世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Quantum Communication Market 2024-2034: Technology, Trends, Players, Forecasts


量子通信市場2024-2034:技術、動向、プレイヤー、予測

この調査レポートでは、2024年から2034年までの量子通信市場を包括的について詳細に調査・分析しています。主要な量子通信技術の概要や、データセキュリティに対する新たな量子コンピューティングの脅威も含ま... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2024年1月10日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
143 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。


 

Summary

この調査レポートでは、2024年から2034年までの量子通信市場を包括的について詳細に調査・分析しています。主要な量子通信技術の概要や、データセキュリティに対する新たな量子コンピューティングの脅威も含まれています。
 
主な掲載内容(目次より抜粋)
  • 量子暗号(PQC)
  • 量子乱数生成器(QRNG)
  • 量子鍵配送(QKD)
  • 量子ネットワーク
  • 市場予測
  • 会社概要
 
Report Summary
Quantum communications technology upgrades are essential to protect our high value data
This report comprehensively overviews the quantum communication market. This includes an overview of key quantum communication technology, and the emerging quantum computing threat to data security. This report overviews solutions offered by quantum random number generators (QRNG) and quantum key distribution (QKD). There is coverage of global trends in the quantum communication hardware market, including comparison with software based post-quantum cryptography (PQC). This comprehensive study includes over 25 company profiles, and market forecasts for 2024-2034. The quantum communications market is predicted to grow significantly, with a CAGR of 28%.
 
Quantum communications technology seeks to improve data security, which is increasingly compromised in the modern world. The world is generating higher and higher volumes of data, with increasing concerns about its sensitivity. Meanwhile, bad actors are committing more advanced cybercrimes - keen to exploit the value of virtually shared trade secrets, financial data, health records and more. Moreover, the scaling up of quantum computing threatens to undermine existing cryptography methods entirely - leaving a gap in the market for new 'quantum-ready' technology solutions able to meet the next generation of encryption needs. This quantum communication market report simplifies this complex technology into accessible to read terms and separates the hype from the reality as to its disruptive potential.
 
The first wave of technology to disrupt the communications market is post quantum cryptography. This mathematical approach to increasing security will require mass software system upgrades, but not necessarily dedicated hardware. Pressure is growing to raise awareness to all businesses about the need for crypto-agility, and the market for dedicated quantum ready platforms for network managers is already growing.
 
However, mathematical approaches are constantly under pressure to evolve against new threats - and a software only solution is already insufficient for the most highly sensitive data transfers. Hardware solutions such as quantum key distribution (QKD) are thought to be amongst the few which can probably remain robust to any eavesdropping. This specialized optical technology has been developed for installation within optical fiber networks, leveraging the phenomena of entanglement and no-cloning in a revolutionary new approach to telecommunications. This report contextualizes QKD within the larger cryptography industry shifts, and identifies the key technology approaches and leading companies within the quantum communication market. This includes a specific focus on QKD integration into quantum networks - with global case-studies and updates from China, Europe, the US, UK and Japan.
 
A key component of QKD is a better random number generator for more secure key generation. Yet these quantum random number generations (QRNGs), have applications beyond just state of the art quantum networks. QRNGs have already been incorporated into some smart-phones, and have been adopted by the gambling and gaming industry. This report analyses the competitive landscape of the QRNG market and appraises the future outlook for this technology at both the PCIe and chip-scale.
 
 
Key Aspects of the Quantum Communication Market Report
This report provides critical market intelligence about quantum communication market This includes:
 
A review of the context and motivation for quantum communications technology
  • Overview of the threat to existing data security methods and cryptography vulnerabilities
  • Breakdown of the threat to data security posed by quantum computers.
  • General overview of post quantum cryptography (PQC)
  • Overall look at hardware sectors within the quantum communication market including quantum random number generators (QRNG) and quantum key distribution (QKD)
  • Update on the progress of quantum network implementation on in key geographies, including case studies from China, Europe, US, UK and Japan with key commercial partners identified.
 
Full market characterization for Quantum Random Number Generators and Quantum Key Distribution within the quantum communication market
  • Details of the principle of operation of both QRNG and QKD and associated supply chain considerations regarding light-sources and single photon detectors.
  • Review of the QRNG landscape, including comparison with incumbent pseudo random number generators (PRNG) and classical true random number generators (TRNG).
  • Comparison of hardware approaches and key performance metrics achieved by players developing optical QRNG, including established players and start-ups. Overview of differentials and challenges offered by non-optical approaches including tunnelling and beta-decay.
  • The growth of QRNG adoption for higher quality entropy sources, and applications in cryptography as well as gambling, gaming and Monte Carlo simulations.
  • Review of the QKD landscape and comparison with algorithmic approaches as well as PQC and DHE.
  • Update and outlook on the commercial market for quantum networks both terrestrial and space-based.
 
Market analysis throughout
  • Reviews of quantum communications market players throughout, including those in PQC, QRNG and QKD as well as quantum computing, with company profiles from over 25 companies.
  • Market forecasts from 2024-2034 covering QRNG and QKD, focusing on the commercial outlook.

 



ページTOPに戻る


Table of Contents

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(ロボット)の最新刊レポート

本レポートと同じKEY WORD(QRNG)の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



1. EXECUTIVE SUMMARY
1.1. The quantum communication market 'at a glance'
1.2. The quantum threat to data security
1.3. The quantum solution to data security
1.4. 'Hack Now Decrypt Later' (HNDL) and preparing for Q-Day/ Y2Q
1.5. What is the main value proposition of QRNG compared to incumbents?
1.6. Key players developing QRNG products segmented by hardware approach
1.7. Applications of quantum random number generators (QRNG)
1.8. The basic principle of QKD uses 'observation' effects to identify eavesdroppers
1.9. Overview of key players developing QKD technology (1)
1.10. Overview of key players developing QKD technology (2)
1.11. What is a quantum network?
1.12. China - the first to realize large scale quantum networks
1.13. China - focus now on quantum memories and metropolitan networks
1.14. Europe - a coordinated effort to build up quantum networking capacity within and between across all 27 member states
1.15. US - NSA and NIST focused on PQC solutions to network security
1.16. Trusted nodes incorporating quantum computers have significant infrastructure needs
1.17. Pain points for incumbent platform solutions
1.18. National focus on eco-system building could delay market growth globally
1.19. Shortage of quantum talent is a challenge for the industry
2. INTRODUCTION
2.1. Introduction to quantum communications
2.2. The quantum sensor market 'at a glance'
2.3. Why now for quantum technologies?
2.4. Despite the hype around quantum computing, quantum communications remains as important a national priority
2.5. Is the quantum computing threat realistic? (1)
2.6. Is the quantum computing threat realistic? (2)
2.7. 'Hack Now Decrypt Later' (HNDL) and preparing for Q-Day/ Y2Q
3. INTRODUCTION POST QUANTUM CRYPTOGRAPHY (PQC)
3.1. Introduction to Post Quantum Cryptography (PQC)
3.2. Cybercrime incidents are rising in frequency and cost - driving engagement with PQC solutions
3.3. Cryptographic transitions are slow, and engagement with PQC is encouraged now
3.4. Types of cryptography
3.5. NIST taking a lead rule in PQC standardization
3.6. The market for crypto-agility and encryption management tools is growing
3.7. Is there a case for backdoors into encryption?
3.8. SWOT Analysis of PQC
4. QUANTUM RANDOM NUMBER GENERATORS (QRNG)
4.1. Overview
4.1.1. QRNG: chapter overview
4.2. Introduction to incumbent RNG technology
4.2.1. Introduction to entropy-sources and true-randomness
4.2.2. Distinguishing statistical randomness tests from true randomness
4.2.3. Overview of the established market for classical hardware random number generators, or true random number generators (TRNGs)
4.2.4. Hardware RNG in today's electronics is largely within a 'trusted platform module' TPM
4.2.5. What is the main value proposition of QRNG compared to incumbents?
4.3. Overview of QRNG technology and key players
4.3.1. Key players developing QRNG products segmented by hardware approach
4.3.2. Principle of operation of optical QRNG technology
4.3.3. What are the main form-factor approaches to creating optical QRNG?
4.3.4. Overview of technology differentiators for optical QRNG (segmented by company)
4.3.5. Why is there potentially a gap in the market for non-optical approaches to QRNG technology?
4.3.6. SWOT analysis of quantum random number generator technology
4.4. Key applications, market opportunities and challenges for QRNG
4.4.1. How are NIST standards impacting the QRNG market?
4.4.2. QRNG Application Case Studies: Encryption for Data Centers (1)
4.4.3. QRNG Application Case Studies: Encryption for Data Centers (2)
4.4.4. QRNG Application Case Studies: Consumer Electronics (Smart Phones)
4.4.5. QRNG Application Case Studies: Automotive/Connected Vehicle
4.4.6. The Connected Vehicle Supply Chain
4.4.7. QRNG Application Case Studies: Gambling and Gaming
4.4.8. QRNG Applications Case Study: Monte Carlo Simulations
4.4.9. Entropy vs. SWAP-C in the RNG/QRNG hardware market
4.4.10. Quantum random number generators: conclusions and outlook
5. QUANTUM KEY DISTRIBUTION (QKD)
5.1. Overview
5.1.1. QKD: chapter overview
5.2. Introduction to cryptographic keys and the security threat from quantum computing
5.2.1. Introduction to the role of keys and ciphers in data security
5.2.2. What is the difference between asymmetric and symmetric keys?
5.2.3. Overview of RSA encryption steps
5.2.4. How is quantum already impacting the future of encryption?
5.2.5. How could quantum computers accelerate large number factorization - and put RSA at risk? (1)
5.2.6. How could quantum computers accelerate large number factorization - and put RSA at risk? (2)
5.2.7. 'Hack Now Decrypt Later' (HNDL) and preparing for Q-Day/ Y2Q
5.3. Overview of QKD technology and key players
5.3.1. The basic principle of QKD uses 'observation' effects to identify eavesdroppers
5.3.2. An introduction to measuring single-qubit states
5.3.3. How can polarization and qubit states be used to securely distribute keys and the BB84 Protocol (1)
5.3.4. How can polarization and qubit states be used to securely distribute keys and the BB84 Protocol (2)
5.3.5. Why is QKD more secure than other key exchange mechanisms?
5.3.6. Discrete Variable vs. Continuous Variable QKD Protocols
5.3.7. Overview of key players developing QKD technology (1)
5.3.8. Overview of key players developing QKD technology (2)
5.3.9. QKD hardware is competing with a well established, cost-effective method software approach to key exchange
5.3.10. Chip-Scale QKD efforts will benefit from the growth of the PIC industry (1)
5.3.11. Chip-Scale QKD efforts will benefit from the growth of the PIC industry (2)
5.3.12. SWOT analysis of quantum key distribution technology
5.3.13. Quantum key distribution: conclusions and outlook
6. QUANTUM NETWORKS
6.1. Overview
6.1.1. Quantum Networks: chapter overview
6.2. Introduction to quantum networks and components
6.2.1. What is a quantum network?
6.2.2. The role of trusted nodes and trusted relays
6.2.3. Entanglement swapping and optical switches
6.2.4. Moving away from dark-fiber, and multiplexing with the O-Band
6.2.5. Twin-Field QKD
6.2.6. Space based quantum networks
6.2.7. An opportunity for better optical fiber and interconnects
6.2.8. Avalanche Photo Detectors (APD)
6.2.9. Single-photon avalanche diodes
6.2.10. Silicon photomultiplier
6.2.11. Comparison of common photodetectors
6.2.12. Major single photo-detector players focusing on LIDAR may seek to expand into quantum communications
6.3. Key players and case studies
詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/21 10:26

156.13 円

165.08 円

200.38 円

ページTOPに戻る