寿命を延ばし、バッテリーの循環経済に貢献することができる。場合によっては、電池パックのモジュールやセルを交換し、EV用途での寿命を延ばすこともできる。しかし、再利用された二次電池は、定置用蓄電池や低出力のエレクトロモビリティ・アプリケーションに使用される。
 
リチウムイオン電池の循環経済。出典:IDTechEx
 
市場の動き
欧州と米国の再利用業者は、二次電池の導入量を着実に増やし続けている。これらの定置式または移動式システムは、主に商業・産業(C&I)顧客向けに設置されており、再生可能エネルギーの自家消費、ピークカット、EV充電の最適化に利用されている可能性がある。再利用者の中には、住宅用蓄電池技術を開発しているところもある。再利用者の中には、より大型のコンテナ型バッテリー蓄電システム(BESS)を開発しているところもあり、これらはグリッド規模のアプリケーションに使用される可能性がある。IDTechExは、中国がすでに電気通信バックアップパワーアプリケーション用の二次電池の配備を拡大していると考えているが、ヨーロッパでは中国以外で最も高いレベルの活動が続いており、20の再利用者がこの地域で二次電池を開発していることが確認されている。このIDTechExレポートは、再利用業者と自動車OEMが開発した主要な二次電池技術、プレーヤー別の市場シェア、ビジネスモデル、資金調達、収益創出メカニズム、自動車OEMとの主要パートナーシップに関する考察と分析を提供している。
 
再利用業者と再製造業者。出典:IDTechEx.
 
セカンドライフEVバッテリーのコストと寿命末期バッテリー診断
しかし、欧州と米国で見られる第一世代リチウムイオンBESS技術の大幅なコスト削減により、再利用業者が顧客に対してシステムの価格競争力を維持することは著しく困難になっている。第二世代BESS技術は、EV電池が第一世代で劣化を受け、その結果、本質的に性能の悪い第二世代システムを生み出すことを考えると、第一世代LiイオンBESSよりも価格を低くせざるを得ない。
 
二次使用BESSのコスト上昇には、引退したEVバッテリーの配送ロジスティクス、バッテリーの材料と部品、バッテリーのグレーディング時間、分解、再組み立てを含む再利用プロセスなど、多くの要因が関係している。再利用者は、これらすべての面でコスト削減を目指すことになる。例えば、半自動バッテリー分解技術を使ったプロジェクトがいくつか出てきており、成功すれば、特定の再利用工程における人の介在の必要性を減らし、人件費を削減することができる。本報告書では、多くの新興企業によって開発されている主要な先進バッテリーグレーディング技術についても論じている。これらの技術は、一般的なサイクル技術のように数時間ではなく、数分でバッテリーの健全性(SOH)を判定する車載寿命末バッテリー試験となる可能性があり、試験時間の短縮、ひいてはコストの削減につながる。
 
このIDTechExの報告書では、主要な再利用事業者への一次インタビューのデータに基づき、再利用コスト(US$/kWhベース)を分析し、異なる再利用シナリオに対する感度分析を提供し、エネルギー密度やサイクル寿命を含むコストと主要性能指標を比較しながら、二次電池BESSと一次電池Li-ion BESSの技術経済分析を提供している。
 
セカンドライフとEVバッテリーの動向
引退したEVバッテリーは、パック、モジュール、セルレベルなど、さまざまな分解の深さで再利用することができる。分解深度を深くすると時間がかかるため、人件費がかさむ。しかし、これによって最も性能の良いモジュールやセルを再組み立てすることができ、より性能の良いシステムを作ることができる。IDTechExは、再利用者が一般的にパックレベルまたはモジュールレベルの再利用技術を採用していることを確認しており、これは今後も続くと予想される。分解の深さ別に配備された第二世代BESSに関する更なる分析を提供する。
 
EV バッテリーの様々な分解深度を実施する再利用業者の割合。出典:IDTechEx
 
EVバッテリーの動向は、長期的な再利用の経済的実現可能性にも影響を与える可能性がある。例えば、セル・ツー・パック(CTP)設計は、バッテリーパックのエネルギー密度を向上させ、EVの走行距離を向上させることができる。しかし、このような設計では一般的に構造用接着剤やスポット溶接が多用されるため、解体工程で除去するために溶剤や熱の使用が必要となり、解体コストが増加する可能性がある。IDTechExの本レポートは、EV用バッテリー技術、設計、化学物質(LFP対NMCなど)の多くの動向と、これらが第二世代EV用バッテリー市場にどのような影響を及ぼす可能性があるかについて分析し、徹底的な考察を行っている。
 
使用済みバッテリーの規制
各地域でバッテリーのリサイクルに関する規制はあるが、EV用二次電池に特化した規制はほとんど存在しない。二次電池の潜在的価値を認識し、EU、中国、米国を含む地域は現在、二次電池と再利用を促進するための規制枠組みに取り組んでいる。2022年12月にEU電池規制の草案が作成されて以来、IDTechExは、セカンドライフ用途の電池の再利用に関する用語と認識が相応に変化していることを確認している。しかし、これらの電池を早急にリサイクルするのではなく、再利用することにインセンティブを与えるために、より大きな重点を置くことは可能である。このIDTechExの報告書では、主要地域における二次電池に関する主要な規制と政策を徹底的に調査し、EUバッテリーパスポート、関係者間でのEOL電池データの提供、拡大生産者責任(EPR)、政策が企業活動にどのような影響を与えるかといったトピックを取り上げて明確な解説を行っている。
 
セカンドライフEVバッテリーの地域別立法活動。出典:IDTechEx
 
予測
IDTechExの本レポートでは、2022年から2035年までのEV用二次電池市場について、地域別(欧州、米国、中国、RoW)、用途別、導入量別(GWh)、金額別(億米ドル)の10年間の市場予測も行っている。2020-2035年のEV電池全体の供給力とLFP EV電池の供給力予測を地域別、EVタイプ別に掲載しています。
 
企業プロファイル
このIDTechExレポートには30社以上の企業プロフィールが掲載されており、EV用二次電池市場に参入している、または参入を検討している主要な二次電池再利用業者、高度電池試験診断業者、リチウムイオン電池リサイクル業者に関するさらなる洞察を提供しています。
 
主要な側面
  • 再利用者による資金調達、主要プレイヤーの活動、主要自動車OEMの活動、欧州、米国、アフリカ、日本、オーストラリアにおける再利用バッテリーの地域分析と履歴データ、再利用者の市場シェアなど、EV用セカンドライフバッテリー市場を詳細に分析。さらにきめ細かな分析として、プレイヤーのタイプ別(リパーポーザー対自動車OEM)、分解深度別(パックレベル、モジュールレベル、セルレベル)の使用済みバッテリーの展開(<2022-2024年)を含む。
  • 家庭用、商業・産業用(C&I)、グリッドスケールの蓄電池市場における二次電池再利用業者のビジネスモデルとその収益創出メカニズムについての議論と分析。主要市場における二次電池BESSの供給/バリューチェーンとアプリケーションの概要。
  • 自動車OEMが主要な再利用者及びその他の主要プロジェクトに導入した二次電池の生データ表を提供。
  • 課題、促進要因、成長機会など、EV用セカンドライフバッテリー市場に関する主な結論。これには、技術コスト、政策、電池設計と性能、再利用コストと自動化、高度な電池試験と等級付け技術、B2Bマーケットプレイス、ビジネスモデルと収益分配に関する動向が含まれる。
  • EU、米国、中国を含む主要地域における二次電池の規制状況に関する議論と分析。EUバッテリーパスポート、使用済みバッテリーデータの透明性、拡大生産者責任(EPR)とプレーヤー活動への影響に関する更なる議論。
  • EV用電池の設計、化学、技術の動向と発展、およびそれらがEV用二次電池市場に与える影響についての議論と分析。これには、EVバッテリー設計の標準化、セル・ツー・パック(CTP)およびセル・ツー・シャーシのEVバッテリーパック、セルの大型化、バッテリー電気自動車(BEV)の容量、接着剤やスポット溶接を使用しないバッテリー構造、シリコンアノード、先進BMS技術、EVバッテリーの期待寿命などが含まれます。
  •  セカンドライフ・バッテリーのLFPおよびNMC EVバッテリー化学に関する重要かつ詳細な考察。
  • 第二世代のEV用蓄電池技術と第一世代の、あるいは新しいリチウムイオン蓄電システム(BESS)の技術経済分析。コスト(US$/kWh)、エネルギー密度、サイクル寿命、化学物質における主な比較。
  • 主要な二次電池再利用者への一次インタビューから収集したデータで構成される、きめ細かなボトムアップ再利用コスト分析。ロジスティクス、電池材料と部品、再利用プロセス(電池の試験や等級付け、電池の分解、再組み立て)のコストを含む。再利用コスト削減の主要シナリオを織り込んだ、主要コストの感度分析も含まれる。
  • 新たな半自動バッテリー分解プロジェクトに関する主要な議論と、自動化に向けたEV用セカンドライフバッテリー再利用プロセスの主要ステップの特定。
  • リタイアしたEVバッテリーのセカンドライフ用途への適合性を評価するために実施可能な主要試験と補足試験に関する洞察。これにはバッテリーの健全性と劣化の評価に関連する試験も含まれる。バッテリーの健全性と劣化をモデル化する様々な方法の利点と欠点に関する議論。これには、データ駆動型手法、例えば機械学習/AI、物理ベースモデル、アプローチの組み合わせなどが含まれる。セカンドライフバッテリー評価とバッテリー診断に関わる主要企業の概要も含まれています。
  • 新興の企業間バッテリー市場、バッテリー試験の利害関係者の責任、バッテリーの健全性と劣化データの共有の影響に関する主要な議論と分析。
  • 2022年から2035年までの10年間のEV用二次電池市場を地域別(GWh:欧州、米国、中国、RoW)、用途別(GWh:BESS、通信バックアップ電源)、金額別(億米ドル)で詳細に予測。
  • 2020-2035年における、引退したEV用電池全体と引退したLFP EV用電池の地域別・EVタイプ別の利用可能性に関する10年間の市場予測。地域ごとのEV別のリタイアLFP EVバッテリーの在庫状況も提供。
  • 主要な使用済みEVバッテリーの再利用企業、先進的な使用済みEVバッテリーの試験・等級付け技術開発企業/診断企業/使用済みEVバッテリーの評価企業、使用済みEVバッテリー市場に参入している、または参入を検討しているリチウムイオン電池リサイクル企業など、30社以上の企業プロファイルを掲載。

 



 

ページTOPに戻る


 

Summary

この調査レポートは、2025-2035年の電気自動車用二次電池市場について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 規制の現状とバッテリーのトレーサビリティ
  • EVバッテリーの技術動向と二次電池への影響
  • 技術経済分析、再利用コスト、自動化
  • バッテリー性能試験
  • バッテリー性能モデリング
  • セカンドライフバッテリー評価市場
  • EVセカンドライフバッテリー市場の分析と概要
  • セカンドライフEVバッテリー市場の結論
  • EV用セカンドライフバッテリー市場と引退EV用バッテリーの稼働率予測
  • 企業プロファイル
 
Report Summary
As the availability of retired EV batteries will grow over the coming decade, IDTechEx forecasts the second-life EV battery market will be valued at US$4.2B by 2035.
 
Electric vehicle (EV) batteries are eventually retired at the end of their first-life, once they no longer meet the performance requirements for the EV. These Li-ion batteries could be recycled to reclaim the valuable and critical raw materials and see these reintroduced into new EV batteries. However, repurposing these batteries for second-life applications, prior to recycling, maximizes the value of the EV battery, extends their lifetime, and contributes to a battery circular economy. In some cases, some modules or cells could be replaced in a battery pack, seeing its first-life extended in an EV application. Repurposed second-life EV batteries, however, are used for stationary battery storage or lower power electromobility applications, which are use cases less demanding than that of EVs.
 
Li-ion Battery Circular Economy. Source: IDTechEx.
 
Market Activity
Repurposers in Europe and the US have continued to steadily increase their volume of second-life battery deployments. These stationary or mobile systems have primarily been installed for commercial and industrial (C&I) customers, who may be using them for optimization of renewable energy self-consumption, peak shaving, and EV charging. Some repurposers have also developed residential battery storage technologies. Some repurposers are developing larger containerized battery energy storage systems (BESS), which could be used for grid-scale applications. While IDTechEx believes China is already scaling up deployments of second-life batteries for telecom backup power applications, Europe continues to see the highest level of activity outside China with 20 identified repurposers developing second-life batteries in this region. This IDTechEx report provides discussion and analysis on key second-life battery technologies developed by repurposers and automotive OEMs, market shares by player, business models, funding, revenue generation mechanisms, and key partnerships with automotive OEMs.
 
Second-Life Repurposers and Remanufacturers by HQ. Source: IDTechEx.
 
Second-life EV Battery Costs and End-of-Life Battery Diagnostics
Significant cost reductions of first-life Li-ion BESS technologies seen in Europe and the US have, however, made it significantly difficult for repurposers to remain competitive on their systems' prices to customers. Second-life BESS technologies will have to be priced lower than first-life Li-ion BESS, given that EV batteries will have undergone degradation in their first life, and thus give rise to an inherently worse-performing second-life system.
 
Many factors can contribute to higher second-life BESS costs, including retired EV battery delivery logistics, battery materials and components, and the repurposing process itself, including battery grading times, disassembly, and reassembly. Repurposers will be aiming to reduce their costs across all these fronts. For example, several projects using semi-automated battery disassembly technologies are emerging, and if successful, could reduce the need for human intervention for certain repurposing steps, reducing labor costs. This report also discusses key advanced battery grading technologies being developed by a number of start-ups. These technologies could be in-vehicle end-of-life battery testing to determine battery State-of-Health (SOH) in the order of minutes rather than hours as per typical cycling techniques, reducing testing time and therefore cost.
 
This IDTechEx report analyzes repurposing costs (on a US$/kWh basis) based on data from primary interviews with key repurposers, provides a sensitivity analysis for different repurposing scenarios, and provides a techno-economic analysis of second-life BESS vs first-life Li-ion BESS, comparing costs and key performance metrics including energy density and cycle life.
 
Second-life and EV Battery Trends
Retired EV batteries can be repurposed at different depths of disassembly, namely at pack-, module-, or cell-level. Increasing the depth of disassembly takes longer and therefore incurs greater labor costs. However, this allows for the reassembly of the best performing modules or cells, thus creating a better-performing system. IDTechEx has identified that repurposers are typically adopting pack-level or module-level repurposing techniques and would expect this to continue. Further analysis on second-life BESS deployed by depth of disassembly is provided.
 
Proportion of Repurposers Performing Various Depth of EV Battery Disassembly. Source: IDTechEx.
 
EV battery trends may also impact the economic feasibility of repurposing long-term. For instance, cell-to-pack (CTP) designs can improve the energy density of the battery pack and thus the driving range of the EV. However, these designs typically make greater use of structural adhesives, or spot-welding, which could require the use of solvents or heat to remove in the disassembly process, increasing the cost of disassembly. This IDTechEx report analyzes and provides thorough discussion on the many trends in EV battery technologies, designs, and chemistries (e.g., LFP vs NMC) and how these could influence the second-life EV battery market.
 
Second-life Battery Regulations
While there are some regulations on the recycling of batteries across different regions, few regulations exist that specifically address second-life EV batteries. Realizing the potential value of second-life batteries, regions including the EU, China and the US are now working on their regulatory frameworks to facilitate second-life batteries and repurposing. Since the draft version of the EU Battery Regulation made in December 2022, IDTechEx has observed a reasonable shift in terminology and recognition for repurposing batteries for second-life applications. However, a greater emphasis could still be made to incentivize players to repurpose instead of prematurely recycle these batteries. This IDTechEx report thoroughly examines and provides clear commentary on the key regulations and policies for second-life batteries in key regions, covering topics such as the EU Battery Passport, provision of EOL battery data across stakeholders, extended producer responsibility (EPR), and how policies may impact company activity.
 
Second-Life EV Battery Legislative Activity by Region. Source: IDTechEx.
 
Forecasts
This IDTechEx report also provides 10-year market forecasts for the second-life EV battery market by installations (GWh) by region (Europe, US, China, RoW), application, and by value (US$B) for the 2022-2035 period. Overall EV battery availability and LFP EV battery availability forecasts are provided by region and type of EV for the 2020-2035 period.
 
Company Profiles
This IDTechEx report includes 30+ company profiles, offering further insights into key second-life battery repurposers, advanced battery testing diagnosticians, and Li-ion battery recyclers participating, or looking to participate, in the second-life EV battery market.
 
Key Aspects:
  • In-depth analysis on the second-life EV battery market, including funding by repurposers, key player activity, key automotive OEM activity, regional analysis and historic data of second-life batteries in Europe, the US, Africa, Japan, and Australia, and repurposer market share. Further granular analysis includes second-life batteries deployed (<2022-2024) by type of player (repurposer vs automotive OEM) and by depth of disassembly (pack-level, module-level, cell-level).
  • Discussion and analysis of business models of second-life battery repurposers, their revenue generation mechanisms, in residential, commercial and industrial (C&I), and grid-scale battery storage markets. Key overview of second-life BESS supply/value chain and applications in key markets.
  • Raw data tables for second-life batteries deployed by key repurposer and other key projects by automotive OEMs over time are provided.
  • Key conclusions for the second-life EV battery market, including challenges, drivers and opportunities for growth. This includes trends on technology cost, policy, battery design and performance, repurposing costs and automation, advanced battery testing and grading technologies, B2B marketplaces, business models and revenue sharing.
  • Discussion and analysis on regulatory landscape for second-life batteries in key regions including the EU, US, and China. Further discussion on the EU Battery Passport, end-of-life battery data transparency, and extended producer responsibility (EPR) and impacts on player activity.
  • Discussion and analysis on EV battery design, chemistry, and technology trends and developments, and their impacts on the second-life EV battery market. This includes EV battery design standardization, cell-to-pack (CTP) and cell-to-chassis EV battery packs, larger cell form factors, battery electric vehicle (BEV) capacity, battery structures without glues and spot-welding, silicon anodes, advanced BMS technologies, and expected EV battery lifetime.
  •  Key and in-depth discussion on LFP and NMC EV battery chemistry considerations for second-life batteries.
  • Techno-economic analysis of second-life EV battery storage technologies versus first-life, or new, Li-ion battery energy storage systems (BESS). Key comparisons in cost (US$/kWh), energy density, cycle life, and chemistries.
  • Granular bottom-up repurposing cost analysis, comprised of data gathered from primary interviews with key second-life battery repurposers. Includes costs of logistics, battery materials and components, and the repurposing process (testing or grading batteries, battery disassembly, and reassembly). Key cost sensitivity analysis is also included, factoring in key scenarios for repurposing cost reductions.
  • Key discussion on emerging semi-automated battery disassembly projects and identification of key second-life EV battery repurposing process steps for automation.
  • Insights into key and supplementary tests that can be performed to assess retired EV battery suitability for second-life applications. This includes tests relevant for assessing battery health and degradation. Discussion on the advantages and disadvantages of various methods to model battery health and degradation. These include data-driven methods, e.g., machine learning / AI, physics-based models, combinations of approaches, etc. An overview of key players involved in second-life battery assessment and battery diagnostics is included.
  • Key discussion and analysis on emerging business-to-business battery marketplaces, and battery testing stakeholder responsibility, and the impacts of sharing battery health and degradation data.
  • Granular 10-year second-life EV battery market forecasts, by region (GWh: Europe, US, China, RoW), by application (GWh: BESS, telecom backup power), and by value (US$B) for the 2022-2035 period.
  • 10-year market forecasts for availability of overall retired EV battery and retired LFP EV battery availability by region and type of EV for the 2020-2035. Retired LFP EV battery availability split by EV per region is also provided.
  • 30+ company profiles including key second-life battery repurposers, advanced end-of-life battery testing and grading technology developers / diagnosticians / second-life battery assessment players, and several Li-ion battery recyclers already participating, or which may look to participate, in the second-life EV battery market.


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Introduction to the second-life repurposing and battery circular economy
1.2. Second-life EV batteries: Key market conclusions
1.3. Second-life EV batteries market: Key drivers and opportunities
1.4. Second-life EV batteries market: Key challenges
1.5. Second-life EV battery technologies and applications summary
1.6. First-life Li-ion vs second-life BESS cost and technology performance summary
1.7. Second-life battery applications and supply chain overview
1.8. Second-life battery storage value chain and revenue generation overview
1.9. Global second-life EV battery regulatory landscape
1.10. Key commentary on EU Battery Regulation for second-life repurposing
1.11. Second-life battery testing and assessment player summary
1.12. Second-life repurposers and remanufacturers by HQ
1.13. Funding by second-life battery repurposer and comparison to alternative battery storage technologies
1.14. Regional analysis: Second-life battery storage deployments by region
1.15. Repurposer market share (MWh second-life batteries deployed by repurposer)
1.16. Second-life battery storage projects deployed by type of player
1.17. Key automotive OEM and second-life player partnerships and investments
1.18. Players with capabilities to both recycle and repurpose
1.19. Market share by battery depth of disassembly
1.20. Summary of processes and materials contributing to overall repurposing costs (by US$/kWh) and identified bottlenecks: Base scenario
1.21. Second-life EV battery repurposing cost reduction scenarios
1.22. Second-life repurposing cost reduction sensitivity analysis (US$/kWh) (1)
1.23. Second-life repurposing cost reduction: Existing vs best-case scenario (US$/kWh)
1.24. Automating battery disassembly processes in repurposing
1.25. Emerging business-to-business (B2B) battery marketplaces
1.26. B2B marketplaces and platforms in the second-life battery market summary
1.27. EV battery design/technology trends summary table (1)
1.28. EV battery design/technology trends summary table (2)
1.29. Demand for designing batteries for easier disassembly and future opportunities for OEM revenue sharing
1.30. Cathode market share in Li-ion for EVs
1.31. LFP vs NMC for second-life batteries
1.32. Annual retired LFP EV battery availability forecast by region (2020-2035) (GWh)
1.33. Second-life EV battery installation forecast by region (2022-2035) (GWh)
1.34. Second-life EV battery installation forecast by region and application (2022-2035) (GWh)
1.35. Second-life EV battery market value forecasts (2022-2035) (US$B) with commentary
2. INTRODUCTION
2.1. What are second-life electric vehicle batteries?
2.1.1. Why and when do batteries fail?
2.1.2. What is the 'second life' of EV batteries?
2.1.3. Clarification of terminologies
2.1.4. Why does battery second-use matter?
2.1.5. Battery remanufacturing, first-life extension, or recycling?
2.2. Battery second use (B2U) value chain
2.2.1. Battery second use connects the electric vehicle and battery recycling value chains
2.2.2. Battery second use collection value chain
2.3. Applications and project examples
2.3.1. Second-life battery applications
2.3.2. Different battery sizes for different uses
2.3.3. Second-life battery technologies developed by repurposers and their applications
2.3.4. Other second-life battery examples: Backup energy for telecoms and electromobility
3. REGULATORY LANDSCAPE AND BATTERY TRACEABILITY
3.1. Regulatory Landscape Introduction
3.1.1. Second-life EV battery global regulatory landscape executive summary
3.1.2. Lack of policy and regulation for second-life batteries and repurposing
3.1.3. Global second-life EV battery regulatory landscape
3.2. EU Regulatory Landscape
3.2.1. EU regulation introduction
3.2.2. European Commission: The Innovation Deal
3.2.3. EU to review its regulatory framework for battery second use
3.2.4. Key findings from the European ID and introduction of EU Battery Regulation
3.2.5. Key EU Battery Regulation details and explanations for EOL battery management, repurposing, Battery Passport, access to data and EPR (1)
3.2.6. Key EU Battery Regulation details and explanations for EOL battery management, repurposing, Battery Passport, access to data and EPR (2)
3.2.7. Key EU Battery Regulation details and explanations for EOL battery management, repurposing, Battery Passport, access to data and EPR (3)
3.2.8. Key EU Battery Regulation details and explanations for EOL battery management, repurposing, Battery Passport, access to data and EPR (4)
3.2.9. EPR through the value chain in the EU
3.2.10. Key commentary on EU Battery Regulation for second-life repurposing
3.2.11. Battery Passport through the value chain in the EU
3.2.12. Potential shifts in company activity from introduction of Battery Passport
3.3. China Regulatory Landscape
3.3.1. Battery traceability in China
3.3.2. China's Traceability Management Platform
3.3.3. Other Chinese specifications
3.3.4. Regulatory frameworks for battery second use in China
3.3.5. Ban for large scale 2L ESS
3.4. US Regulatory Landscape
3.4.1. UL Certifications in the US
3.4.2. Inflation Reduction Act
4. EV BATTERY TECHNOLOGY TRENDS AND IMPACTS ON SECOND-LIFE BATTERIES
4.1.1. EV battery trends and developments and impact on second-life summary
4.1.2. Lack of EV battery design standardization
4.1.3. Battery pack materials
4.1.4. Shifts in cell and pack design
4.1.5. Eliminating the battery module / cell-to-pack designs (1/2)
4.1.6. Eliminating the battery module / cell-to-pack designs (2/2)
4.1.7. What is cell-to-chassis/body?
4.1.8. Module elimination and how this could hinder second-life battery repurposing
4.1.9. Serviceable batteries (Aceleron / Advik Technologies)
4.1.10. Aceleron / Advik Technologies: Future considerations
4.1.11. Li-ion technology diversification
4.1.12. Cathode market share in Li-ion for EVs
4.1.13. LFP vs NMC for second-life batteries
4.1.14. Advanced BMS technologies
4.1.15. Reports of EV batteries lasting longer than anticipated (1)
4.1.16. Reports of EV batteries lasting longer than anticipated (2)
4.1.17. EV battery design/technology trends summary table (1)
4.1.18. EV battery design/technology trends summary table (2)
4.1.19. Further research on trends in EVs, EV batteries, battery pack materials, and battery management systems (BMS)
5. TECHNO-ECONOMIC ANALYSIS, REPURPOSING COSTS AND AUTOMATION
5.1. Business Models and Techno-economic Comparison to First-life Li-ion BESS
5.1.1. Business models and revenue generation in the second-life battery market (1)
5.1.2. Business models and revenue generation in the second-life battery market (2)
5.1.3. Second-life battery applications and supply chain overview
5.1.4. Key repurposer second-life battery systems and applications
5.1.5. Second-life battery storage value chain and revenue generation overview
5.1.6. First-life Li-ion BESS Prices
5.1.7. Second-life Li-ion BESS price vs first-life Li-ion BESS price analysis (1)
5.1.8. Second-life Li-ion BESS price vs first-life Li-ion BESS price analysis (2)
5.1.9. Second-life Li-ion BESS price vs first-life Li-ion BESS price analysis (3)
5.1.10. Second-life EV batteries renting business model analysis
5.1.11. Key second-life battery technology performance considerations: chemistry, energy density, cycle life
5.1.12. Configurability of second-life BESS technologies: Using battery packs and modules from different automotive OEMs
5.1.13. Configurability of second-life BESS technologies: Varying kWh-to-kW ratios
5.1.14. First-life Li-ion vs second-life BESS cost and technology performance summary
5.2. Second-life EV Battery Repurposing Process: Introduction and Case Study
5.2.1. Introduction to the repurposing or remanufacturing process
5.2.2. Bottlenecks and considerations in the repurposing process (1)
5.2.3. Bottlenecks and considerations in the repurposing process (2)
5.2.4. Case study for repurposing disassembling retired EV battery
5.2.5. Costs at different depths of disassembly (1)
5.2.6. Costs at different depths of disassembly (2)
5.2.7. Advantages and disadvantages to depth of disassembly and reconfiguration
5.3. Second-life EV Battery Repurposing Process: Cost Analysis
5.3.1. Second-life EV battery repurposing process economic analysis
5.3.2. Second-life battery material and component costs
5.3.3. Retired EV battery disassembly process
5.3.4. Base scenario: Second-life EV battery repurposing process cost breakdown (1)
5.3.5. Base scenario: Second-life EV battery repurposing process cost breakdown (2)
5.3.6. Summary of processes and materials contributing to overall repurposing costs (by US$/kWh) and identified bottlenecks
5.3.7. Second-life EV battery repurposing cost analysis conclusions
5.3.8. Second-life EV battery repurposing cost reduction scenarios
5.3.9. Second-life repurposing cost reduction sensitivity analysis (US$/kWh) (1)
5.3.10. Second-life repurposing cost reduction sensitivity analysis (US$/kWh) (2)
5.3.11. Second-life repurposing cost reduction sensitivity analysis (US$/kWh) (3)
5.3.12. Second-life repurposing cost reduction: Existing vs best-case scenario (US$/kWh)
5.4. Second-life EV Battery Repurposing Process: Automation and Cobots
5.4.1. Automated battery disassembly tasks (1)
5.4.2. Automated battery disassembly tasks (2)
5.4.3. Automated battery disassembly pilot projects (1)
5.4.4. Automated battery disassembly pilot projects (2)
5.4.5. Automated battery disassembly pilot projects (3)
5.4.6. Conclusions for automating EV battery disassembly processes
6. BATTERY PERFORMANCE TESTING
6.1. Introduction to Battery Testing
6.1.1. Introduction: EOL and battery tests
6.1.2. Battery and testing definitions
6.2. Key Tests for Second-life Battery Testing
6.2.1. State of Charge (SOC)
6.2.2. Battery capacity
6.2.3. Cycle testing
6.2.4. State of Health (SOH)
6.2.5. Electrochemical impedance
6.3. Supplementary Tests for Second-life Battery Testing
6.3.1. Pulse charging and discharging
6.3.2. State of Power
6.3.3. Self-discharge
6.3.4. SEI formation and growth
6.3.5. Capturing SEI layer with X-ray photoelectron spectroscopy (XPS)
6.3.6. Capturing porosity of SEI layer with transmission electron microscopy
6.3.7. Summary table of battery performance tests
7. BATTERY PERFORMANCE MODELLING
7.1.1. Introduction: Remaining Useful Life
7.1.2. Flowcharts for determining RUL
7.1.3. Flowcharts for determining RUL via machine-learning (ML)
7.1.4. What is measured to determine RUL from a data-driven approach?
7.1.5. Data-driven approaches continued
7.1.6. Physics-based modeling (1/3)
7.1.7. Physics-based modeling (2/3)
7.1.8. Physics-based modeling (3/3)
7.1.9. Four key approaches to modeling battery degradation
8. SECOND-LIFE BATTERY ASSESSMENT MARKET
8.1. Key Players and Business Models in Second-life Battery Assessment
8.1.1. ReJoule overview
8.1.2. ReJoule in-vehicle testing
8.1.3. ReJoule BatteryDB software
8.1.4. volytica diagnostics and Cling Systems
8.1.5. volytica diagnostics and MAHLE Aftermarket
8.1.6. Smartville PeriscopeTM technology
8.1.7. Spiers New Technologies / Cox Automotive
8.1.8. Eatron Technologies and Betteries
8.1.9. NOVUM
8.1.10. DellCon
8.1.11. Oorja Energy
8.1.12. Safion
8.1.13. Second-life battery testing and assessment player summary
8.1.14. Market barriers and benefits for modelers
8.1.15. End-of-life battery diagnostician and testing business models and impact of EU Battery Passport
8.1.16. Impact of B2B marketplaces on battery health data and key stakeholder business models
8.1.17. How responsibility of battery testing could cause shifts in player activity
8.1.18. Potential shifts in company activity from introduction of Battery Passport
8.1.19. Conclusions on battery testing in the second-life EV battery market (1)
8.1.20. Conclusions on battery testing in the second-life EV battery market (2)
8.2. Other Players in AI-driven Battery technologies: Cell Testing, Monitoring and Control
8.2.1. Other players in AI-driven battery technologies; cell testing, monitoring and control
8.2.2. Relectrify (1)
8.2.3. Relectrify (2)
8.2.4. Relectrify (3)
8.2.5. Relectrify (4)
8.2.6. TITAN AES: Ultrasound to measure battery performance?
8.2.7. TITAN AES technology
9. SECOND-LIFE EV BATTERY MARKET ANALYSIS AND OVERVIEW
9.1. Second-life EV Battery Repurposer Overview
9.1.1. Executive summary: Key repurposer and automotive OEM market activity
9.1.2. Second-life repurposers and remanufacturers by HQ
9.1.3. Funding by second-life battery repurposer and comparison to alternative battery storage technologies
9.1.4. Repurposer funding over time
9.1.5. Player overviews: HQ, founded date, total funding (US$M), employees, partnerships, projects, targets (1)
9.1.6. Player overviews: HQ, founded date, total funding (US$M), employees, partnerships, projects, targets (2)
9.1.7. Player overviews: HQ, founded date, total funding (US$M), employees, partnerships, projects, targets (3)
9.1.8. Player overviews: HQ, founded date, total funding (US$M), employees, partnerships, projects, targets (4)
9.1.9. Player overviews: HQ, founded date, total funding (US$M), employees, partnerships, projects, targets (5)
9.2. Key European Repurposer Market Activity and Technology Developments
9.2.1. BeePlanet Factory
9.2.2. Connected Energy: Overview
9.2.3. Connected Energy: Investments and partnerships
9.2.4. Allye Energy
9.2.5. Zenobē
9.2.6. ECO STOR AS
9.2.7. Reefilla
9.3. Key US Repurposer Market Activity and Technology Developments
9.3.1. B2U Storage Solutions
9.3.2. Smartville: Overview
9.3.3. Smartville: Second-life BESS technology
9.3.4. Smartville: PeriscopeTM technology and Whole Battery Catalog
9.3.5. Higher Wire
9.3.6. BBB Industries / TERREPOWER
9.4. Key Activity from Automotive OEMs and Other Players
9.4.1. Key automotive OEM and second-life player partnerships and investments
9.4.2. Key updates from automotive OEMs and other players (H2 2022-2024) (1/2)
9.4.3. Key updates from automotive OEMs and other players (H2 2022-2024) (2/2)
9.4.4. Key automotive OEM activity (1/4): Audi, BMW, Ford, Honda, Hyundai
9.4.5. Key automotive OEM activity (2/4): Kia, Mercedes-Benz
9.4.6. Key automotive OEM activity (3/4): Nissan, Renault, Tesla
9.4.7. Key automotive OEM activity (4/4): Toyota, Volkswagen, Volvo
9.5. Second-Life EV Battery Market Trends and Data
9.5.1. Executive summary
9.5.2. Regional analysis: Second-life battery storage deployments by region
9.5.3. Regional analysis: Second-life battery market in China (1)
9.5.4. Regional analysis: Second-life battery market in China (2)
9.5.5. Second-life battery storage projects deployed by type of player
9.5.6. Second-life battery technologies developed by repurposers and their applications
9.5.7. Repurposer market share (MWh second-life batteries deployed by repurposer)
9.5.8. Market Share by Battery Depth of Disassembly (1)
9.5.9. Market Share by Battery Depth of Disassembly (2)
9.5.10. MWh Second-Life Batteries Deployed at Pack-level and Module-level by Repurposer
9.5.11. MWh Deployed by Repurposer over Time: Tabulated Raw Data
9.5.12. Second-Life battery storage projects deployed by automotive OEMs: tabulated raw data (1)
9.5.13. Second-Life battery storage projects deployed by automotive OEMs: tabulated raw data (2)
9.6. Emerging B2B Battery Marketplaces
9.6.1. Emerging business-to-business (B2B) battery marketplaces
9.6.2. Currents Marketplace (with Nissan and Spiers New Technologies)
9.6.3. Circunomics
9.6.4. volytica diagnostics and Cling Systems
9.6.5. Smartville Whole Battery CatalogTM Platform
9.6.6. B2B marketplaces and platforms in the second-life battery market summary
10. SECOND-LIFE EV BATTERY MARKET CONCLUSIONS
10.1.1. Second-life EV battery market conclusions
10.1.2. Progress in policy being made to incentivize second-life EV battery repurposing in the EU
10.1.3. Potential improvements and clarity needed in other second-life battery and repurposing policies
10.1.4. Second-life EV batteries market conclusions: Key drivers and opportunities
10.1.5. Second-life batteries market conclusions: Key challenges
10.1.6. Players with capabilities to both recycle and repurpose
10.1.7. Demand for designing batteries for easier disassembly and future opportunities for OEM revenue sharing
11. SECOND-LIFE EV BATTERY MARKET AND RETIRED EV BATTERY AVAILABILITY FORECASTS
11.1. Summary of second-life EV battery forecasts
11.2. Forecasts methodology and assumptions (1)
11.3. Forecasts methodology and assumptions (2)
11.4. Forecasts methodology and assumptions (3)
11.5. Annual retired EV battery availability forecast by region and EV (2020-2035) (GWh)
11.6. Annual retired EV battery availability by region (2020-2035) (GWh)
11.7. Annual retired EV battery availability by EV (2020-2035) (GWh)
11.8. Cathode market share in Li-ion for EVs
11.9. LFP vs NMC for second-life batteries
11.10. Annual retired LFP EV battery availability forecast by region (2020-2035) (GWh)
11.11. Annual retired LFP EV battery availability in China by EV (2020-2035) (GWh)
11.12. Annual retired LFP EV battery availability in Europe by EV (2020-2035) (GWh)
11.13. Annual retired LFP EV battery availability in US by EV (2020-2035) (GWh)
11.14. Annual retired LFP EV battery availability in RoW by EV (2020-2035) (GWh)
11.15. Second-life battery installation forecast assumptions
11.16. Second-life EV battery installation forecast by region (2022-2035) (GWh)
11.17. Second-life EV battery installation forecast by region and application (2022-2035) (GWh)
11.18. Europe second-life BESS installed vs total retired EV battery availability (2022-2035) (MWh)
11.19. US second-life BESS installed vs total retired EV battery availability (2022-2035) (MWh)
11.20. Second-life EV battery market value forecasts (2022-2035) (US$B) with commentary
11.21. Second-life EV battery market value forecasts (US$B) (2022-2035)
11.22. Stationary battery storage annual demand vs theoretical retired total and LFP EV battery availability forecast by key region (2020-2035)
11.23. Stationary battery storage annual demand vs second-life BESS installations forecast by key region (2022-2035) (GWh)
12. COMPANY PROFILES
12.1. Allye Energy
12.2. B2U Storage Solutions (2023)
12.3. B2U Storage Solutions (2022)
12.4. BBB Industries / TERREPOWER
12.5. BeePlanet Factory (2024)
12.6. BeePlanet Factory (2022)
12.7. Betteries (2024)
12.8. Betteries (2022)
12.9. Cidetec
12.10. Circu Li-ion
12.11. Circunomics
12.12. Connected Energy (2024)
12.13. Connected Energy (2023)
12.14. Covalion
12.15. Currents
12.16. Eatron Technologies
12.17. ECO STOR AS (2024)
12.18. ECO STOR AS (2023)
12.19. Ecobat
12.20. Exitcom Recycling
12.21. Higher Wire
12.22. Huayou Recycling
12.23. Liebherr-Verzahntechnik
12.24. Oorja Energy
12.25. Reefilla
12.26. ReJoule (2024)
12.27. ReJoule (2023)
12.28. Relectrify
12.29. RePurpose Energy
12.30. Safion
12.31. SK tes
12.32. Smartville (2024)
12.33. Smartville (2023)
12.34. Spiers New Technologies
12.35. volytica diagnostics
12.36. Zenobē

 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(自動車)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/01/10 10:26

159.18 円

164.35 円

198.58 円

ページTOPに戻る