世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Thermal Management for Electric Vehicles 2025-2035: Materials, Markets, and Technologies

Thermal Management for Electric Vehicles 2025-2035: Materials, Markets, and Technologies


電気自動車2025-2035年の熱管理:材料、市場、技術

この調査レポートは、EV市場とOEMとそのサプライヤーが採用している熱管理戦略を分析し、将来を見据えて、主要なEV技術動向が電気自動車のバッテリー、モーター、パワーエレクトロニクス、車室内の熱管理手法... もっと見る

 

 

出版社 出版年月 電子版価格 納期 ページ数 言語
IDTechEx
アイディーテックエックス
2024年6月11日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
お問合わせください 553 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。


 

Summary

この調査レポートは、EV市場とOEMとそのサプライヤーが採用している熱管理戦略を分析し、将来を見据えて、主要なEV技術動向が電気自動車のバッテリー、モーター、パワーエレクトロニクス、車室内の熱管理手法にどのような影響を与えるかについて詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 温度と熱管理が航続距離に与える影響
  • キャビン・ヒーターの革新
  • サーマルアーキテクチャーとサーマルシステムサプライヤー
  • EV用冷却液、冷媒、およびその違い
  • 電気自動車におけるリチウムイオン電池の熱管理
  • EV充電ステーションにおける熱管理
  • 電気モーターの熱管理
  • 電気自動車パワーエレクトロニクスの熱管理
 
Report Summary
Early trends in the market largely revolved around the adoption of active cooling for the battery pack, now this is the industry standard. However, batteries, motors, and power electronics in EVs continue to evolve with developments of cell-to-pack designs, directly oil-cooled motors, and silicon carbide power electronics being just a few of the key trends that will impact thermal management strategies. How this all interacts with the cabin thermal management is equally important with thermal architectures becoming more integrated and impending regulations impacting future refrigerant choices.
 
This report from IDTechEx analyses the EV market and the thermal management strategies adopted by OEMs and their suppliers, with a look to the future and how key EV technology trends will impact these methods for electric vehicle batteries, motors, power electronics, and cabin thermal management. This information is obtained from primary and secondary sources across the EV industry. The research also utilizes IDTechEx's extensive electric car database that consists of over 650 model variants with their sales figures for 2015-2023 plus technical specifications such as battery capacity, battery thermal strategy, motor power, motor cooling strategy, and many others. Market shares are given for existing thermal management strategies (air, oil, water, immersion) and fluids used (water-glycol, oil, immersion), for the battery, motor, and inverter in EVs along with market forecasts to 2035.
 
Evolving Thermal Architecture and Coolants
How the thermal management of the drivetrain components and cabin all interact is critical. The market is moving to greater levels of integration, with heat pumps and integrated thermal management modules. Some OEMs are taking thermal management and components development in-house to improve overall system efficiency and shorten the supply chain. This report takes a look at examples of EV thermal architectures and some key market announcements for key thermal management components (high voltage coolant heaters, condensers, pumps, integrated modules, etc.). The report also gives an overview of the key tier 1 thermal system suppliers and their size.
 
A host of fluids including refrigerants, oils, and water-glycol are required for the operation of an EV. These fluids are evolving to meet new requirements in EVs such as lower electrical conductivity, copper corrosion performance, and other properties. Regulatory factors will impact refrigerants and the choice between R134a, R1234yf, R744, and R290. This report provides an analysis of the coolant and refrigerant capacities in EVs with forecasts to 2035 for water-glycol, refrigerant, oils, and immersion fluids.
 
Active cooling with coolants is the industry standard for EV battery thermal management. Source: IDTechEx
 
Battery: cell-to-pack, thermal interface materials, fire protection, and immersion
The move towards increasing energy density and reducing costs has led to cell-to-pack or cell-to-body/chassis designs. Cell-to-pack eliminates module housings, stacking the cells directly together. Designs from BYD, Tesla, CATL, and others have made it onto the road, with more expected. In this report, IDTechEx considers how this trend will impact thermal management.
 
One major change is the application of thermal interface materials (TIMs), pushing in favor of thermally conductive adhesives to make a structural connection rather than the typical gap filler seen in many existing designs. This report forecasts TIM demand for EV batteries to 2035 in terms of mass and revenue, segmented by gap pad, gap filler, and thermally conductive adhesive.
 
Many material suppliers are tailoring their materials to provide multiple functions, including fire protection. This enables fire protection to be included without severely impacting the energy density of the pack. These include inter-cell materials that provide compression, thermal insulation, and fire protection. This report gives an overview of the material options with a total forecast to 2035. For a segmented material forecast and a deeper dive into fire protection, please see the Fire Protection Materials for EVs report by IDTechEx.
 
Immersion cooling is a topic that retains interest in the EV market with greater thermal homogeneity proposing benefits such as faster charging and increased safety. The technology is still at an early stage in terms of automotive commercialization but has seen greater traction in off-road markets. This report takes a deep dive into immersion cooling technology, with benchmarking of fluids and suppliers, market announcements and partnerships, and fluid volume forecasts for EVs in automotive, construction, agriculture, and mining markets.
 
Motors
For electric motors, the magnets used in the rotor and the windings used in the stator must be kept in an optimal operating temperature window to avoid damage or inefficient operation. Water-glycol used in a jacket around the motor has been the standard thermal management strategy for electric motors in EVs. However, recent years have seen much greater adoption of directly oil cooling the motor to provide better thermal performance, and in some cases, eliminate the cooling jacket, reducing the overall motor size. Oil cooling became the dominant form of cooling for EV motors in the first half of 2022, but that's not to say that water-jackets are going away, they are often used in conjunction with oil cooling, and water-glycol coolant is typically used to remove heat from the oil and can be used to integrate with the vehicles thermal management strategy as a whole. IDTechEx provides forecasts from 2015-2035 for electric motors segmented by the use of air, oil, or water-glycol cooling.
 
Oil cooling has become the dominant motor thermal management strategy. Source: IDTechEx
 
Power Electronics
The adoption of SiC is the largest trend in the news for EV power electronics and with good justification. This has had an impact on the construction of power electronics packages. Developments are happening for TIMs, wire bonding, die-attach, and substrate materials, largely with the goal of improving package reliability. The report provides analysis of these trends and the drivers behind adoption.
 
Inverter IGBT or SiC MOSFET modules are mostly cooled using water-glycol. However, both single-side and double-sided cooling options are used, each with its own benefits. There has also been an increased interest in using oil to cool power electronics to eliminate much of the water-glycol componentry within the electric drive unit, using the same oil for the motors and inverter. Whilst there has not been adoption of this approach in the current market, IDTechEx sees promise for this approach and includes a 10-year forecast for EV inverters using air, water, or oil cooling.
 
Evolving power electronics design presents opportunities in several material components. Source: IDTechEx
 
Key Aspects
Analysis of thermal management for Li-ion batteries, electric traction motors, and power electronics:
  • OEM strategies
  • EV industry trends and the impact on thermal management
  • Trends in thermal management strategies, materials and fluids
  • Emerging alternatives
  • Fire protection materials
  • EV use-cases
  • Primary information from key players
  • Company profiles
 
10 Year Market Forecasts & Analysis:
  • BEVs with heat pumps: market share 2015-2023 and forecast to 2035
  • EV refrigerant forecast (kg) 2015-2035
  • EV oil forecast (L) 2015-2035
  • EV water-glycol forecast (L) 2015-2035
  • Air, liquid, refrigerant, and immersion-cooled BEVs and PHEVs (by kWh): regional market share 2015-2023 and forecast to 2035
  • Immersion fluid forecast to 2035 for passenger cars, and construction, agriculture, and mining EVs
  • Thermal interface material forecast to 2035 (in tonnes and revenue) split by vehicle category, and gap pad/gap filler/thermally conductive adhesive
1, Fire protection materials forecast to 2035 by inter-cell and pack-level protection
2, Air, oil, and water cooled electric motors for cars in China, Europe, and the US for 2015-2023.
3, Air, oil, and water cooled electric motors for cars forecast to 2035.
4, Air, oil, and water cooled electric car inverters forecast to 2035.


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. The Growing EV Market and Need for Thermal Management
1.2. Optimal Temperatures for Multiple Components
1.3. Battery Thermal Management Competition
1.4. Thermal System Architecture
1.5. BEV Cars with Heat Pumps Forecast (units)
1.6. Coolant Fluids in EVs
1.7. Future Refrigerants - China, North America and Japan
1.8. PFAS Ban - Future Trend in Europe
1.9. Fluids per Vehicle Market Average 2023 and 2035
1.10. Combined Fluid Forecasts for BEV & PHEV Cars 2015-2035 (volume)
1.11. Tier 1 Supplier Revenue 2023
1.12. OEM's Developing Integrated Thermal Management In-house
1.13. Battery Thermal Management Strategy by OEM
1.14. Battery Thermal Management Strategy Forecast 2015-2035 (GWh)
1.15. Immersion Fluid Comparison: Thermal Conductivity and Specific Heat
1.16. IDTechEx Outlook for Immersion
1.17. Immersion Fluid Volume Forecast in Passenger Cars 2021-2035 (L)
1.18. Thermal Management Options in CAM Markets
1.19. Immersion Fluid Volume Forecast in CAM 2023-2035 (L)
1.20. TIM Pack and Module Overview
1.21. Material Options and Market Comparison
1.22. Thermal Conductivity Shift
1.23. TIM Use by Vehicle and by Year
1.24. TIM Mass Forecast for EV Batteries by TIM Type: 2021-2034 (kg)
1.25. Fire Protection Materials: Main Categories
1.26. Density vs Thermal Conductivity for Fire Protection Materials
1.27. Fire Protection Materials Forecast (kg)
1.28. Motor Thermal Management Competition
1.29. Motor Cooling Technology: OEM strategies
1.30. Motor Cooling Strategy Forecast 2015-2035 (units)
1.31. Power Electronics Material Evolution
1.32. Single Side, Dual Side, Indirect, and Direct Cooling
1.33. General Trend of TIMs in Power Electronics (1)
1.34. General Trend of TIMs in Power Electronics (2)
1.35. Advantages, Disadvantages and Drivers for Oil Cooled Inverters
1.36. Inverter Liquid Cooling Strategy Forecast (units): 2015-2035
1.37. Access More With an IDTechEx Subscription
2. INTRODUCTION
2.1. The Growing EV Market and Need for Thermal Management
2.2. Electric Vehicle Definitions
2.3. Optimal Temperatures for Multiple Components
2.4. Battery Thermal Management Competition
2.5. Motor Thermal Management Competition
2.6. Power Electronics Thermal Management Competition
3. IMPACT OF TEMPERATURE AND THERMAL MANAGEMENT ON RANGE
3.1. Range Calculations
3.2. Impact of Ambient Temperature and Climate Control
3.3. Model Comparison Against Ambient Temperature
3.4. Model Comparison with Climate Control
3.5. Model Comparison with Climate Control
3.6. Summary
4. INNOVATIONS IN CABIN HEATING
4.1. Holistic Vehicle Thermal Management
4.2. Technology Timeline
4.3. What is a Heat Pump?
4.4. PTC vs Heat Pump
4.5. The Impact on EV Range
4.6. Examples of EVs with Heat Pumps
4.7. BEV Cars with Heat Pumps Forecast (units)
4.8. Challenges with Heat Pump Systems
4.9. Further Innovations
4.10. Vehicle Efficiency Through Cabin Thermal Management
4.11. Advantages of Sophisticated Thermal Management
4.12. Thermal Management Advanced Control: Key Players and Technologies
5. THERMAL ARCHITECTURE AND THERMAL SYSTEM SUPPLIERS
5.1. Thermal System Architecture
5.2. Thermal System Architecture Examples (1)
5.3. Thermal System Architecture Examples (2)
5.4. BYD ePlatform 3.0
5.5. Thermal System Tier 1 Suppliers
5.6. Tier 1 Supplier Revenue 2023
5.7. High Voltage Coolant Heaters (HVCH)
5.8. High Voltage Coolant Heater (HVCH) Supplier Announcements
5.9. Electric Compressor and Coolant Pump Supplier Announcements
5.10. Integrated Thermal Management Module (iTMM) Supplier Announcements
5.11. OEM's Developing Integrated Thermal Management In-house
5.12. Thermal Management Integration of Pumps and Valves
5.13. Supplying the Whole Thermal System for Commercial Vehicles
6. COOLANT FLUIDS, REFRIGERANTS, AND DIFFERENCES FOR EVS
6.1. Coolant Fluids in EVs
6.2. What is Different About Fluids Used for EVs?
6.3. Electrical Properties
6.4. Corrosion with Fluids
6.5. Reducing Viscosity
6.6. Alternative Fluids
6.7. Models with EV Specific Fluids
6.8. Lubrizol - Oils for EVs
6.9. Arteco - Water-glycol Coolants for EVs
6.10. Dober - Water-glycol Coolants for EVs
6.11. Cooling the Battery and the eAxle with the Same Fluid
6.12. Coolants: Comparison
6.13. Large Fluid Supplier Announcements
6.14. Refrigerant for EVs
6.15. Future Refrigerants - China, North America and Japan
6.16. Regulations May Impact Future Refrigerant Trends for EVs
6.17. PFAS Ban - Future Trend in Europe
6.18. PFAS-free Refrigerants: R744 and R290
6.19. R744 Performance vs R1234yf in Heat Pumps
6.20. R744 and R290 as Alternatives
6.21. Hyundai and SK Partner for PFAS Free Next Gen Refrigerants
6.22. Refrigerant Content in EV Models
6.23. Impact of Heat Pumps on Refrigerant Content
6.24. EV Refrigerant Forecast 2015-2035 (kg)
6.25. WEG Volume in EV Models
6.26. WEG Forecast for EVs 2015-2035
6.27. Oil Quantity in Oil Cooled Motors Comparison
6.28. Oil for Electric Motors Forecast 2015-2035 (L)
6.29. Fluids per Vehicle Market Average 2023 and 2035
6.30. Summary and Outlook
7. THERMAL MANAGEMENT OF LI-ION BATTERIES IN ELECTRIC VEHICLES
7.1. Current Technologies and OEM Strategies
7.1.1. Introduction to EV Battery Thermal Management
7.1.2. Active vs Passive Cooling
7.1.3. Passive Battery Cooling Methods
7.1.4. Active Battery Cooling Methods
7.1.5. Air Cooling
7.1.6. Liquid Cooling
7.1.7. Liquid Cooli

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(自動車)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/01/22 10:26

156.55 円

163.61 円

196.14 円

ページTOPに戻る