新しい太陽光発電における素材の市場機会 2020-2040年:CIGS、GaAs、III-V、ペロブスカイト、OPV、CdTe、コンダクタ、バリア、TCO、ITO、塗料、半透明、フレキシブル
Materials Opportunities in Emerging Photovoltaics 2020-2040
このレポートは太陽光発電と素材の市場を調査し、2040年までの市場予測、ロードマップ、価格感度、市場のギャップや用途のヒエラルキーについて分析、言及しています。
主な掲載内容... もっと見る
サマリー
このレポートは太陽光発電と素材の市場を調査し、2040年までの市場予測、ロードマップ、価格感度、市場のギャップや用途のヒエラルキーについて分析、言及しています。
主な掲載内容 ※目次より抜粋
-
エグゼクティブサマリー
-
イントロダクション
-
無機化合物半導体 LLL-V PV素材の市場機会
-
CIGSの市場機会
-
有機PV素材の市場機会
-
ペロブスカイトPV素材の市場機会
-
デュアル技術、量子ドット、ワイルドカードの市場機会
-
PVにおける導電性ペースト
-
PVにおけるバリア層
Report Details
New IDTechEx report, "Materials Opportunities in Emerging Photovoltaics 2020-2040" is based on interviews by multi-lingual, PhD level IDTechEx analysts across the world and 20 years tracking the research and applications. Nearly $40 billion dollars envisaged in 2040 without colliding with commoditised silicon-in-glass "power station" business. Much premium-pricing of specialist materials.
See why profit from emerging PV will be disproportionately high - up to half the profit from all PV in 2040. Learn why over $10,000/W is currently paid for record 30% efficient lll-V compound PV in a designer watch, as an array on a satellite or surface of a high-altitude drone and lll-V is the basis of Toyota's solar car development. Tripled-efficiency indoor "lll-V" PV is newly on sale. Organic PV has jumped in efficiency, adding other uniques for other segments. Understand how copper-indium-gallium-diselenide PV created $2 billion yearly sales in only ten years. Further stellar growth powered by what improved materials?
Most emerging PV is thin film, flexible and some will be stretchable materials. Tightly-rollable PV in your mobile phone, aircraft skin, billions of Internet of Things nodes? Hundreds of millions more building facades need lightweight PV. What three technologies for PV paint? Retrofit on windows, boats, buses?
Whisper it quietly, but with silicon near its theoretical limits and taking massive areas of real estate - often prime agricultural land and lakes - emerging PV will eventually compete with some "power station" silicon by affordably providing the power in half the area and therefore being much more widely deployable and environmentally acceptable but this report is mainly about the huge opportunities in the run up to that.
The 212 page IDTechEx report, "Materials Opportunities in Emerging Photovoltaics" has executive summary and conclusions sufficient for busy people. Absorb 18 primary conclusions, 2020-2040 forecasts, roadmaps, price sensitivity, learning curves projected forward, gaps in the market, the application hierarchy. The introduction reveals the amazing virtuosity of PV already, important parameters, SOFT report, PV architectures, efficiency trends. New infograms compare PV options beyond silicon, production readiness, 13 examples of new formats/ locations, progress to user-customised PV materials, PV combinations.
Chapter 3 dives into inorganic compound semiconductor lll-V PV architectures, material advances of Boeing Spectrolab, the Russians, Lightricity, Sharp-Toyota and cost-reduction routes to volume lll-V sales researched by NREL. Chapter 4 concerns copper-indium-gallium-diselenide CIGS opportunities including cost reduction research, efficiency increase, elimination of cadmium. See activities of Ascent Solar, Flisom-EMPA, Manz, Renovagen, Solar Frontier and others. Chapter 5 on organic OPV materials opportunities reveals recently-transformed competitive situations, rapid efficiency and life potential, Armor-Opvius, Heliatek, materials suppliers, gaps in the market. Understand new molecule choices, fullerene elimination and special OPV barrier-layers.
Chapter 6 is a sober look at the now-fashionable perovskite PV balancing stellar efficiency gains with challenges in stability and use of lead. What is being done about it? Chapter 7 wraps up the basic chemistry options with dual technology such as perovskite on silicon or CIGS then wild card PV materials opportunities. Here are quantum dot toxicity issues, rectenna-array harvesting and 2D PV materials. Chapters 8 and 9 are a close analysis of the conductive pastes and barrier layers opportunity overall.
ページTOPに戻る
目次
Table of Contents
1. |
EXECUTIVE SUMMARY |
1.1. |
Purpose of this report |
1.2. |
Two worlds |
1.3. |
Anatomy of the photovoltaic business 2020-2040 |
1.4. |
Primary conclusions: photovoltaics top ten manufacturers chemistry |
1.5. |
Primary conclusions: price-volume sensitivity by application |
1.6. |
Primary conclusions: cost progression 1976-2040 |
1.7. |
Primary conclusions: thin film PV market |
1.8. |
Primary conclusions: cadmium telluride |
1.9. |
Primary conclusions: geographic PV materials demand |
1.10. |
CIGS PV forecasts |
1.10.1. |
Global output of thin film CIGS photovoltaics $M and MWp 2000-2018 |
1.10.2. |
Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040 |
1.11. |
Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040 |
1.12. |
Global market for perovskite PV $M |
1.13. |
Global market for OPV $M |
2. |
INTRODUCTION |
2.1. |
Overview: amazing virtuosity |
2.1.1. |
Extreme vehicles and weak light create new markets |
2.1.2. |
Photovoltaic cooking without batteries |
2.2. |
The energy positive house |
2.3. |
Ever larger solar farms |
2.4. |
Solar cars: Hyundai, Tesla |
2.5. |
Winning electromagnetic frequencies |
2.6. |
SOFT report on photovoltaics |
2.7. |
Some of the important parameters |
2.8. |
Single crystal scSi vs polycrystal pSi vs amorphous |
2.9. |
Amorphous silicon |
2.10. |
Big picture: wafer vs thin film photovoltaics 2020-2040 |
2.11. |
PV mechanisms: status, benefits, challenges, market potential compared |
2.11.1. |
Five mechanisms compared |
2.11.2. |
Best research-cell efficiencies assessed 1975-2020 |
2.12. |
Important PV options beyond silicon compared |
2.13. |
Thirteen new photovoltaic formats creating materials markets |
2.14. |
Photovoltaics progresses to become paint and user material |
2.15. |
Solar piazzas, driveways, roads: Platio Hungary |
2.16. |
MEMS PV |
2.17. |
Transparent, indoor and underwater PV materials needed |
2.18. |
Materials opportunities from integration with other harvesting materials |
2.18.1. |
Triboelectric TENG with other harvesting: experimental |
2.18.2. |
Integration in smart watches |
3. |
INORGANIC COMPOUND SEMICONDUCTOR LLL-V PV MATERIAL OPPORTUNITIES |
3.1. |
Overview |
3.2. |
Toxicity |
3.3. |
Space program: IOFFE Institute, ITMO University |
3.4. |
Boeing Spectrolab |
3.5. |
NREL |
3.6. |
Costs and prices can be greatly reduced |
3.7. |
Indoors: Lightricity |
3.8. |
Solar vehicle technologies compared: Sono, Lightyear, Toyota with lll-lV |
3.8.1. |
Solar vehicle chemistry |
3.8.2. |
Solar vehicle format |
4. |
COPPER INDIUM GALLIUM DISELENIDE CIGS OPPORTUNITIES |
4.1. |
Overview |
4.2. |
Operating principle |
4.3. |
CIGS photovoltaics processes: Sunflare, Flisom, EMPA, Manz, Solar Frontier |
4.4. |
CIGS production, materials, routes to non toxic |
4.5. |
Avoiding ITO |
4.6. |
Ascent Solar |
4.7. |
Better polymer substrate process: KIER |
4.8. |
Renovagen: high power PV like a carpet roll |
4.9. |
Manz |
4.10. |
Flisom customizable flexible |
4.11. |
Other CIGS PV in action on vehicles |
4.12. |
Market leader Solar Frontier |
4.13. |
Sunflare: specialist niches |
5. |
ORGANIC OPV MATERIALS OPPORTUNITIES |
5.1. |
Overview |
5.2. |
Competitive situation |
5.3. |
OPV progress to commercialisation 2000-2040 |
5.4. |
Sunew |
5.5. |
Heliatek |
5.6. |
Opvius and Armor |
5.7. |
Device architecture and Sigma Aldrich materials |
5.8. |
Materials: Merck, DuPont Teijin |
5.9. |
What substrates to choose? |
5.10. |
Typical device architectures |
5.11. |
Film morphology and degradation control for bulk heterojunction |
5.12. |
R2R solution vs R2R evaporation |
5.13. |
Donor polymers |
5.14. |
Donor small molecules |
5.15. |
Typical acceptor materials |
5.16. |
Progress in solution processing |
5.17. |
Progress in tandem cell evaporation |
5.18. |
Solution processed 17.5% tandem OPV |
5.19. |
R2R solution vs R2R evaporation |
5.20. |
Major technical challenges with R2R |
5.21. |
Barrier/encapsulation challenge |
5.22. |
Transparent electrode |
5.23. |
Big advance 2018- 2020: non-fullerene acceptors NFA |
6. |
PEROVSKITE PV MATERIAL OPPORTUNITIES |
6.1. |
Overview |
6.2. |
Perovskite structure and device architecture |
6.3. |
Working principle |
6.4. |
Architectures |
6.5. |
Value propositions and roadmap to 2040 |
6.6. |
Perovskite materials |
6.7. |
Why perovskite is so efficient |
6.8. |
Efficiency versus transmission |
6.9. |
Roadmap to lead-free perovskite |
6.10. |
Improving life |
6.11. |
Flexible perovskite solar cells |
6.12. |
Deposition processes for perovskite films |
6.13. |
Perovskite module cost estimation |
6.14. |
Future perovskite PV system cost breakdown |
7. |
DUAL TECHNOLOGY, QUANTUM DOT, WILD CARD OPPORTUNITIES |
7.1. |
Dual technology photovoltaics |
7.2. |
Perovskite silicon tandem: record 25.2% efficiency |
7.3. |
Perovskite on CIGS |
7.4. |
Quantum dot |
7.5. |
Toxicity |
7.6. |
Wild cards: 2D materials, nantennas |
7.6.1. |
2D materials |
7.6.2. |
Rectenna nantenna-diode |
8. |
CONDUCTIVE PASTES IN PHOTOVOLTAICS |
8.1. |
Overview |
8.2. |
Firing |
8.3. |
Major cost drivers for photovoltaics |
8.4. |
Reducing silver content per wafer: industry consensus |
8.5. |
Expected market share: plating and screen printing of electrodes |
8.6. |
Photovoltaics: roadmap towards ever thinner wafers |
8.7. |
Photovoltaics market share forecast for different metallization technologies |
8.8. |
Silicon inks: made redundant before seeing daylight? |
8.9. |
Copper metallization in solar cells |
8.10. |
Silver nanoparticles adopted for thin film photovoltaics? |
8.11. |
PV and heater: digital printing comes of age? |
9. |
BARRIER LAYERS FOR PHOTOVOLTAICS |
9.1. |
Why barriers and encapsulation? |
9.2. |
Barrier performance requirements (permeation rates) |
9.3. |
Barrier requirements: towards flexibility and rollability |
9.4. |
Plastic substrates are a challenge |
9.5. |
The basis of the multi-layer approach |
9.6. |
Status of R2R barrier films in performance, web width and readiness/scale |
9.7. |
Challenges of R2R barrier film production |
9.8. |
From glass to multi-layer films to multi-layer inline thin film encapsulation |
9.9. |
Trends in TFE: Past, present and future of deposition |
9.10. |
Benchmarking different barrier solutions |
9.11. |
Evolution of production parameters to enable multi-layer barrier cost reduction |
9.12. |
Flexible CIGS: market forecast sqm and value by barrier technology |
ページTOPに戻る
Summary
このレポートは太陽光発電と素材の市場を調査し、2040年までの市場予測、ロードマップ、価格感度、市場のギャップや用途のヒエラルキーについて分析、言及しています。
主な掲載内容 ※目次より抜粋
-
エグゼクティブサマリー
-
イントロダクション
-
無機化合物半導体 LLL-V PV素材の市場機会
-
CIGSの市場機会
-
有機PV素材の市場機会
-
ペロブスカイトPV素材の市場機会
-
デュアル技術、量子ドット、ワイルドカードの市場機会
-
PVにおける導電性ペースト
-
PVにおけるバリア層
Report Details
New IDTechEx report, "Materials Opportunities in Emerging Photovoltaics 2020-2040" is based on interviews by multi-lingual, PhD level IDTechEx analysts across the world and 20 years tracking the research and applications. Nearly $40 billion dollars envisaged in 2040 without colliding with commoditised silicon-in-glass "power station" business. Much premium-pricing of specialist materials.
See why profit from emerging PV will be disproportionately high - up to half the profit from all PV in 2040. Learn why over $10,000/W is currently paid for record 30% efficient lll-V compound PV in a designer watch, as an array on a satellite or surface of a high-altitude drone and lll-V is the basis of Toyota's solar car development. Tripled-efficiency indoor "lll-V" PV is newly on sale. Organic PV has jumped in efficiency, adding other uniques for other segments. Understand how copper-indium-gallium-diselenide PV created $2 billion yearly sales in only ten years. Further stellar growth powered by what improved materials?
Most emerging PV is thin film, flexible and some will be stretchable materials. Tightly-rollable PV in your mobile phone, aircraft skin, billions of Internet of Things nodes? Hundreds of millions more building facades need lightweight PV. What three technologies for PV paint? Retrofit on windows, boats, buses?
Whisper it quietly, but with silicon near its theoretical limits and taking massive areas of real estate - often prime agricultural land and lakes - emerging PV will eventually compete with some "power station" silicon by affordably providing the power in half the area and therefore being much more widely deployable and environmentally acceptable but this report is mainly about the huge opportunities in the run up to that.
The 212 page IDTechEx report, "Materials Opportunities in Emerging Photovoltaics" has executive summary and conclusions sufficient for busy people. Absorb 18 primary conclusions, 2020-2040 forecasts, roadmaps, price sensitivity, learning curves projected forward, gaps in the market, the application hierarchy. The introduction reveals the amazing virtuosity of PV already, important parameters, SOFT report, PV architectures, efficiency trends. New infograms compare PV options beyond silicon, production readiness, 13 examples of new formats/ locations, progress to user-customised PV materials, PV combinations.
Chapter 3 dives into inorganic compound semiconductor lll-V PV architectures, material advances of Boeing Spectrolab, the Russians, Lightricity, Sharp-Toyota and cost-reduction routes to volume lll-V sales researched by NREL. Chapter 4 concerns copper-indium-gallium-diselenide CIGS opportunities including cost reduction research, efficiency increase, elimination of cadmium. See activities of Ascent Solar, Flisom-EMPA, Manz, Renovagen, Solar Frontier and others. Chapter 5 on organic OPV materials opportunities reveals recently-transformed competitive situations, rapid efficiency and life potential, Armor-Opvius, Heliatek, materials suppliers, gaps in the market. Understand new molecule choices, fullerene elimination and special OPV barrier-layers.
Chapter 6 is a sober look at the now-fashionable perovskite PV balancing stellar efficiency gains with challenges in stability and use of lead. What is being done about it? Chapter 7 wraps up the basic chemistry options with dual technology such as perovskite on silicon or CIGS then wild card PV materials opportunities. Here are quantum dot toxicity issues, rectenna-array harvesting and 2D PV materials. Chapters 8 and 9 are a close analysis of the conductive pastes and barrier layers opportunity overall.
ページTOPに戻る
Table of Contents
Table of Contents
1. |
EXECUTIVE SUMMARY |
1.1. |
Purpose of this report |
1.2. |
Two worlds |
1.3. |
Anatomy of the photovoltaic business 2020-2040 |
1.4. |
Primary conclusions: photovoltaics top ten manufacturers chemistry |
1.5. |
Primary conclusions: price-volume sensitivity by application |
1.6. |
Primary conclusions: cost progression 1976-2040 |
1.7. |
Primary conclusions: thin film PV market |
1.8. |
Primary conclusions: cadmium telluride |
1.9. |
Primary conclusions: geographic PV materials demand |
1.10. |
CIGS PV forecasts |
1.10.1. |
Global output of thin film CIGS photovoltaics $M and MWp 2000-2018 |
1.10.2. |
Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040 |
1.11. |
Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040 |
1.12. |
Global market for perovskite PV $M |
1.13. |
Global market for OPV $M |
2. |
INTRODUCTION |
2.1. |
Overview: amazing virtuosity |
2.1.1. |
Extreme vehicles and weak light create new markets |
2.1.2. |
Photovoltaic cooking without batteries |
2.2. |
The energy positive house |
2.3. |
Ever larger solar farms |
2.4. |
Solar cars: Hyundai, Tesla |
2.5. |
Winning electromagnetic frequencies |
2.6. |
SOFT report on photovoltaics |
2.7. |
Some of the important parameters |
2.8. |
Single crystal scSi vs polycrystal pSi vs amorphous |
2.9. |
Amorphous silicon |
2.10. |
Big picture: wafer vs thin film photovoltaics 2020-2040 |
2.11. |
PV mechanisms: status, benefits, challenges, market potential compared |
2.11.1. |
Five mechanisms compared |
2.11.2. |
Best research-cell efficiencies assessed 1975-2020 |
2.12. |
Important PV options beyond silicon compared |
2.13. |
Thirteen new photovoltaic formats creating materials markets |
2.14. |
Photovoltaics progresses to become paint and user material |
2.15. |
Solar piazzas, driveways, roads: Platio Hungary |
2.16. |
MEMS PV |
2.17. |
Transparent, indoor and underwater PV materials needed |
2.18. |
Materials opportunities from integration with other harvesting materials |
2.18.1. |
Triboelectric TENG with other harvesting: experimental |
2.18.2. |
Integration in smart watches |
3. |
INORGANIC COMPOUND SEMICONDUCTOR LLL-V PV MATERIAL OPPORTUNITIES |
3.1. |
Overview |
3.2. |
Toxicity |
3.3. |
Space program: IOFFE Institute, ITMO University |
3.4. |
Boeing Spectrolab |
3.5. |
NREL |
3.6. |
Costs and prices can be greatly reduced |
3.7. |
Indoors: Lightricity |
3.8. |
Solar vehicle technologies compared: Sono, Lightyear, Toyota with lll-lV |
3.8.1. |
Solar vehicle chemistry |
3.8.2. |
Solar vehicle format |
4. |
COPPER INDIUM GALLIUM DISELENIDE CIGS OPPORTUNITIES |
4.1. |
Overview |
4.2. |
Operating principle |
4.3. |
CIGS photovoltaics processes: Sunflare, Flisom, EMPA, Manz, Solar Frontier |
4.4. |
CIGS production, materials, routes to non toxic |
4.5. |
Avoiding ITO |
4.6. |
Ascent Solar |
4.7. |
Better polymer substrate process: KIER |
4.8. |
Renovagen: high power PV like a carpet roll |
4.9. |
Manz |
4.10. |
Flisom customizable flexible |
4.11. |
Other CIGS PV in action on vehicles |
4.12. |
Market leader Solar Frontier |
4.13. |
Sunflare: specialist niches |
5. |
ORGANIC OPV MATERIALS OPPORTUNITIES |
5.1. |
Overview |
5.2. |
Competitive situation |
5.3. |
OPV progress to commercialisation 2000-2040 |
5.4. |
Sunew |
5.5. |
Heliatek |
5.6. |
Opvius and Armor |
5.7. |
Device architecture and Sigma Aldrich materials |
5.8. |
Materials: Merck, DuPont Teijin |
5.9. |
What substrates to choose? |
5.10. |
Typical device architectures |
5.11. |
Film morphology and degradation control for bulk heterojunction |
5.12. |
R2R solution vs R2R evaporation |
5.13. |
Donor polymers |
5.14. |
Donor small molecules |
5.15. |
Typical acceptor materials |
5.16. |
Progress in solution processing |
5.17. |
Progress in tandem cell evaporation |
5.18. |
Solution processed 17.5% tandem OPV |
5.19. |
R2R solution vs R2R evaporation |
5.20. |
Major technical challenges with R2R |
5.21. |
Barrier/encapsulation challenge |
5.22. |
Transparent electrode |
5.23. |
Big advance 2018- 2020: non-fullerene acceptors NFA |
6. |
PEROVSKITE PV MATERIAL OPPORTUNITIES |
6.1. |
Overview |
6.2. |
Perovskite structure and device architecture |
6.3. |
Working principle |
6.4. |
Architectures |
6.5. |
Value propositions and roadmap to 2040 |
6.6. |
Perovskite materials |
6.7. |
Why perovskite is so efficient |
6.8. |
Efficiency versus transmission |
6.9. |
Roadmap to lead-free perovskite |
6.10. |
Improving life |
6.11. |
Flexible perovskite solar cells |
6.12. |
Deposition processes for perovskite films |
6.13. |
Perovskite module cost estimation |
6.14. |
Future perovskite PV system cost breakdown |
7. |
DUAL TECHNOLOGY, QUANTUM DOT, WILD CARD OPPORTUNITIES |
7.1. |
Dual technology photovoltaics |
7.2. |
Perovskite silicon tandem: record 25.2% efficiency |
7.3. |
Perovskite on CIGS |
7.4. |
Quantum dot |
7.5. |
Toxicity |
7.6. |
Wild cards: 2D materials, nantennas |
7.6.1. |
2D materials |
7.6.2. |
Rectenna nantenna-diode |
8. |
CONDUCTIVE PASTES IN PHOTOVOLTAICS |
8.1. |
Overview |
8.2. |
Firing |
8.3. |
Major cost drivers for photovoltaics |
8.4. |
Reducing silver content per wafer: industry consensus |
8.5. |
Expected market share: plating and screen printing of electrodes |
8.6. |
Photovoltaics: roadmap towards ever thinner wafers |
8.7. |
Photovoltaics market share forecast for different metallization technologies |
8.8. |
Silicon inks: made redundant before seeing daylight? |
8.9. |
Copper metallization in solar cells |
8.10. |
Silver nanoparticles adopted for thin film photovoltaics? |
8.11. |
PV and heater: digital printing comes of age? |
9. |
BARRIER LAYERS FOR PHOTOVOLTAICS |
9.1. |
Why barriers and encapsulation? |
9.2. |
Barrier performance requirements (permeation rates) |
9.3. |
Barrier requirements: towards flexibility and rollability |
9.4. |
Plastic substrates are a challenge |
9.5. |
The basis of the multi-layer approach |
9.6. |
Status of R2R barrier films in performance, web width and readiness/scale |
9.7. |
Challenges of R2R barrier film production |
9.8. |
From glass to multi-layer films to multi-layer inline thin film encapsulation |
9.9. |
Trends in TFE: Past, present and future of deposition |
9.10. |
Benchmarking different barrier solutions |
9.11. |
Evolution of production parameters to enable multi-layer barrier cost reduction |
9.12. |
Flexible CIGS: market forecast sqm and value by barrier technology |
ページTOPに戻る
本レポートと同分野(宇宙・防衛)の最新刊レポート
- 空港ラウンジ市場調査レポート:ラウンジタイプ別(国内ラウンジ、国際ラウンジ、ファーストクラスラウンジ、ビジネスクラスラウンジ)、提供サービス別(飲食、Wi-Fiアクセス、シャワー施設、会議室)、アクセスタイプ別(会員制アクセス、有料アクセス、無料アクセス)、利用者属性別(ビジネス旅行者、レジャー旅行者、フリークエントフライヤー)、地域別(北米、欧州、南米、アジア太平洋、中東・アフリカ):2035年までの予測
- ジェットエンジンブレード市場レポート:2031年までの動向、予測、競合分析
- 宇宙軍事化市場:能力別(防衛、支援)、ソリューション別(宇宙ベース機器、地上ベース機器、ロジスティクス&サービス) :世界の機会分析と産業予測、2024-2033年
- 宇宙からの5G市場:コンポーネント別(ハードウェア、ソフトウェア)、アプリケーション別(拡張モバイルブロードバンド(EMBB)、超高信頼低遅延(URLLC)、大規模マシンタイプ通信(MMTC)) :世界の機会分析と産業予測、2024年~2033年
- 軍用車両維持市場:サービスタイプ別(整備・修理・オーバーホール、部品・コンポーネント供給、訓練・サポート) , 車両タイプ別(装甲戦闘車両、工兵・回収車両、地上支援車両、上陸用舟艇・水陸両用車、軽戦術車両、軍用トラック、地雷除去待ち伏せ防護(MRAP)車両、自走砲) , 用途別(空軍、陸軍、海軍) :世界の機会分析と産業予測、2024-2033年
- 航空宇宙用DC-DCコンバータ市場 タイプ別(昇圧型、降圧型)、用途別(航空機、人工衛星) :世界の機会分析と産業予測、2024-2033年
- 固定翼VTOL UAV市場 推進タイプ別(電気、ガソリン、ハイブリッド) , 操縦モード別(遠隔操縦、任意操縦、完全自律) , 射程距離別(見通し外、拡大見通し外、見通し外) , 用途別(軍事、政府・法執行、商業、その他) :世界の機会分析と産業予測、2024-2033年
- UAVパラシュート回収システム市場 タイプ別(スプリングリリース展開、スリング/カタパルトリリース展開、火工品展開、圧縮ガス展開) , ドローンタイプ別(固定翼、回転翼) , 用途別(貨物輸送、農業、石油・ガス、エンターテイメント・メディア、軍事・防衛、その他) :世界の機会分析と産業予測、2024-2033年
- ターボプロップエンジン市場:タイプ別(シングルシャフト、フリータービン) 、用途別(民間航空、軍用航空、一般航空) 、技術別(従来型エンジン、電気/ハイブリッドエンジン) :世界の機会分析と産業予測、2024-2033年
- 宇宙船市場 タイプ別(有人宇宙船、無人宇宙船) , エンドユース産業別(商業、政府、軍事) , コンポーネント別(ペイロード、構造・機構、熱制御、電力システム、推進、アビオニクス、ソフトウェア) , 用途別(通信、地球観測・リモートセンシング、ナビゲーション・マッピング、宇宙探査、科学研究、防衛・安全保障) :世界のビジネスチャンス分析と産業予測、2024-2033年
IDTechEx社の半導体、コンピュータ、AI - Semiconductors, Computing, AI分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
IDTechEx社はどのような調査会社ですか?
IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|