新しい太陽光発電における素材の市場機会 2020-2040年:CIGS、GaAs、III-V、ペロブスカイト、OPV、CdTe、コンダクタ、バリア、TCO、ITO、塗料、半透明、フレキシブル
Materials Opportunities in Emerging Photovoltaics 2020-2040
このレポートは太陽光発電と素材の市場を調査し、2040年までの市場予測、ロードマップ、価格感度、市場のギャップや用途のヒエラルキーについて分析、言及しています。
主な掲載内容... もっと見る
サマリー
このレポートは太陽光発電と素材の市場を調査し、2040年までの市場予測、ロードマップ、価格感度、市場のギャップや用途のヒエラルキーについて分析、言及しています。
主な掲載内容 ※目次より抜粋
-
エグゼクティブサマリー
-
イントロダクション
-
無機化合物半導体 LLL-V PV素材の市場機会
-
CIGSの市場機会
-
有機PV素材の市場機会
-
ペロブスカイトPV素材の市場機会
-
デュアル技術、量子ドット、ワイルドカードの市場機会
-
PVにおける導電性ペースト
-
PVにおけるバリア層
Report Details
New IDTechEx report, "Materials Opportunities in Emerging Photovoltaics 2020-2040" is based on interviews by multi-lingual, PhD level IDTechEx analysts across the world and 20 years tracking the research and applications. Nearly $40 billion dollars envisaged in 2040 without colliding with commoditised silicon-in-glass "power station" business. Much premium-pricing of specialist materials.
See why profit from emerging PV will be disproportionately high - up to half the profit from all PV in 2040. Learn why over $10,000/W is currently paid for record 30% efficient lll-V compound PV in a designer watch, as an array on a satellite or surface of a high-altitude drone and lll-V is the basis of Toyota's solar car development. Tripled-efficiency indoor "lll-V" PV is newly on sale. Organic PV has jumped in efficiency, adding other uniques for other segments. Understand how copper-indium-gallium-diselenide PV created $2 billion yearly sales in only ten years. Further stellar growth powered by what improved materials?
Most emerging PV is thin film, flexible and some will be stretchable materials. Tightly-rollable PV in your mobile phone, aircraft skin, billions of Internet of Things nodes? Hundreds of millions more building facades need lightweight PV. What three technologies for PV paint? Retrofit on windows, boats, buses?
Whisper it quietly, but with silicon near its theoretical limits and taking massive areas of real estate - often prime agricultural land and lakes - emerging PV will eventually compete with some "power station" silicon by affordably providing the power in half the area and therefore being much more widely deployable and environmentally acceptable but this report is mainly about the huge opportunities in the run up to that.
The 212 page IDTechEx report, "Materials Opportunities in Emerging Photovoltaics" has executive summary and conclusions sufficient for busy people. Absorb 18 primary conclusions, 2020-2040 forecasts, roadmaps, price sensitivity, learning curves projected forward, gaps in the market, the application hierarchy. The introduction reveals the amazing virtuosity of PV already, important parameters, SOFT report, PV architectures, efficiency trends. New infograms compare PV options beyond silicon, production readiness, 13 examples of new formats/ locations, progress to user-customised PV materials, PV combinations.
Chapter 3 dives into inorganic compound semiconductor lll-V PV architectures, material advances of Boeing Spectrolab, the Russians, Lightricity, Sharp-Toyota and cost-reduction routes to volume lll-V sales researched by NREL. Chapter 4 concerns copper-indium-gallium-diselenide CIGS opportunities including cost reduction research, efficiency increase, elimination of cadmium. See activities of Ascent Solar, Flisom-EMPA, Manz, Renovagen, Solar Frontier and others. Chapter 5 on organic OPV materials opportunities reveals recently-transformed competitive situations, rapid efficiency and life potential, Armor-Opvius, Heliatek, materials suppliers, gaps in the market. Understand new molecule choices, fullerene elimination and special OPV barrier-layers.
Chapter 6 is a sober look at the now-fashionable perovskite PV balancing stellar efficiency gains with challenges in stability and use of lead. What is being done about it? Chapter 7 wraps up the basic chemistry options with dual technology such as perovskite on silicon or CIGS then wild card PV materials opportunities. Here are quantum dot toxicity issues, rectenna-array harvesting and 2D PV materials. Chapters 8 and 9 are a close analysis of the conductive pastes and barrier layers opportunity overall.
ページTOPに戻る
目次
Table of Contents
1. |
EXECUTIVE SUMMARY |
1.1. |
Purpose of this report |
1.2. |
Two worlds |
1.3. |
Anatomy of the photovoltaic business 2020-2040 |
1.4. |
Primary conclusions: photovoltaics top ten manufacturers chemistry |
1.5. |
Primary conclusions: price-volume sensitivity by application |
1.6. |
Primary conclusions: cost progression 1976-2040 |
1.7. |
Primary conclusions: thin film PV market |
1.8. |
Primary conclusions: cadmium telluride |
1.9. |
Primary conclusions: geographic PV materials demand |
1.10. |
CIGS PV forecasts |
1.10.1. |
Global output of thin film CIGS photovoltaics $M and MWp 2000-2018 |
1.10.2. |
Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040 |
1.11. |
Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040 |
1.12. |
Global market for perovskite PV $M |
1.13. |
Global market for OPV $M |
2. |
INTRODUCTION |
2.1. |
Overview: amazing virtuosity |
2.1.1. |
Extreme vehicles and weak light create new markets |
2.1.2. |
Photovoltaic cooking without batteries |
2.2. |
The energy positive house |
2.3. |
Ever larger solar farms |
2.4. |
Solar cars: Hyundai, Tesla |
2.5. |
Winning electromagnetic frequencies |
2.6. |
SOFT report on photovoltaics |
2.7. |
Some of the important parameters |
2.8. |
Single crystal scSi vs polycrystal pSi vs amorphous |
2.9. |
Amorphous silicon |
2.10. |
Big picture: wafer vs thin film photovoltaics 2020-2040 |
2.11. |
PV mechanisms: status, benefits, challenges, market potential compared |
2.11.1. |
Five mechanisms compared |
2.11.2. |
Best research-cell efficiencies assessed 1975-2020 |
2.12. |
Important PV options beyond silicon compared |
2.13. |
Thirteen new photovoltaic formats creating materials markets |
2.14. |
Photovoltaics progresses to become paint and user material |
2.15. |
Solar piazzas, driveways, roads: Platio Hungary |
2.16. |
MEMS PV |
2.17. |
Transparent, indoor and underwater PV materials needed |
2.18. |
Materials opportunities from integration with other harvesting materials |
2.18.1. |
Triboelectric TENG with other harvesting: experimental |
2.18.2. |
Integration in smart watches |
3. |
INORGANIC COMPOUND SEMICONDUCTOR LLL-V PV MATERIAL OPPORTUNITIES |
3.1. |
Overview |
3.2. |
Toxicity |
3.3. |
Space program: IOFFE Institute, ITMO University |
3.4. |
Boeing Spectrolab |
3.5. |
NREL |
3.6. |
Costs and prices can be greatly reduced |
3.7. |
Indoors: Lightricity |
3.8. |
Solar vehicle technologies compared: Sono, Lightyear, Toyota with lll-lV |
3.8.1. |
Solar vehicle chemistry |
3.8.2. |
Solar vehicle format |
4. |
COPPER INDIUM GALLIUM DISELENIDE CIGS OPPORTUNITIES |
4.1. |
Overview |
4.2. |
Operating principle |
4.3. |
CIGS photovoltaics processes: Sunflare, Flisom, EMPA, Manz, Solar Frontier |
4.4. |
CIGS production, materials, routes to non toxic |
4.5. |
Avoiding ITO |
4.6. |
Ascent Solar |
4.7. |
Better polymer substrate process: KIER |
4.8. |
Renovagen: high power PV like a carpet roll |
4.9. |
Manz |
4.10. |
Flisom customizable flexible |
4.11. |
Other CIGS PV in action on vehicles |
4.12. |
Market leader Solar Frontier |
4.13. |
Sunflare: specialist niches |
5. |
ORGANIC OPV MATERIALS OPPORTUNITIES |
5.1. |
Overview |
5.2. |
Competitive situation |
5.3. |
OPV progress to commercialisation 2000-2040 |
5.4. |
Sunew |
5.5. |
Heliatek |
5.6. |
Opvius and Armor |
5.7. |
Device architecture and Sigma Aldrich materials |
5.8. |
Materials: Merck, DuPont Teijin |
5.9. |
What substrates to choose? |
5.10. |
Typical device architectures |
5.11. |
Film morphology and degradation control for bulk heterojunction |
5.12. |
R2R solution vs R2R evaporation |
5.13. |
Donor polymers |
5.14. |
Donor small molecules |
5.15. |
Typical acceptor materials |
5.16. |
Progress in solution processing |
5.17. |
Progress in tandem cell evaporation |
5.18. |
Solution processed 17.5% tandem OPV |
5.19. |
R2R solution vs R2R evaporation |
5.20. |
Major technical challenges with R2R |
5.21. |
Barrier/encapsulation challenge |
5.22. |
Transparent electrode |
5.23. |
Big advance 2018- 2020: non-fullerene acceptors NFA |
6. |
PEROVSKITE PV MATERIAL OPPORTUNITIES |
6.1. |
Overview |
6.2. |
Perovskite structure and device architecture |
6.3. |
Working principle |
6.4. |
Architectures |
6.5. |
Value propositions and roadmap to 2040 |
6.6. |
Perovskite materials |
6.7. |
Why perovskite is so efficient |
6.8. |
Efficiency versus transmission |
6.9. |
Roadmap to lead-free perovskite |
6.10. |
Improving life |
6.11. |
Flexible perovskite solar cells |
6.12. |
Deposition processes for perovskite films |
6.13. |
Perovskite module cost estimation |
6.14. |
Future perovskite PV system cost breakdown |
7. |
DUAL TECHNOLOGY, QUANTUM DOT, WILD CARD OPPORTUNITIES |
7.1. |
Dual technology photovoltaics |
7.2. |
Perovskite silicon tandem: record 25.2% efficiency |
7.3. |
Perovskite on CIGS |
7.4. |
Quantum dot |
7.5. |
Toxicity |
7.6. |
Wild cards: 2D materials, nantennas |
7.6.1. |
2D materials |
7.6.2. |
Rectenna nantenna-diode |
8. |
CONDUCTIVE PASTES IN PHOTOVOLTAICS |
8.1. |
Overview |
8.2. |
Firing |
8.3. |
Major cost drivers for photovoltaics |
8.4. |
Reducing silver content per wafer: industry consensus |
8.5. |
Expected market share: plating and screen printing of electrodes |
8.6. |
Photovoltaics: roadmap towards ever thinner wafers |
8.7. |
Photovoltaics market share forecast for different metallization technologies |
8.8. |
Silicon inks: made redundant before seeing daylight? |
8.9. |
Copper metallization in solar cells |
8.10. |
Silver nanoparticles adopted for thin film photovoltaics? |
8.11. |
PV and heater: digital printing comes of age? |
9. |
BARRIER LAYERS FOR PHOTOVOLTAICS |
9.1. |
Why barriers and encapsulation? |
9.2. |
Barrier performance requirements (permeation rates) |
9.3. |
Barrier requirements: towards flexibility and rollability |
9.4. |
Plastic substrates are a challenge |
9.5. |
The basis of the multi-layer approach |
9.6. |
Status of R2R barrier films in performance, web width and readiness/scale |
9.7. |
Challenges of R2R barrier film production |
9.8. |
From glass to multi-layer films to multi-layer inline thin film encapsulation |
9.9. |
Trends in TFE: Past, present and future of deposition |
9.10. |
Benchmarking different barrier solutions |
9.11. |
Evolution of production parameters to enable multi-layer barrier cost reduction |
9.12. |
Flexible CIGS: market forecast sqm and value by barrier technology |
ページTOPに戻る
Summary
このレポートは太陽光発電と素材の市場を調査し、2040年までの市場予測、ロードマップ、価格感度、市場のギャップや用途のヒエラルキーについて分析、言及しています。
主な掲載内容 ※目次より抜粋
-
エグゼクティブサマリー
-
イントロダクション
-
無機化合物半導体 LLL-V PV素材の市場機会
-
CIGSの市場機会
-
有機PV素材の市場機会
-
ペロブスカイトPV素材の市場機会
-
デュアル技術、量子ドット、ワイルドカードの市場機会
-
PVにおける導電性ペースト
-
PVにおけるバリア層
Report Details
New IDTechEx report, "Materials Opportunities in Emerging Photovoltaics 2020-2040" is based on interviews by multi-lingual, PhD level IDTechEx analysts across the world and 20 years tracking the research and applications. Nearly $40 billion dollars envisaged in 2040 without colliding with commoditised silicon-in-glass "power station" business. Much premium-pricing of specialist materials.
See why profit from emerging PV will be disproportionately high - up to half the profit from all PV in 2040. Learn why over $10,000/W is currently paid for record 30% efficient lll-V compound PV in a designer watch, as an array on a satellite or surface of a high-altitude drone and lll-V is the basis of Toyota's solar car development. Tripled-efficiency indoor "lll-V" PV is newly on sale. Organic PV has jumped in efficiency, adding other uniques for other segments. Understand how copper-indium-gallium-diselenide PV created $2 billion yearly sales in only ten years. Further stellar growth powered by what improved materials?
Most emerging PV is thin film, flexible and some will be stretchable materials. Tightly-rollable PV in your mobile phone, aircraft skin, billions of Internet of Things nodes? Hundreds of millions more building facades need lightweight PV. What three technologies for PV paint? Retrofit on windows, boats, buses?
Whisper it quietly, but with silicon near its theoretical limits and taking massive areas of real estate - often prime agricultural land and lakes - emerging PV will eventually compete with some "power station" silicon by affordably providing the power in half the area and therefore being much more widely deployable and environmentally acceptable but this report is mainly about the huge opportunities in the run up to that.
The 212 page IDTechEx report, "Materials Opportunities in Emerging Photovoltaics" has executive summary and conclusions sufficient for busy people. Absorb 18 primary conclusions, 2020-2040 forecasts, roadmaps, price sensitivity, learning curves projected forward, gaps in the market, the application hierarchy. The introduction reveals the amazing virtuosity of PV already, important parameters, SOFT report, PV architectures, efficiency trends. New infograms compare PV options beyond silicon, production readiness, 13 examples of new formats/ locations, progress to user-customised PV materials, PV combinations.
Chapter 3 dives into inorganic compound semiconductor lll-V PV architectures, material advances of Boeing Spectrolab, the Russians, Lightricity, Sharp-Toyota and cost-reduction routes to volume lll-V sales researched by NREL. Chapter 4 concerns copper-indium-gallium-diselenide CIGS opportunities including cost reduction research, efficiency increase, elimination of cadmium. See activities of Ascent Solar, Flisom-EMPA, Manz, Renovagen, Solar Frontier and others. Chapter 5 on organic OPV materials opportunities reveals recently-transformed competitive situations, rapid efficiency and life potential, Armor-Opvius, Heliatek, materials suppliers, gaps in the market. Understand new molecule choices, fullerene elimination and special OPV barrier-layers.
Chapter 6 is a sober look at the now-fashionable perovskite PV balancing stellar efficiency gains with challenges in stability and use of lead. What is being done about it? Chapter 7 wraps up the basic chemistry options with dual technology such as perovskite on silicon or CIGS then wild card PV materials opportunities. Here are quantum dot toxicity issues, rectenna-array harvesting and 2D PV materials. Chapters 8 and 9 are a close analysis of the conductive pastes and barrier layers opportunity overall.
ページTOPに戻る
Table of Contents
Table of Contents
1. |
EXECUTIVE SUMMARY |
1.1. |
Purpose of this report |
1.2. |
Two worlds |
1.3. |
Anatomy of the photovoltaic business 2020-2040 |
1.4. |
Primary conclusions: photovoltaics top ten manufacturers chemistry |
1.5. |
Primary conclusions: price-volume sensitivity by application |
1.6. |
Primary conclusions: cost progression 1976-2040 |
1.7. |
Primary conclusions: thin film PV market |
1.8. |
Primary conclusions: cadmium telluride |
1.9. |
Primary conclusions: geographic PV materials demand |
1.10. |
CIGS PV forecasts |
1.10.1. |
Global output of thin film CIGS photovoltaics $M and MWp 2000-2018 |
1.10.2. |
Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040 |
1.11. |
Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040 |
1.12. |
Global market for perovskite PV $M |
1.13. |
Global market for OPV $M |
2. |
INTRODUCTION |
2.1. |
Overview: amazing virtuosity |
2.1.1. |
Extreme vehicles and weak light create new markets |
2.1.2. |
Photovoltaic cooking without batteries |
2.2. |
The energy positive house |
2.3. |
Ever larger solar farms |
2.4. |
Solar cars: Hyundai, Tesla |
2.5. |
Winning electromagnetic frequencies |
2.6. |
SOFT report on photovoltaics |
2.7. |
Some of the important parameters |
2.8. |
Single crystal scSi vs polycrystal pSi vs amorphous |
2.9. |
Amorphous silicon |
2.10. |
Big picture: wafer vs thin film photovoltaics 2020-2040 |
2.11. |
PV mechanisms: status, benefits, challenges, market potential compared |
2.11.1. |
Five mechanisms compared |
2.11.2. |
Best research-cell efficiencies assessed 1975-2020 |
2.12. |
Important PV options beyond silicon compared |
2.13. |
Thirteen new photovoltaic formats creating materials markets |
2.14. |
Photovoltaics progresses to become paint and user material |
2.15. |
Solar piazzas, driveways, roads: Platio Hungary |
2.16. |
MEMS PV |
2.17. |
Transparent, indoor and underwater PV materials needed |
2.18. |
Materials opportunities from integration with other harvesting materials |
2.18.1. |
Triboelectric TENG with other harvesting: experimental |
2.18.2. |
Integration in smart watches |
3. |
INORGANIC COMPOUND SEMICONDUCTOR LLL-V PV MATERIAL OPPORTUNITIES |
3.1. |
Overview |
3.2. |
Toxicity |
3.3. |
Space program: IOFFE Institute, ITMO University |
3.4. |
Boeing Spectrolab |
3.5. |
NREL |
3.6. |
Costs and prices can be greatly reduced |
3.7. |
Indoors: Lightricity |
3.8. |
Solar vehicle technologies compared: Sono, Lightyear, Toyota with lll-lV |
3.8.1. |
Solar vehicle chemistry |
3.8.2. |
Solar vehicle format |
4. |
COPPER INDIUM GALLIUM DISELENIDE CIGS OPPORTUNITIES |
4.1. |
Overview |
4.2. |
Operating principle |
4.3. |
CIGS photovoltaics processes: Sunflare, Flisom, EMPA, Manz, Solar Frontier |
4.4. |
CIGS production, materials, routes to non toxic |
4.5. |
Avoiding ITO |
4.6. |
Ascent Solar |
4.7. |
Better polymer substrate process: KIER |
4.8. |
Renovagen: high power PV like a carpet roll |
4.9. |
Manz |
4.10. |
Flisom customizable flexible |
4.11. |
Other CIGS PV in action on vehicles |
4.12. |
Market leader Solar Frontier |
4.13. |
Sunflare: specialist niches |
5. |
ORGANIC OPV MATERIALS OPPORTUNITIES |
5.1. |
Overview |
5.2. |
Competitive situation |
5.3. |
OPV progress to commercialisation 2000-2040 |
5.4. |
Sunew |
5.5. |
Heliatek |
5.6. |
Opvius and Armor |
5.7. |
Device architecture and Sigma Aldrich materials |
5.8. |
Materials: Merck, DuPont Teijin |
5.9. |
What substrates to choose? |
5.10. |
Typical device architectures |
5.11. |
Film morphology and degradation control for bulk heterojunction |
5.12. |
R2R solution vs R2R evaporation |
5.13. |
Donor polymers |
5.14. |
Donor small molecules |
5.15. |
Typical acceptor materials |
5.16. |
Progress in solution processing |
5.17. |
Progress in tandem cell evaporation |
5.18. |
Solution processed 17.5% tandem OPV |
5.19. |
R2R solution vs R2R evaporation |
5.20. |
Major technical challenges with R2R |
5.21. |
Barrier/encapsulation challenge |
5.22. |
Transparent electrode |
5.23. |
Big advance 2018- 2020: non-fullerene acceptors NFA |
6. |
PEROVSKITE PV MATERIAL OPPORTUNITIES |
6.1. |
Overview |
6.2. |
Perovskite structure and device architecture |
6.3. |
Working principle |
6.4. |
Architectures |
6.5. |
Value propositions and roadmap to 2040 |
6.6. |
Perovskite materials |
6.7. |
Why perovskite is so efficient |
6.8. |
Efficiency versus transmission |
6.9. |
Roadmap to lead-free perovskite |
6.10. |
Improving life |
6.11. |
Flexible perovskite solar cells |
6.12. |
Deposition processes for perovskite films |
6.13. |
Perovskite module cost estimation |
6.14. |
Future perovskite PV system cost breakdown |
7. |
DUAL TECHNOLOGY, QUANTUM DOT, WILD CARD OPPORTUNITIES |
7.1. |
Dual technology photovoltaics |
7.2. |
Perovskite silicon tandem: record 25.2% efficiency |
7.3. |
Perovskite on CIGS |
7.4. |
Quantum dot |
7.5. |
Toxicity |
7.6. |
Wild cards: 2D materials, nantennas |
7.6.1. |
2D materials |
7.6.2. |
Rectenna nantenna-diode |
8. |
CONDUCTIVE PASTES IN PHOTOVOLTAICS |
8.1. |
Overview |
8.2. |
Firing |
8.3. |
Major cost drivers for photovoltaics |
8.4. |
Reducing silver content per wafer: industry consensus |
8.5. |
Expected market share: plating and screen printing of electrodes |
8.6. |
Photovoltaics: roadmap towards ever thinner wafers |
8.7. |
Photovoltaics market share forecast for different metallization technologies |
8.8. |
Silicon inks: made redundant before seeing daylight? |
8.9. |
Copper metallization in solar cells |
8.10. |
Silver nanoparticles adopted for thin film photovoltaics? |
8.11. |
PV and heater: digital printing comes of age? |
9. |
BARRIER LAYERS FOR PHOTOVOLTAICS |
9.1. |
Why barriers and encapsulation? |
9.2. |
Barrier performance requirements (permeation rates) |
9.3. |
Barrier requirements: towards flexibility and rollability |
9.4. |
Plastic substrates are a challenge |
9.5. |
The basis of the multi-layer approach |
9.6. |
Status of R2R barrier films in performance, web width and readiness/scale |
9.7. |
Challenges of R2R barrier film production |
9.8. |
From glass to multi-layer films to multi-layer inline thin film encapsulation |
9.9. |
Trends in TFE: Past, present and future of deposition |
9.10. |
Benchmarking different barrier solutions |
9.11. |
Evolution of production parameters to enable multi-layer barrier cost reduction |
9.12. |
Flexible CIGS: market forecast sqm and value by barrier technology |
ページTOPに戻る
本レポートと同分野(宇宙・防衛)の最新刊レポート
- ロケット・ミサイル市場:製品別(ミサイル、ロケット砲、魚雷)、速度別(亜音速、超音速、極超音速)、推進方式別(固体、液体、ハイブリッド、ラムジェット、ターボジェット)、発射方式別、誘導方式別、地域別 - 2029年までの世界予測
- 地表レーダー市場:プラットフォーム別(重要インフラ、車両搭載、船舶搭載、無人地表車両)、用途別(監視、防空、周辺警備、戦場ISR)、周波数帯別、寸法別 - 2029年までの世界予測
- 船舶タイプ別(駆逐艦、フリゲート、コルベット、哨戒艦、旅客船、コンテナ船、タンカー)、トン数別(100~500DWT、500~5,000DWT、5,000~15,000DWT、15,000DWT超)、オペレーション別、地域別 - 2030年までの世界予測
- 軍用プラットフォーム市場:プラットフォームタイプ別(軍用機、軍用船舶、軍用車両)、技術別(従来型、次世代)、エンドユーザー別(陸軍、海軍、空軍) - 2030年までの世界予測
- 航空機ナセル部品の世界市場規模、シェア、動向、機会、予測、航空機タイプ別(ナローボディ機、ワイドボディ機、超大型機、ビジネスジェット機、軍用機)、部品タイプ別(インレットカウル、ファンカウル、推力反転装置、排気部品、その他)、材料タイプ別(複合材料、ニッケル合金、チタン、その他)、地域別・競合別セグメント、2019-2029F
- 再使用型衛星打上げロケット市場の世界産業規模、シェア、動向、機会、予測、軌道タイプ別(地球低軌道(LEO)、静止遷移軌道(GTO)、その他)、ペイロード別(5,000kgまで、5,000kg~10,000kg、10,000kg超)、地域別、競争別セグメント、2019~2029F
- 航空機給油市場の世界産業規模、シェア、動向、機会、予測、コンポーネント別(航空リフューラー、ディスペンサー、給油ポッド、プローブ&ドローグ、その他)、航空機タイプ別(民間航空機、軍用航空機、ヘリコプター)、地域別&競合別セグメント、2019-2029F
- 航空機用ナット市場の世界産業規模、シェア、動向、機会、予測、材料別(アルミニウム、スチール、チタン、その他)、用途別(民間航空機、軍用航空機、一般航空機)、地域別セグメント&競合、2019-2029F
- 航空ベース防衛装備品市場の世界産業規模、シェア、動向、機会、予測、タイプ別(戦闘機、軍用ヘリコプター、軍用グライダー、ドローン)、運用別(自律型航空ベース防衛装備品、手動型)、コンポーネント別(武器システム、射撃統制システム、指揮統制システム)、地域別・競合別セグメント、2019-2029F
- Underwater Drone Market Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type (Remotely Operated Vehicle (ROV), Autonomous Underwater Vehicle (AUV), Hybrid Vehicles), By Application (Defense and Security, Scientific Research, Commercial Exploration, Others), By Propulsion System (Electric System, Mechanical System, Hybrid System), By Region & Competition, 2019-2029F
IDTechEx社の半導体、コンピュータ、AI - Semiconductors, Computing, AI分野での最新刊レポート
本レポートと同じKEY WORD(太陽光発電)の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
IDTechEx社はどのような調査会社ですか?
IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|