世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

量子コンピューティング市場2025-2045:技術、動向、プレイヤー、予測


Quantum Computing Market 2025-2045: Technology, Trends, Players, Forecasts

IDTechExのレポート「量子コンピューティング市場 2025-2045年」は、世界の未解決の課題を解決する画期的なアプローチを約束するハードウェアを対象としています。量子コンピューティング市場は、指数関数的に... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2024年11月26日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
327 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。

日本語のページは自動翻訳を利用し作成しています。


 

サマリー

IDTechExのレポート「量子コンピューティング市場 2025-2045年」は、世界の未解決の課題を解決する画期的なアプローチを約束するハードウェアを対象としています。量子コンピューティング市場は、指数関数的に速い創薬、電池化学の開発、多変量ロジスティクス、自動車の自律性、正確な資産価格設定などを可能にするとされている。本レポートでは、企業へのインタビューや複数のカンファレンスへの出席を含む広範な一次調査および二次調査をもとに、競合する量子コンピューティング技術(超伝導、シリコン・スピン、フォトニック、トラップドイオン、中性原子、トポロジカル、ダイヤモンド欠陥、アニーリング)を詳細に評価している。量子コンピュータの利用可能な総市場は、時間の経過とともに進歩する機能とクラウドアクセスビジネスモデルを考慮し、ハードウェアの売上高に換算される。量子コンピューティング市場は、2045年までに100億米ドルを超え、年平均成長率は30%と予測されている。
 
 
量子コンピューティング市場におけるこれらの競合技術は、量子ビット数、コヒーレンス時間、忠実度などの主要ベンチマークによって比較される。量子ビットの初期化、操作、読み出しに必要なハードウェアを含め、コンピュータシステム全体のスケーラビリティを評価する。その結果、2025年から2045年までの20年間の市場予測が得られた。この成長を牽引するのは、製薬、化学、航空宇宙、金融機関などでの早期導入であり、コロケーション・データセンターやプライベート・ネットワークへの量子コンピュータの導入が増加する。売上と台数の予測は、対象となる方法論ごとに8つの予測ラインに分かれている。各手法を利用した量子コンピュータの立ち上げ数や、達成された量子ビットのマイルストーンに関する過去のデータも含まれている。
 
本レポートでお答えする主な質問は以下の通りです:
  • 量子コンピュータとは何か?
  • 量子コンピュータのベンチマークはどのように行われているのか?主要プレーヤーと競合する量子コンピューティング技術の現状と将来は?
  • 量子コンピュータハードウェアの商業的可能性はどのように評価されるのか?
  • 競合する量子コンピューティング技術にはどのようなものがあり、それらはどのように動作し、量子ビットと読み出しシステムの両方にとってどのような機会と課題があるのか?
  • 冷却システムや熱管理など、量子コンピュータの基盤となるプラットフォームやインフラの必要性は?
  • 量子コンピュータ・ハードウェアの収益見通しは?
  • 短期、中期、長期的に市場はどのように進化していくのか。また、商業的価値とオンプレミス所有の分岐点はいつになるのか。
 
量子コンピューターの論理的な時代の到来
過去10年間で、量子コンピュータ・ハードウェアを積極的に開発している企業の数は4倍に増えた。2022年から2024年にかけて、1億米ドルを超える複数の資金調達ラウンドが終了し、研究室ベースのおもちゃから商用製品への移行が始まっている。企業間だけでなく、量子コンピューター技術間の競争も激化している。今日の焦点は、論理的、つまりエラー訂正された量子ビットの必要性である。これからの課題は、ハードウェアの規模を拡大し、量子ビットの数を増やしながら、エラーやインフラ需要を減らすことである。
 
 
すべてのシステムが量子ビット(古典的なビットに相当する量子ビット)の使用に依存している一方で、その作成に利用可能なアーキテクチャは大きく異なる。IBMの超伝導量子ビットは、大型のクライオスタットに格納され、深宇宙よりも低温に冷却されている。実際、超伝導量子コンピューターは2023年に1000量子ビットを突破し、クラウド経由でより小さなシステムにアクセスできるようになり、企業が問題を試せるようになった。しかし、創薬のような最も価値の高い問題には、もっと多くの量子ビットが必要であり、おそらく数百万以上必要であるというのが多くの意見である。そのため、超伝導設計に代わる、より本質的なスケーラビリティを提案するものが投資を受けている。現在、100万量子ビットのマイルストーンに到達するために、8つ以上の技術アプローチが有意義な競争を繰り広げている。
 
細分化された状況の中で競合する量子コンピューター技術が数多く存在する中、どのアプローチが優勢になりそうかを見極めることは、このエキサイティングな産業におけるビジネスチャンスを見極める上で不可欠である。IDTechExは、量子コンピュータの商用化準備レベルの社内フレームワークを使用して、量子コンピュータのハードウェアが古典的な前身と比較してどの程度進歩しているかを測定している。さらに、量子コンピューティングに関する最初の誇大宣伝が冷め始めると、投資家は、商業的に関連するアルゴリズムにおける量子の優位性など、実用的な利点を実証することをますます求めるようになる。そのため、ハードウェア開発者は、量子ビットの質と量だけでなく、初期化、操作、読み出しシステム全体を示す必要がある。製造スケーラビリティの向上と冷却要件の低減も重要であり、特殊な材料や冷却システムなどのインフラを提供する方法論にとらわれないプロバイダーにチャンスが生まれるでしょう。本レポートでは、量子コンピューティング分野と競合する量子コンピューティング技術の両方を評価することで、この変革の可能性を秘めた技術がもたらすビジネスチャンスについて考察している。
 
主な内容
本レポートは以下の情報を提供します:
  • 量子技術の知識の有無にかかわらず、量子コンピューティング分野の包括的な紹介
  • 様々なビジネスモデルやクラウドサービスの役割など、量子コンピューティングの商業的展望がどのように発展していくかを評価。
  • 異なる量子コンピューティング技術を比較するためのベンチマークツール一式。
  • 主な競合する量子コンピュータ技術の違いを説明。それぞれ、技術的な詳細、動作原理、主要企業、SWOT分析、ベンチマーク、具体的な材料要件などをカバーしています。超伝導、フォトニック、シリコンスピン、中性原子、トラップドイオンの各プラットフォームに加え、アニーラーやダイヤモンド欠陥などの代替技術についても解説。
  • 50社以上の主要企業の概要と、設立年、達成した量子ビット数(および予測)の履歴データ。
  • IDTechExポータルで入手可能な30以上の企業プロフィール
  • 冷却と熱管理を含む量子コンピューティングに必要なインフラの概要。
  • 量子コンピューティング業界における収益創出の見通しについて、誇大広告や資金調達の動向と技術準備や対応可能な市場とのバランスを取りながら、公平な評価を行っています。
  • 量子コンピューティング技術別に細分化した20年予測
 
市場予測と分析
  • 量子コンピュータ・ハードウェアの20年間の市場予測(販売台数および売上高)。超伝導、フォトニック、トラップドイオン、中性原子、シリコンスピン、トポロジカル、ダイヤモンド欠陥、アニーラーを含む8つの異なる技術カテゴリーについて個別の予測ラインが用意されています。
  • 量子コンピュータの普及に関するメタトレンドの60年予測では、実現された汎用コンピュータの地平を超え、大衆市場への普及を見据えている。

 



 

ページTOPに戻る


 

Summary

この調査レポートでは、企業へのインタビューや複数のカンファレンスへの出席を含む広範な一次調査および二次調査をもとに、競合する量子コンピューティング技術(超伝導、シリコン・スピン、フォトニック、トラップドイオン、中性原子、トポロジカル、ダイヤモンド欠陥、アニーリング)を詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 量子コンピュータ入門
  • 量子ハードウェアのベンチマーク
  • 市場予測
  • 競合する量子コンピューターアーキテクチャ
  • 量子コンピューターのインフラ
  • 量子コンピューターの自動車と金融への応用
  • 量子材料
  • 企業プロファイル
 
Report Summary
IDTechEx's report 'Quantum Computing Market 2025-2045' covers the hardware that promises a revolutionary approach to solving the world's unmet challenges. The quantum computing market is pitched as enabling exponentially faster drug discovery, battery chemistry development, multi-variable logistics, vehicle autonomy, accurate asset pricing, and much more. Drawing on extensive primary and secondary research, including interviews with companies and attendance at multiple conferences, this report provides an in-depth evaluation of the competing quantum computing technologies: superconducting, silicon-spin, photonic, trapped-ion, neutral-atom, topological, diamond-defect and annealing. The total addressable market for quantum computer use is converted to hardware sales over time, accounting for advancing capabilities and the cloud access business model. The quantum computing market is forecast to surpass US$10B by 2045 with a CAGR of 30%.
 
These competing technologies in the quantum computing market are compared by key benchmarks including qubit number, coherence time and fidelity. The scalability of whole computer systems is appraised - incorporating hardware needs for qubits initialisation, manipulation, and readout. This results in a twenty-year market forecast covering 2025-2045. This growth will be driven by early adopters in pharmaceutical, chemical, aerospace, and finance institutions, leading to increased installation of quantum computers into colocation data centres and private networks alike. Revenue and volume forecasts are split into eight forecast lines for each methodology covered. Historic data on the number of quantum computer start-ups utilizing each methodology, and the qubit milestones achieved, are also included.
 
Key questions answered in this report include:
  • What is quantum computing and what is the state of the industry?
  • How is quantum computing benchmarked? What is the current and future status of the key players and competing quantum computing technologies?
  • How can the commercial potential of quantum computer hardware be assessed?
  • What are the competing quantum computing technologies, how do they work and what are the opportunities and challenges for both qubits and readout systems?
  • What are the underlying platforms and infrastructure needs of quantum computers, such as cooling systems and thermal management?
  • What are the prospects for revenue generation from quantum computer hardware?
  • How will the market evolve both short, medium, and long term - and when are inflexion points for commercial value and on-premises ownership anticipated?
 
A logical era for Quantum Computers ahead
In the last decade, the number of companies actively developing quantum computer hardware has quadrupled. Between 2022 and 2024 multiple funding rounds surpassing US$100 million have been closed, and the transition from lab-based toys to commercial product has begun. Competition is building not only between different companies but between quantum computing technologies. The focus today has intensified on the need for logical, or error-corrected qubits. The challenge ahead is to scale up hardware and increase qubit number, while reducing errors as well as infrastructure demand - no mean feat.
 
 
Whilst all systems depend on the use of qubits - the quantum equivalent to classical bits - the architectures available to create them vary substantially. Many are now familiar with IBM and their superconducting qubits - housed inside large cryostats and cooled to temperatures colder than deep space. Indeed, in 2023 superconducting quantum computers broke the 1000 qubit milestone - with smaller systems made accessible via the cloud for companies to trial out their problems. However, many agree that the highest value problems - such as drug discovery - need many more qubits, perhaps millions more. As such, alternatives to the superconducting design, many proposing more inherent scalability, have received investment. There are now more than eight technology approaches meaningfully competing to reach the million-qubit milestone.
 
With so many competing quantum computing technologies across a fragmented landscape, determining which approaches are likely to dominate is essential in identifying opportunities within this exciting industry. IDTechEx uses an in-house framework for quantum commercial readiness level to measure how quantum computer hardware is progressing in comparison with its classical predecessor. Furthermore, as the initial hype around quantum computing begins to cool, investors will increasingly demand demonstration of practical benefits, such as quantum supremacy for commercially relevant algorithms. As such, hardware developers need to show not only the quality and quantity of qubits but the entire initialization, manipulation, and readout systems. Improving manufacturing scalability and reducing cooling requirements are also important, which will create opportunities for methodology agnostic providers of infrastructure such as speciality materials and cooling systems. By evaluating both the sector and competing quantum computing technologies, this report provides insight into the opportunities provided by this potentially transformative technology.
 
Key aspects
This report provides the following information:
  • A comprehensive introduction to the quantum computing sector, accessible to those with and without a background in quantum technologies.
  • Evaluation of how the quantum computing commercial landscape will evolve, including different business models and the role of cloud services.
  • A set of benchmarking tools for comparing different quantum computing technologies, including those commonly adopted within the sector, and an additional method specifically developed for assessing commercial potential.
  • Explanation of the differences between the main competing quantum computer technologies. Each covers: technical details, operating principles, key companies, SWOT analysis, benchmarking, and specific material requirements. Technologies include superconducting, photonic, silicon-spin, neutral atom, and trapped ion platforms, plus a section on alternatives including annealers and diamond defects.
  • Overview of 50+ key companies with historical data on the year founded, qubit number achieved (and projected).
  • 30+ Company Profiles available on the IDTechEx portal
  • Overview of infrastructure requirements for quantum computing, including cooling and thermal management.
  • Unbiased appraisal of the prospects for revenue generation within the quantum computing industry, balancing hype and funding trends with technology readiness and addressable market.
  • Granular twenty-year forecasts, broken down by quantum computing technology.
 
Market Forecasts & Analysis:
  • 20-year market forecasts for quantum computer hardware by volume (i.e., number of systems sold) and revenue. Individual forecast lines are available for eight different technology categories including superconducting, photonic, trapped-ion, neutral atom, silicon spin, topological, diamond defect, and annealers.
  • 60-year projections for meta-trends for quantum computer adoption, going beyond the horizon of a realized versatile computer and looking ahead to mass-market adoption.


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Quantum Computing Market: Analyst Opinion
1.2. The race for quantum computing: an ultra-marathon not a sprint
1.3. Introduction to quantum computers
1.4. Quantum computer hardware sales could be a USD$10B by 2045, with a CAGR of 30%
1.5. Summary of applications for quantum computing
1.6. The number of companies commercializing quantum computers rapidly grew in the last 20 years
1.7. Investment in quantum computing is growing
1.8. The business model for quantum computing
1.9. Colocation data centers key partners for quantum hardware developers to reach more customers
1.10. Four major challenges for quantum hardware
1.11. Shortage of quantum talent is a challenge for the industry
1.12. Blueprint for a quantum computer: qubits, initialization, readout, manipulation
1.13. How is the industry benchmarked?
1.14. Competing quantum computer architectures: Summary table
1.15. Introduction to the IDTechEx Quantum Commercial Readiness Level (QCRL)
1.16. Predicting the tipping point for quantum computing
1.17. Demand for quantum computer hardware will lag user number
1.18. Comparing the physical qubit roadmap of major quantum hardware developers (chart)
1.19. Comparing the qubit roadmap of major quantum hardware developers (discussion)
1.20. Comparing characteristics of different quantum computer technologies
1.21. Summarizing the promises and challenges of leading quantum hardware
1.22. Summarizing the promises and challenges of leading quantum hardware
1.23. Entering the logical qubit era (1)
1.24. Comparing progress in logical qubit number scalability between key players/qubit modalities
1.25. Business Model Trends: Vertically Integrated vs. The Quantum 'Stack'
1.26. Infrastructure Trends: Modular vs. Single Core
1.27. Overviewing early adopters of on-premises quantum computers
1.28. China's tech giants change course away from quantum and towards AI
1.29. Big chip makers are advancing their quantum computing capabilities
1.30. Confidence in the potential of topological quantum computing is rising
1.31. Quantum and AI - ally or competitor?
1.32. IBM: Quantum roadmap update 2024
1.33. IQM release new roadmap promising quantum advantage by 2030
1.34. Quantinuum: winning the race for three 9s and an accelerated development roadmap
1.35. IonQ: Secures a $54.5M contract with the U.S. Air Force Research Lab and expands photonic capabilities
1.36. Oxford Ionics achieves record fidelities in the lab
1.37. Aegiq - offering versatility without a universal machine
1.38. PsiQuantum benefiting from over $1B in investment to build quantum computing data centers in Australia and the US (1)
1.39. Pasqal: reaching the 1000 qubit milestone in 2024 and planning for 10,000 by 2026
1.40. Infleqtion (Cold Quanta) achieve 'world's largest qubit array', and what to make it ten times bigger by 2030
1.41. Quantum Brilliance offer lower power quantum solutions for HPC integration in the NISQ era, and opportunities on the edge long term
1.42. D-Wave intensifies focus on increasing production application deployments
1.43. Energy consumption concerns continue to present challenges for next generation computing
1.44. 'NISQ is dead'
1.45. NATO announced first quantum strategy in 2024
1.46. The value proposition of quantum computing, and risk to security, remains a key driver for development
1.47. Main conclusions (I)
1.48. Main conclusions (II)
2. INTRODUCTION TO QUANTUM COMPUTING
2.1. Chapter overview
2.2. Sector overview
2.2.1. Introduction to quantum computers
2.2.2. Investment in quantum computing is growing
2.2.3. Government funding in the US, China, and Europe is driving the commercializing of quantum technologies
2.2.4. USA National Quantum Initiative aims to accelerate research and economic development
2.2.5. The UK National Quantum Technologies Program
2.2.6. Eleven quantum technology innovation hubs now established in Japan
2.2.7. Quantum in South Korea: ambitions to become a global leader in the 2030s
2.2.8. Quantum in Australia: creating clear benchmarks of national quantum eco-system success
2.2.9. Collaboration versus quantum nationalism
2.2.10. The quantum computing industry is becoming more competitive which is driving innovation
2.2.11. The business model for quantum computing
2.2.12. Commercial partnership is driver for growth and a tool for technology development
2.2.13. Partnerships forming now will shape the future of quantum computing for the financial sector
2.2.14. Four major challenges for quantum hardware
2.2.15. A complex eco-system
2.2.16. Shortage of quantum talent is a challenge for the industry
2.2.17. Timelines for ROI are unclear in the NISQ (noisy intermediate scale quantum) era
2.2.18. Competition with advancements in classical computing
2.2.19. Value capture in quantum computing
2.3. Technical primer
2.3.1. Classical vs. Quantum
2.3.2. Superposition, entanglement, and observation
2.3.3. Classical computers are built on binary logic
2.3.4. Quantum computers replace binary bits with qubits
2.3.5. Blueprint for a quantum computer: qubits, initialization, readout, manipulation
2.3.6. Case study: Shor's algorithm
2.3.7. 'Hack Now Decrypt Later' (HNDL) and preparing for Q-Day/ Y2Q
2.3.8. Applications of quantum algorithms
2.3.9. Chapter summary
3. BENCHMARKING QUANTUM HARDWARE
3.1. Chapter overview
3.2. Qubit benchmarking
3.2.1. Noise effects on qubits
3.2.2. Comparing coherence times
3.2.3. Qubit fidelity and error rate
3.3. Quantum computer benchmarking
3.3.1. Quantum supremacy and qubit number
3.3.2. Logical qubits and error correction
3.3.3. Introduction to quantum volume
3.3.4. Error rate and quantum volume
3.3.5. Square circuit tests for quantum volume
3.3.6. Critical appraisal of the importance of quantum volume
3.3.7. Algorithmic qubits: A new benchmarking metric?
3.3.8. Companies defining their own benchmarks
3.3.9. Operational speed and CLOPS (circuit layer operations per second)
3.3.10. Conclusions: determining what makes a good computer is hard, and a quantum computer even harder
3.4. Industry benchmarking
3.4.1. The DiVincenzo criteria
3.4.2. Competing quantum computer architectures: Summary table
3.4.3. IDTechEx - Quantum commercial readiness level (QCRL)
3.4.4. QCRL scale (1-5, commercial application focused)
3.4.5. QCRL scale (6-10, user-volume focused)
4. MARKET FORECASTS
4.1. Forecasting Methodology Overview
4.2. Methodology: Roadmap for quantum commercial readiness level by technology
4.3. Methodology: Establishing the total addressable market for quantum computing
4.4. Forecast for total addressable market for quantum computing
4.5. Predicting cumulative demand for quantum computers over time (1)
4.6. Predicting cumulative demand for quantum computers over time (2)
4.7. Forecast for installed base of quantum computers (2025-2045, logarithmic scale)
4.8. Forecast for installed based of quantum computers by technology (2025-2045) - logarithmic scale
4.9. Forecast for quantum computer pricing
4.10. Forecast for annual revenue from quantum computer hardware sales, 2025-2045
4.11. Forecast annual revenue from quantum computing hardware sales (breakdown by technology), 2025-2045
4.12. Forecasting discussion - challenges in twenty-year horizons
4.13. Quantum computer market coverage: key forecasting changes since the last report
5. COMPETING QUANTUM COMPUTER ARCHITECTURES
5.1. Introduction to competing quantum computer architectures:
5.2. Superconducting
5.2.1. Introduction to superconducting qubits (I)
5.2.2. Introduction to superconducting qubits (II)
5.2.3. Superconducting materials and critical temperature
5.2.4. Initialization, manipulation, and readout
5.2.5. Superconducting quantum computer schematic
5.2.6. Comparing key players in superconducting quantum computing (hardware)
5.2.7. IBM: Quantum roadmap update 2024
5.2.8. Roadmap for superconducting quantum hardware (chart)
5.2.9. Roadmap for superconducting quantum hardware (discussion)
5.2.10. Simplifying superconducting architecture requirements for scale-up
5.2.11. IQM release new roadmap promising quantum advantage by 2030
5.2.12. Critical material chain considerations for superconducting quantum computing
5.2.13. SWOT analysis: superconducting quantum computers
5.2.14. Key conclusions: superconducting quantum computers
5.3. Trapped ion
5.3.1. Introduction to trapped-ion quantum computing
5.3.2. Initialization, manipulation, and readout for trapped ion quantum computers
5.3.3. Materials challenges for a fully integrated trapped-ion chip
5.3.4. Comparing key players in trapped ion quantum computing (hardware)
5.3.5. Roadmap for trapped-ion quantum computing hardware (chart)
5.3.6. Roadmap for trapped-ion quantum computing hardware (discussion)
5.3.7. Quantinuum - winning the race for three 9s and an accelerated development roadmap
5.3.8. IonQ: Secures a $54.5M contract with the U.S. Air Force Research Lab and expands photonic capabilities
5.3.9. Oxford Ionics achieves record fidelities in the lab
5.3.10. SWOT analysis: trapped-ion quantum computers
5.3.11. Key conclusions: trapped ion quantum computers
5.4. Photonic platform
5.4.1. Introduction to light-based qubits
5.4.2. Comparing photon polarization and squeezed states
5.4.3. Overview of photonic platform quantum computing
5.4.4. Initialization, manipulation, and readout of photonic platform quantum computers
5.4.5. Comparing key players in photonic quantum computing
5.4.6. PsiQuantum benefiting from over $1B in investment to build quantum computing data centers in Australia and the US (1)
5.4.7. PsiQuantum benefiting from over $1B in investment to build quantum computing data centers in Australia and the US (2)
5.4.8. Aegiq - offering versatility without a universal machine
5.4.9. Roadmap for photonic quantum hardware (chart)
5.4.10. Roadmap for photonic quantum hardware (discussion)
5.4.11. SWOT analysis: photonic quantum computers
5.4.12. Key conclusions: photonic quantum computers
5.5. Silicon Spin
5.5.1. Introduction to silicon-spin qubits
5.5.2. Qubits from quantum dots ('hot' qubits are still pretty cold)
5.5.3. CMOS readout using resonators offers a speed advantage
5.5.4. The advantage of silicon-spin is in the scale not the temperature
5.5.5. Initialization, manipulation, and readout
5.5.6. Comparing key players in silicon spin quantum computing
5.5.7. Roadmap for silicon-spin quantum computing hardware (chart)
5.5.8. Roadmap for silicon spin (discussion)
5.5.9. SWOT analysis: silicon spin quantum computers
5.5.10. Key conclusions: silicon spin quantum computers
5.6. Neutral atom (cold atom)
5.6.1. Introduction to neutral atom quantum computing
5.6.2. Entanglement via Rydberg states in Rubidium/Strontium
5.6.3. Initialization, manipulation and readout for neutral-atom quantum computers
5.6.4. Comparing key players in neutral atom quantum computing (hardware)
5.6.5. Roadmap for neutral-atom quantum computing hardware (chart)
5.6.6. QuEra receiving strategic investment from Google
5.6.7. Atom Computing partner with Microsoft
5.6.8. Pasqal: reaching the 1000 qubit milestone in 2024 and planning for 10,000 by 2026
5.6.9. Infleqtion (Cold Quanta) achieve 'world's largest qubit array', and what to make it ten times bigger by 2030
5.6.10. Roadmap for neutral-atom quantum computing hardware (discussion)
5.6.11. SWOT analysis: neutral-atom quantum computers
5.6.12. Key conclusions: neutral atom quantum computers
5.7. Diamond defect
5.7.1. Introduction to diamond-defect spin-based computing
5.7.2. Lack of complex infrastructure for diamond defect hardware enables early-stage MVPs
5.7.3. Supply chain and materials for diamond-defect spin-based computers
5.7.4. Comparing key players in diamond defect quantum computing
5.7.5. Roadmap for diamond defect quantum computing hardware (chart)
5.7.6. Roadmap for diamond-defect based quantum computers (discussion)
5.7.7. Quantum Brilliance offer lower power quantum solutions for HPC integration in the NISQ era, and opportunities on the edge long term
5.7.8. SWOT analysis: diamond-defect quantum computers
5.7.9. Key conclusions: diamond-defect quantum computers
5.8. Topological qubits (Majorana)
5.8.1. Topological qubits (Majorana mode)
5.8.2. Initialization, manipulation, and readout of topological qubits
5.8.3. Topological qubits still require cryogenic cooling
5.8.4. Microsoft are the only company pursuing topological qubits so far
5.8.5. Roadmap for topological quantum computing hardware (chart)
5.8.6. Confidence in the potential of topological quantum computing is rising
5.8.7. Roadmap for topological quantum computing hardware (discussion)
5.8.8. SWOT analysis: topological qubits
5.8.9. Key conclusions: topological qubits
5.9. Quantum annealers
5.9.1. Introduction to quantum annealers
5.9.2. How do quantum processors for annealing work?
5.9.3. Initialization and readout of quantum annealers
5.9.4. Annealing is best suited to optimization problems
5.9.5. Commercial examples of use-cases for annealing
5.9.6. Clarity on annealing related terms
5.9.7. Comparing key players in quantum annealing
5.9.8. Roadmap for neutral-atom quantum computing hardware (chart)
5.9.9. D-Wave intensifies focus on increasing production application deployments
5.9.10. Roadmap for quantum annealing hardware (discussion)
5.9.11. SWOT analysis: quantum annealers
5.9.12. Key conclusions: quantum annealers
5.10. Chapter summary
5.10.1. Summarizing the promises and challenges of leading quantum hardware
5.10.2. Summarizing the promises and challenges of leading quantum hardware
5.10.3. Competing quantum computer architectures: Summary table
5.10.4. Main conclusions (I)
5.10.5. Main conclusions (II)
6. INFRASTRUCTURE FOR QUANTUM COMPUTING
6.1. Chapter Overview
6.2. Hardware agnostic platforms for quantum computing represent a new market for established technologies.
6.3. Infrastructure Trends: Modular vs. Single Core
6.4. Introduction to cryostats for quantum computing
6.5. Understanding cryostat architectures
6.6. Bluefors are the market leaders in cryostat supply for superconducting quantum computers (chart)
6.7. Bluefors are the market leaders in cryostat supply for superconducting quantum computers (discussion)
6.8. Opportunities in the Asian supply chain for cryostats
6.9. Cryostats need two forms of helium, with different supply chain considerations
6.10. Helium isotope (He3) considerations
6.11. Summary of cabling and electronics requirements inside a dilution refrigerator for quantum computing
6.12. Qubit readout methods: microwaves and microscopes
6.13. Pain points for incumbent platform solutions
7. AUTOMOTIVE AND FINANCE APPLICATIONS FOR QUANTUM COMPUTING
7.1. Automotive applications of quantum computing
7.1.1. Quantum chemistry offers more accurate simulations to aid battery material discovery
7.1.2. Quantum machine learning could make image classification for vehicle autonomy more efficient
7.1.3. Quantum optimization for assembly line and distribution efficiency could save time, money, and energy
7.1.4. Most automotive players are pursuing quantum computing for battery chemistry
7.1.5. The automotive industry is yet to converge on a preferred qubit modality
7.1.6. Partnerships and collaborations for automotive quantum computing
7.1.7. Mercedes: Case study in remaining hardware agnostic
7.1.8. Tesla: Supercomputers not quantum computers
7.1.9. Summary of key conclusions
7.1.10. Analyst opinion on quantum computing for automotive
7.2. Finance Applications of Quantum Computing
7.2.1. Despite its early stage, preparing for quantum computing now is a key strategy in the finance industry (1)
7.2.2. Despite its early stage, preparing for quantum computing now is a key strategy in the finance industry (2)
7.2.3. Use cases of quantum computing in finance
7.2.4. HSBC and Quantum Key Distribution (1)
7.2.5. HSBC and Quantum Key Distribution (2)
8. MATERIALS FOR QUANTUM TECHNOLOGY
8.1. Chapter Overview
8.2. Superconductors
8.2.1. Overview of superconductors in quantum technology
8.2.2. Critical temperature plays a key role in superconductor material choice for quantum technology
8.2.3. Critical material chain considerations for superconducting quantum computing
8.2.4. Overview of the superconductor value chain in quantum technology
8.2.5. Room temperature superconductors - and why they won't necessarily unlock the quantum technology market
8.2.6. Superconducting nanowire single photon detector (SNSPD)
8.2.7. Superconducting nanowire single photon detectors (SNSPDs)
8.2.8. SNSPD applications must value performance highly enough to justify the bulk/cost of cryogenics
8.2.9. Research in scaling SNSPD arrays beyond kilopixel
8.2.10. Advancements in superconducting materials drives SNSPD development
8.2.11. Comparison of commercial SNSPD players
8.2.12. SWOT analysis: superconducting nanowire single photon detectors (SNSPDs)
8.2.13. Kinetic inductance detector (KID) and transition edge sensor (TES)
8.2.14. Kinetic inductance detectors (KIDs)
8.2.15. Transition edge sensors (TES)
8.2.16. How have SNSPDs gained traction while KIDs and TESs remain in research?
8.2.17. Comparison of single photon detector technology
8.3. Photonics, Silicon Photonics and Optical Components
8.3.1. Overview of photonics, silicon photonics and optics in quantum technology
8.3.2. Overview of material considerations for photonic integrated circuits (PICs)
8.3.3. Photonic computing demands better electro-optical materials, alternatives to standard silicon and warmer superconductors than niobium (1)
8.3.4. Photonic computing demands better electro-optical materials, alternatives to standard silicon and warmer superconductors than niobium (2)
8.3.5. VCSELs enable miniaturization of quantum sensors and components
8.3.6. Alkali azides used to overcome high-vacuum fabrication requirements of vapor cells for quantum sensing
8.3.7. An opportunity for better optical fiber and quantum interconnects materials
8.3.8. Semiconductor single photon detectors
8.4. Nanomaterials (Graphene, CNTs, Diamond and MOFs)
8.4.1. Introduction to 2D Materials for Quantum Technology
8.4.2. Interest in TMD based quantum dots as single photon sources for quantum networking
8.4.3. Introduction to graphene membranes
8.4.4. Research interest in graphene membranes for RAM memory in quantum computers
8.4.5. 2.5D Materials pitches as solution to quantum information storage
8.4.6. Single Walled Carbon Nanotubes for Quantum Computers and C12
8.4.7. Long term potential in the quantum materials market for Boron Nitride Nanotubes (BNNT)
8.4.8. Snapshot of market readiness levels of CNT applications - quantum only at PoC stage
8.4.9. Overview of diamond in quantum technology
8.4.10. Material advantages and disadvantages of diamond for quantum applications
8.4.11. Element Six are leaders in scaling up manufacturing of diamond for quantum applications using chemical vapor deposition (CVD)
8.4.12. Overview of the synthetic diamond value chain in quantum technology
8.4.13. Chromophore integrated MOFs can stabilize qubits at room temperature for quantum computing
8.4.14. Conclusions and Outlook: Summary of material opportunities in quantum technology
9. COMPANY PROFILES
9.1. Aegiq
9.2. BlueFors (Helium)
9.3. Classiq
9.4. D-Wave
9.5. Diatope
9.6. Diraq
9.7. Element Six (Quantum Technologies)
9.8. Hitachi Cambridge Laboratory (HCL)
9.9. IBM (Quantum Computing)
9.10. Infineon (Quantum Algorithms)
9.11. Infleqtion (previously Cold Quanta)
9.12. IonQ
9.13. nu quantum
9.14. ORCA Computing
9.15. Powerlase Ltd
9.16. PsiQuantum
9.17. Q.ANT
9.18. Quantinuum
9.19. QuantrolOx
9.20. Quantum Brilliance
9.21. Quantum Computing Inc
9.22. Quantum Motion
9.23. Quantum XChange
9.24. QuEra
9.25. QuiX Quantum
9.26. River Lane
9.27. Schrödinger Update: Batteries and Materials Informatics
9.28. SEEQC
9.29. SemiWise
9.30. Senko Advance Components Ltd
9.31. Single Quantum
9.32. Siquance
9.33. VTT Manufacturing (Quantum Technologies)
9.34. XeedQ

 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(半導体)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/12/04 10:27

150.82 円

158.84 円

193.81 円

ページTOPに戻る