新しい太陽光発電における素材の市場機会 2020-2040年:CIGS、GaAs、III-V、ペロブスカイト、OPV、CdTe、コンダクタ、バリア、TCO、ITO、塗料、半透明、フレキシブル
Materials Opportunities in Emerging Photovoltaics 2020-2040
このレポートは太陽光発電と素材の市場を調査し、2040年までの市場予測、ロードマップ、価格感度、市場のギャップや用途のヒエラルキーについて分析、言及しています。
主な掲載内容... もっと見る
サマリー
このレポートは太陽光発電と素材の市場を調査し、2040年までの市場予測、ロードマップ、価格感度、市場のギャップや用途のヒエラルキーについて分析、言及しています。
主な掲載内容 ※目次より抜粋
-
エグゼクティブサマリー
-
イントロダクション
-
無機化合物半導体 LLL-V PV素材の市場機会
-
CIGSの市場機会
-
有機PV素材の市場機会
-
ペロブスカイトPV素材の市場機会
-
デュアル技術、量子ドット、ワイルドカードの市場機会
-
PVにおける導電性ペースト
-
PVにおけるバリア層
Report Details
New IDTechEx report, "Materials Opportunities in Emerging Photovoltaics 2020-2040" is based on interviews by multi-lingual, PhD level IDTechEx analysts across the world and 20 years tracking the research and applications. Nearly $40 billion dollars envisaged in 2040 without colliding with commoditised silicon-in-glass "power station" business. Much premium-pricing of specialist materials.
See why profit from emerging PV will be disproportionately high - up to half the profit from all PV in 2040. Learn why over $10,000/W is currently paid for record 30% efficient lll-V compound PV in a designer watch, as an array on a satellite or surface of a high-altitude drone and lll-V is the basis of Toyota's solar car development. Tripled-efficiency indoor "lll-V" PV is newly on sale. Organic PV has jumped in efficiency, adding other uniques for other segments. Understand how copper-indium-gallium-diselenide PV created $2 billion yearly sales in only ten years. Further stellar growth powered by what improved materials?
Most emerging PV is thin film, flexible and some will be stretchable materials. Tightly-rollable PV in your mobile phone, aircraft skin, billions of Internet of Things nodes? Hundreds of millions more building facades need lightweight PV. What three technologies for PV paint? Retrofit on windows, boats, buses?
Whisper it quietly, but with silicon near its theoretical limits and taking massive areas of real estate - often prime agricultural land and lakes - emerging PV will eventually compete with some "power station" silicon by affordably providing the power in half the area and therefore being much more widely deployable and environmentally acceptable but this report is mainly about the huge opportunities in the run up to that.
The 212 page IDTechEx report, "Materials Opportunities in Emerging Photovoltaics" has executive summary and conclusions sufficient for busy people. Absorb 18 primary conclusions, 2020-2040 forecasts, roadmaps, price sensitivity, learning curves projected forward, gaps in the market, the application hierarchy. The introduction reveals the amazing virtuosity of PV already, important parameters, SOFT report, PV architectures, efficiency trends. New infograms compare PV options beyond silicon, production readiness, 13 examples of new formats/ locations, progress to user-customised PV materials, PV combinations.
Chapter 3 dives into inorganic compound semiconductor lll-V PV architectures, material advances of Boeing Spectrolab, the Russians, Lightricity, Sharp-Toyota and cost-reduction routes to volume lll-V sales researched by NREL. Chapter 4 concerns copper-indium-gallium-diselenide CIGS opportunities including cost reduction research, efficiency increase, elimination of cadmium. See activities of Ascent Solar, Flisom-EMPA, Manz, Renovagen, Solar Frontier and others. Chapter 5 on organic OPV materials opportunities reveals recently-transformed competitive situations, rapid efficiency and life potential, Armor-Opvius, Heliatek, materials suppliers, gaps in the market. Understand new molecule choices, fullerene elimination and special OPV barrier-layers.
Chapter 6 is a sober look at the now-fashionable perovskite PV balancing stellar efficiency gains with challenges in stability and use of lead. What is being done about it? Chapter 7 wraps up the basic chemistry options with dual technology such as perovskite on silicon or CIGS then wild card PV materials opportunities. Here are quantum dot toxicity issues, rectenna-array harvesting and 2D PV materials. Chapters 8 and 9 are a close analysis of the conductive pastes and barrier layers opportunity overall.
ページTOPに戻る
目次
Table of Contents
1. |
EXECUTIVE SUMMARY |
1.1. |
Purpose of this report |
1.2. |
Two worlds |
1.3. |
Anatomy of the photovoltaic business 2020-2040 |
1.4. |
Primary conclusions: photovoltaics top ten manufacturers chemistry |
1.5. |
Primary conclusions: price-volume sensitivity by application |
1.6. |
Primary conclusions: cost progression 1976-2040 |
1.7. |
Primary conclusions: thin film PV market |
1.8. |
Primary conclusions: cadmium telluride |
1.9. |
Primary conclusions: geographic PV materials demand |
1.10. |
CIGS PV forecasts |
1.10.1. |
Global output of thin film CIGS photovoltaics $M and MWp 2000-2018 |
1.10.2. |
Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040 |
1.11. |
Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040 |
1.12. |
Global market for perovskite PV $M |
1.13. |
Global market for OPV $M |
2. |
INTRODUCTION |
2.1. |
Overview: amazing virtuosity |
2.1.1. |
Extreme vehicles and weak light create new markets |
2.1.2. |
Photovoltaic cooking without batteries |
2.2. |
The energy positive house |
2.3. |
Ever larger solar farms |
2.4. |
Solar cars: Hyundai, Tesla |
2.5. |
Winning electromagnetic frequencies |
2.6. |
SOFT report on photovoltaics |
2.7. |
Some of the important parameters |
2.8. |
Single crystal scSi vs polycrystal pSi vs amorphous |
2.9. |
Amorphous silicon |
2.10. |
Big picture: wafer vs thin film photovoltaics 2020-2040 |
2.11. |
PV mechanisms: status, benefits, challenges, market potential compared |
2.11.1. |
Five mechanisms compared |
2.11.2. |
Best research-cell efficiencies assessed 1975-2020 |
2.12. |
Important PV options beyond silicon compared |
2.13. |
Thirteen new photovoltaic formats creating materials markets |
2.14. |
Photovoltaics progresses to become paint and user material |
2.15. |
Solar piazzas, driveways, roads: Platio Hungary |
2.16. |
MEMS PV |
2.17. |
Transparent, indoor and underwater PV materials needed |
2.18. |
Materials opportunities from integration with other harvesting materials |
2.18.1. |
Triboelectric TENG with other harvesting: experimental |
2.18.2. |
Integration in smart watches |
3. |
INORGANIC COMPOUND SEMICONDUCTOR LLL-V PV MATERIAL OPPORTUNITIES |
3.1. |
Overview |
3.2. |
Toxicity |
3.3. |
Space program: IOFFE Institute, ITMO University |
3.4. |
Boeing Spectrolab |
3.5. |
NREL |
3.6. |
Costs and prices can be greatly reduced |
3.7. |
Indoors: Lightricity |
3.8. |
Solar vehicle technologies compared: Sono, Lightyear, Toyota with lll-lV |
3.8.1. |
Solar vehicle chemistry |
3.8.2. |
Solar vehicle format |
4. |
COPPER INDIUM GALLIUM DISELENIDE CIGS OPPORTUNITIES |
4.1. |
Overview |
4.2. |
Operating principle |
4.3. |
CIGS photovoltaics processes: Sunflare, Flisom, EMPA, Manz, Solar Frontier |
4.4. |
CIGS production, materials, routes to non toxic |
4.5. |
Avoiding ITO |
4.6. |
Ascent Solar |
4.7. |
Better polymer substrate process: KIER |
4.8. |
Renovagen: high power PV like a carpet roll |
4.9. |
Manz |
4.10. |
Flisom customizable flexible |
4.11. |
Other CIGS PV in action on vehicles |
4.12. |
Market leader Solar Frontier |
4.13. |
Sunflare: specialist niches |
5. |
ORGANIC OPV MATERIALS OPPORTUNITIES |
5.1. |
Overview |
5.2. |
Competitive situation |
5.3. |
OPV progress to commercialisation 2000-2040 |
5.4. |
Sunew |
5.5. |
Heliatek |
5.6. |
Opvius and Armor |
5.7. |
Device architecture and Sigma Aldrich materials |
5.8. |
Materials: Merck, DuPont Teijin |
5.9. |
What substrates to choose? |
5.10. |
Typical device architectures |
5.11. |
Film morphology and degradation control for bulk heterojunction |
5.12. |
R2R solution vs R2R evaporation |
5.13. |
Donor polymers |
5.14. |
Donor small molecules |
5.15. |
Typical acceptor materials |
5.16. |
Progress in solution processing |
5.17. |
Progress in tandem cell evaporation |
5.18. |
Solution processed 17.5% tandem OPV |
5.19. |
R2R solution vs R2R evaporation |
5.20. |
Major technical challenges with R2R |
5.21. |
Barrier/encapsulation challenge |
5.22. |
Transparent electrode |
5.23. |
Big advance 2018- 2020: non-fullerene acceptors NFA |
6. |
PEROVSKITE PV MATERIAL OPPORTUNITIES |
6.1. |
Overview |
6.2. |
Perovskite structure and device architecture |
6.3. |
Working principle |
6.4. |
Architectures |
6.5. |
Value propositions and roadmap to 2040 |
6.6. |
Perovskite materials |
6.7. |
Why perovskite is so efficient |
6.8. |
Efficiency versus transmission |
6.9. |
Roadmap to lead-free perovskite |
6.10. |
Improving life |
6.11. |
Flexible perovskite solar cells |
6.12. |
Deposition processes for perovskite films |
6.13. |
Perovskite module cost estimation |
6.14. |
Future perovskite PV system cost breakdown |
7. |
DUAL TECHNOLOGY, QUANTUM DOT, WILD CARD OPPORTUNITIES |
7.1. |
Dual technology photovoltaics |
7.2. |
Perovskite silicon tandem: record 25.2% efficiency |
7.3. |
Perovskite on CIGS |
7.4. |
Quantum dot |
7.5. |
Toxicity |
7.6. |
Wild cards: 2D materials, nantennas |
7.6.1. |
2D materials |
7.6.2. |
Rectenna nantenna-diode |
8. |
CONDUCTIVE PASTES IN PHOTOVOLTAICS |
8.1. |
Overview |
8.2. |
Firing |
8.3. |
Major cost drivers for photovoltaics |
8.4. |
Reducing silver content per wafer: industry consensus |
8.5. |
Expected market share: plating and screen printing of electrodes |
8.6. |
Photovoltaics: roadmap towards ever thinner wafers |
8.7. |
Photovoltaics market share forecast for different metallization technologies |
8.8. |
Silicon inks: made redundant before seeing daylight? |
8.9. |
Copper metallization in solar cells |
8.10. |
Silver nanoparticles adopted for thin film photovoltaics? |
8.11. |
PV and heater: digital printing comes of age? |
9. |
BARRIER LAYERS FOR PHOTOVOLTAICS |
9.1. |
Why barriers and encapsulation? |
9.2. |
Barrier performance requirements (permeation rates) |
9.3. |
Barrier requirements: towards flexibility and rollability |
9.4. |
Plastic substrates are a challenge |
9.5. |
The basis of the multi-layer approach |
9.6. |
Status of R2R barrier films in performance, web width and readiness/scale |
9.7. |
Challenges of R2R barrier film production |
9.8. |
From glass to multi-layer films to multi-layer inline thin film encapsulation |
9.9. |
Trends in TFE: Past, present and future of deposition |
9.10. |
Benchmarking different barrier solutions |
9.11. |
Evolution of production parameters to enable multi-layer barrier cost reduction |
9.12. |
Flexible CIGS: market forecast sqm and value by barrier technology |
ページTOPに戻る
Summary
このレポートは太陽光発電と素材の市場を調査し、2040年までの市場予測、ロードマップ、価格感度、市場のギャップや用途のヒエラルキーについて分析、言及しています。
主な掲載内容 ※目次より抜粋
-
エグゼクティブサマリー
-
イントロダクション
-
無機化合物半導体 LLL-V PV素材の市場機会
-
CIGSの市場機会
-
有機PV素材の市場機会
-
ペロブスカイトPV素材の市場機会
-
デュアル技術、量子ドット、ワイルドカードの市場機会
-
PVにおける導電性ペースト
-
PVにおけるバリア層
Report Details
New IDTechEx report, "Materials Opportunities in Emerging Photovoltaics 2020-2040" is based on interviews by multi-lingual, PhD level IDTechEx analysts across the world and 20 years tracking the research and applications. Nearly $40 billion dollars envisaged in 2040 without colliding with commoditised silicon-in-glass "power station" business. Much premium-pricing of specialist materials.
See why profit from emerging PV will be disproportionately high - up to half the profit from all PV in 2040. Learn why over $10,000/W is currently paid for record 30% efficient lll-V compound PV in a designer watch, as an array on a satellite or surface of a high-altitude drone and lll-V is the basis of Toyota's solar car development. Tripled-efficiency indoor "lll-V" PV is newly on sale. Organic PV has jumped in efficiency, adding other uniques for other segments. Understand how copper-indium-gallium-diselenide PV created $2 billion yearly sales in only ten years. Further stellar growth powered by what improved materials?
Most emerging PV is thin film, flexible and some will be stretchable materials. Tightly-rollable PV in your mobile phone, aircraft skin, billions of Internet of Things nodes? Hundreds of millions more building facades need lightweight PV. What three technologies for PV paint? Retrofit on windows, boats, buses?
Whisper it quietly, but with silicon near its theoretical limits and taking massive areas of real estate - often prime agricultural land and lakes - emerging PV will eventually compete with some "power station" silicon by affordably providing the power in half the area and therefore being much more widely deployable and environmentally acceptable but this report is mainly about the huge opportunities in the run up to that.
The 212 page IDTechEx report, "Materials Opportunities in Emerging Photovoltaics" has executive summary and conclusions sufficient for busy people. Absorb 18 primary conclusions, 2020-2040 forecasts, roadmaps, price sensitivity, learning curves projected forward, gaps in the market, the application hierarchy. The introduction reveals the amazing virtuosity of PV already, important parameters, SOFT report, PV architectures, efficiency trends. New infograms compare PV options beyond silicon, production readiness, 13 examples of new formats/ locations, progress to user-customised PV materials, PV combinations.
Chapter 3 dives into inorganic compound semiconductor lll-V PV architectures, material advances of Boeing Spectrolab, the Russians, Lightricity, Sharp-Toyota and cost-reduction routes to volume lll-V sales researched by NREL. Chapter 4 concerns copper-indium-gallium-diselenide CIGS opportunities including cost reduction research, efficiency increase, elimination of cadmium. See activities of Ascent Solar, Flisom-EMPA, Manz, Renovagen, Solar Frontier and others. Chapter 5 on organic OPV materials opportunities reveals recently-transformed competitive situations, rapid efficiency and life potential, Armor-Opvius, Heliatek, materials suppliers, gaps in the market. Understand new molecule choices, fullerene elimination and special OPV barrier-layers.
Chapter 6 is a sober look at the now-fashionable perovskite PV balancing stellar efficiency gains with challenges in stability and use of lead. What is being done about it? Chapter 7 wraps up the basic chemistry options with dual technology such as perovskite on silicon or CIGS then wild card PV materials opportunities. Here are quantum dot toxicity issues, rectenna-array harvesting and 2D PV materials. Chapters 8 and 9 are a close analysis of the conductive pastes and barrier layers opportunity overall.
ページTOPに戻る
Table of Contents
Table of Contents
1. |
EXECUTIVE SUMMARY |
1.1. |
Purpose of this report |
1.2. |
Two worlds |
1.3. |
Anatomy of the photovoltaic business 2020-2040 |
1.4. |
Primary conclusions: photovoltaics top ten manufacturers chemistry |
1.5. |
Primary conclusions: price-volume sensitivity by application |
1.6. |
Primary conclusions: cost progression 1976-2040 |
1.7. |
Primary conclusions: thin film PV market |
1.8. |
Primary conclusions: cadmium telluride |
1.9. |
Primary conclusions: geographic PV materials demand |
1.10. |
CIGS PV forecasts |
1.10.1. |
Global output of thin film CIGS photovoltaics $M and MWp 2000-2018 |
1.10.2. |
Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040 |
1.11. |
Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040 |
1.12. |
Global market for perovskite PV $M |
1.13. |
Global market for OPV $M |
2. |
INTRODUCTION |
2.1. |
Overview: amazing virtuosity |
2.1.1. |
Extreme vehicles and weak light create new markets |
2.1.2. |
Photovoltaic cooking without batteries |
2.2. |
The energy positive house |
2.3. |
Ever larger solar farms |
2.4. |
Solar cars: Hyundai, Tesla |
2.5. |
Winning electromagnetic frequencies |
2.6. |
SOFT report on photovoltaics |
2.7. |
Some of the important parameters |
2.8. |
Single crystal scSi vs polycrystal pSi vs amorphous |
2.9. |
Amorphous silicon |
2.10. |
Big picture: wafer vs thin film photovoltaics 2020-2040 |
2.11. |
PV mechanisms: status, benefits, challenges, market potential compared |
2.11.1. |
Five mechanisms compared |
2.11.2. |
Best research-cell efficiencies assessed 1975-2020 |
2.12. |
Important PV options beyond silicon compared |
2.13. |
Thirteen new photovoltaic formats creating materials markets |
2.14. |
Photovoltaics progresses to become paint and user material |
2.15. |
Solar piazzas, driveways, roads: Platio Hungary |
2.16. |
MEMS PV |
2.17. |
Transparent, indoor and underwater PV materials needed |
2.18. |
Materials opportunities from integration with other harvesting materials |
2.18.1. |
Triboelectric TENG with other harvesting: experimental |
2.18.2. |
Integration in smart watches |
3. |
INORGANIC COMPOUND SEMICONDUCTOR LLL-V PV MATERIAL OPPORTUNITIES |
3.1. |
Overview |
3.2. |
Toxicity |
3.3. |
Space program: IOFFE Institute, ITMO University |
3.4. |
Boeing Spectrolab |
3.5. |
NREL |
3.6. |
Costs and prices can be greatly reduced |
3.7. |
Indoors: Lightricity |
3.8. |
Solar vehicle technologies compared: Sono, Lightyear, Toyota with lll-lV |
3.8.1. |
Solar vehicle chemistry |
3.8.2. |
Solar vehicle format |
4. |
COPPER INDIUM GALLIUM DISELENIDE CIGS OPPORTUNITIES |
4.1. |
Overview |
4.2. |
Operating principle |
4.3. |
CIGS photovoltaics processes: Sunflare, Flisom, EMPA, Manz, Solar Frontier |
4.4. |
CIGS production, materials, routes to non toxic |
4.5. |
Avoiding ITO |
4.6. |
Ascent Solar |
4.7. |
Better polymer substrate process: KIER |
4.8. |
Renovagen: high power PV like a carpet roll |
4.9. |
Manz |
4.10. |
Flisom customizable flexible |
4.11. |
Other CIGS PV in action on vehicles |
4.12. |
Market leader Solar Frontier |
4.13. |
Sunflare: specialist niches |
5. |
ORGANIC OPV MATERIALS OPPORTUNITIES |
5.1. |
Overview |
5.2. |
Competitive situation |
5.3. |
OPV progress to commercialisation 2000-2040 |
5.4. |
Sunew |
5.5. |
Heliatek |
5.6. |
Opvius and Armor |
5.7. |
Device architecture and Sigma Aldrich materials |
5.8. |
Materials: Merck, DuPont Teijin |
5.9. |
What substrates to choose? |
5.10. |
Typical device architectures |
5.11. |
Film morphology and degradation control for bulk heterojunction |
5.12. |
R2R solution vs R2R evaporation |
5.13. |
Donor polymers |
5.14. |
Donor small molecules |
5.15. |
Typical acceptor materials |
5.16. |
Progress in solution processing |
5.17. |
Progress in tandem cell evaporation |
5.18. |
Solution processed 17.5% tandem OPV |
5.19. |
R2R solution vs R2R evaporation |
5.20. |
Major technical challenges with R2R |
5.21. |
Barrier/encapsulation challenge |
5.22. |
Transparent electrode |
5.23. |
Big advance 2018- 2020: non-fullerene acceptors NFA |
6. |
PEROVSKITE PV MATERIAL OPPORTUNITIES |
6.1. |
Overview |
6.2. |
Perovskite structure and device architecture |
6.3. |
Working principle |
6.4. |
Architectures |
6.5. |
Value propositions and roadmap to 2040 |
6.6. |
Perovskite materials |
6.7. |
Why perovskite is so efficient |
6.8. |
Efficiency versus transmission |
6.9. |
Roadmap to lead-free perovskite |
6.10. |
Improving life |
6.11. |
Flexible perovskite solar cells |
6.12. |
Deposition processes for perovskite films |
6.13. |
Perovskite module cost estimation |
6.14. |
Future perovskite PV system cost breakdown |
7. |
DUAL TECHNOLOGY, QUANTUM DOT, WILD CARD OPPORTUNITIES |
7.1. |
Dual technology photovoltaics |
7.2. |
Perovskite silicon tandem: record 25.2% efficiency |
7.3. |
Perovskite on CIGS |
7.4. |
Quantum dot |
7.5. |
Toxicity |
7.6. |
Wild cards: 2D materials, nantennas |
7.6.1. |
2D materials |
7.6.2. |
Rectenna nantenna-diode |
8. |
CONDUCTIVE PASTES IN PHOTOVOLTAICS |
8.1. |
Overview |
8.2. |
Firing |
8.3. |
Major cost drivers for photovoltaics |
8.4. |
Reducing silver content per wafer: industry consensus |
8.5. |
Expected market share: plating and screen printing of electrodes |
8.6. |
Photovoltaics: roadmap towards ever thinner wafers |
8.7. |
Photovoltaics market share forecast for different metallization technologies |
8.8. |
Silicon inks: made redundant before seeing daylight? |
8.9. |
Copper metallization in solar cells |
8.10. |
Silver nanoparticles adopted for thin film photovoltaics? |
8.11. |
PV and heater: digital printing comes of age? |
9. |
BARRIER LAYERS FOR PHOTOVOLTAICS |
9.1. |
Why barriers and encapsulation? |
9.2. |
Barrier performance requirements (permeation rates) |
9.3. |
Barrier requirements: towards flexibility and rollability |
9.4. |
Plastic substrates are a challenge |
9.5. |
The basis of the multi-layer approach |
9.6. |
Status of R2R barrier films in performance, web width and readiness/scale |
9.7. |
Challenges of R2R barrier film production |
9.8. |
From glass to multi-layer films to multi-layer inline thin film encapsulation |
9.9. |
Trends in TFE: Past, present and future of deposition |
9.10. |
Benchmarking different barrier solutions |
9.11. |
Evolution of production parameters to enable multi-layer barrier cost reduction |
9.12. |
Flexible CIGS: market forecast sqm and value by barrier technology |
ページTOPに戻る
本レポートと同分野(宇宙・防衛)の最新刊レポート
- 小型衛星市場:質量別(小型、ミニ、マイクロ、ナノ、キューブ)、サブシステム別(衛星バス、ペイロード、ソーラーパネル、衛星アンテナ)、軌道別(LEO、MEO、GEO、その他軌道)、用途別、最終用途別、周波数別、地域別 - 2029年までの世界予測
- 航空機スイッチ市場レポート:2030年までの動向、予測、競合分析
- 航空宇宙用アクチュエータ市場調査レポート:技術別(完全電動、油圧、電動ハイブリッド、機械、空気圧)、航空機タイプ別(固定翼、回転翼、無人航空機)、アクチュエータ別(リニア、ロータリー)、システム別(飛行制御システム、着陸&ブレーキシステム、推力反転アクチュエータシステム、発電システム, 燃料分配システム, 燃料貯蔵システム, ペイロード管理システム, キャビン作動システム), プラットフォーム別 (民間航空, 軍用航空, ビジネス・一般航空), 地域別 (北米, 欧州, アジア太平洋, 中東・アフリカ, 南米) 2032年までの市場予測
- 軍用電気配線相互接続システム(EWIS)市場調査レポート:部品別(ワイヤとケーブル、コネクタ、接地と結合装置、スプライス、クランプ、その他)、用途別(航空{航空機、ミサイルと兵器、UAV}、陸上(軍用車両、フィールド機器)、海軍(船舶と潜水艦、海洋機器)、衛星)、エンドユーザー別(レトロフィット、ラインフィット)、地域別(北米、欧州、アジア太平洋地域、中東・アフリカ地域、中南米) 2032年までの市場予測
- 航空機プラットフォーム市場:タイプ別(輸送機、特殊任務機、UAV)、動力源別(燃料電池、SAFベース、バッテリー駆動)、推進技術別(ターボファン、ターボプロップ、ターボジェット、電気)、地域別 - 2030年までの世界予測
- 海軍戦闘兵器市場レポート:2030年までの動向、予測、競合分析
- 旅客セキュリティ市場レポート:2030年までの動向、予測、競合分析
- 北米の衛星推進市場の2031年までの予測 - 地域別分析 - 推進タイプ別(固体推進、コールドガス推進、グリーン推進、電気推進、両極推進)、システムタイプ別(単推進剤、二推進剤、電気イオン推進)、用途別(ロケット、宇宙船、人工衛星、スペースタグ、着陸船)、軌道タイプ別(LEO、MEO、GEO、GEO以遠)
- 欧州の衛星推進市場の2031年までの予測 - 地域別分析 - 推進タイプ別(固体推進、コールドガス推進、グリーン推進、電気推進、両極推進)、システムタイプ別(単推進剤、二推進剤、電気イオン推進)、用途別(ロケット、宇宙船、人工衛星、スペースタグ、着陸船)、軌道タイプ別(LEO、MEO、GEO、GEO以遠)
- アジア太平洋地域の衛星推進市場の2031年までの予測 - 地域別分析 - 推進タイプ別(固体推進、コールドガス推進、グリーン推進、電気推進、両極推進)、システムタイプ別(単推進剤、二推進剤、電気イオン推進)、用途別(ロケット、宇宙船、人工衛星、スペースタグ、着陸船)、軌道タイプ別(LEO、MEO、GEO、GEO以遠)
IDTechEx社の半導体、コンピュータ、AI - Semiconductors, Computing, AI分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
IDTechEx社はどのような調査会社ですか?
IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|