世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Thermal Management for EV Power Electronics 2024-2034: Forecasts, Technologies, Markets, and Trends


EVパワーエレクトロニクス向け熱管理 2024-2034年:予測、技術、市場、動向

この調査レポートでは、SiC、Si、GaN別のダイ・アタッチ、基板アタッチ、TIMの面積、数量、市場価値の詳細予測に加え、従来のはんだ、Ag焼結、新興のCu焼結を含むダイ・アタッチ方法について詳細に調査・... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2024年3月25日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
257 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。


 

Summary

この調査レポートでは、SiC、Si、GaN別のダイ・アタッチ、基板アタッチ、TIMの面積、数量、市場価値の詳細予測に加え、従来のはんだ、Ag焼結、新興のCu焼結を含むダイ・アタッチ方法について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • パワーエレクトロニクス熱管理
  • 片面冷却
  • 両面冷却
  • はんだと焼結金属
  • 半導体材料
  • OEMのサプライチェーン
 
Report Summary
IDTechEx has observed a growing trend towards 800V platforms and beyond, driven by several automotive OEMs including GM, Hyundai, VW, and Lucid Motors. These platforms, operating at higher voltages, are enhancing efficiency by minimizing joule losses and enabling the downsizing of high-voltage cabling, thereby reducing weight. This transition is facilitated by the adoption of new technologies and materials, particularly silicon carbide (SiC) MOSFETs, which incorporate innovative thermal management techniques and materials such as double-sided cooling (DSC), advanced Ag sintered die-attach, alongside the use of high-performance thermal interface materials.
 
Moving from traditional silicon IGBTs to SiC MOSFETs also entails changes in thermal architecture design. Examples include the implementation of DSC, copper ribbon bonding, and direct liquid cooling to eliminate the need for thermal interface materials (TIMs).
 
In its report titled "Thermal Management for EV Power Electronics 2024-2034: Forecasts, Technologies, Markets, and Trends", IDTechEx offers a comprehensive market forecast for power electronics thermal management strategies, segmented by SiC MOSFET, Si IGBT, and GaN technologies. The report provides detailed projections for die-attach, substrate-attach, and TIM area, volume, and market value by SiC, Si, and GaN, as well as a breakdown of die-attach methods including traditional solders, Ag sintering, and emerging Cu sintering. Additionally, the report covers the market for liquid-cooled inverters, segmented by air, oil, and water-glycol cooling methods.
 
Power Electronics Thermal Material Evolution
As power semiconductors experience increased power density and heat flux, coupled with the transition from Si IGBT to SiC MOSFET, the thermal architecture of power semiconductor packaging is anticipated to undergo significant changes. The diagram provided illustrates the key layers of materials in power modules, comprising die-attach materials, substrate-attach materials, wire bonding, and thermal interface materials.
 
The semiconductor dies are affixed to a double-bonded ceramic (DBC) substrate using die-attach materials. Subsequently, the DBC is connected to a baseplate via another substrate-attach material. Communication between the dies and circuitry is facilitated through wire bonding, traditionally using aluminum but with a growing preference for copper. To ensure protection and stability, the package is potted with thermally conductive silicone gels.
 
Die-attach and substrate-attach materials
Die-attach and substrate-attach materials typically consist of solder alloys like SnPb or SAC (Sn-Ag-Cu). These alloys are chosen for their high bulk thermal conductivity, and upon soldering, they form intermetallics between components, resulting in low interfacial thermal resistance. This maintains low package stress and processing temperature while also mechanically fastening the heat sink. The typical thermal conductivity of solder alloys is around 50W/mK, with melting temperatures around 200°C.
 
However, as heat flux increases due to the transition from Si IGBT to SiC MOSFET, junction temperatures are expected to surpass 175°C, or even 200°C in some cases, posing challenges for traditional solders. This shift has led to a transition from solders to sintered die-attach materials. Some leading automotive OEMs, including Tesla, Hyundai, and BYD, have already begun adopting Ag-sintered die-attach materials. Nonetheless, Ag-sintered pastes are significantly more expensive than traditional solder alloys. While costs are influenced by customer relationships, order volume, and various other factors, IDTechEx estimates that Ag-sintered pastes can be 5 times more expensive than traditional solder alloys. In the short to medium term, it is expected that silver sintered paste will primarily be adopted by leading automotive OEMs due to their greater bargaining power with higher volumes to reduce costs. There is also scope for people to replace Cu-sintered die-attach thanks to their theoretically lower costs compared with Ag-sintered die-attach. However, as of 2024, IDTechEx has not seen any large-scale commercial examples of Cu-sintered die-attach materials. This report compares and analyzes the benefits and drawbacks of Ag and Cu-sintered die-attach, along with the market forecast of these two technologies. Despite the benefits of sintering, many semiconductor suppliers and automotive OEMs will remain with solder alloys due to their reduced cost and advances happening with their application.
 
TIM2:
TIM2 typically comes in two forms in EV power semiconductors: thermal grease, employed between the baseplate and the heatsink, and thermal gel, often utilized as potting materials. The market in 2024 sees thermal greases typically exhibiting a thermal conductivity between 2.5 and 3.5W/mK and a density of around 2.5g/ml. However, there have been advancements in TIMs, such as Honeywell's PTM7000 used in onsemi's VE-Trac, demonstrating a thermal conductivity of 6.5W/mK. IDTechEx predicts a trend towards higher thermal conductivity due to the increasing heat flux resulting from the adoption of SiC technology. Further to this, phase change materials (PCM) also gain significant momentum thanks to their superior latent heat capacity. The thermal impedance using PCM can reduce by over 50% compared with traditional thermal grease, although this largely depends on the materials used, configurations, and many other factors. The report benchmarks a number of commercial TIM2 options and conducts a granular analysis of their mechanical properties.
 
Power Electronics Cooling Strategy
The Thermal Management for EV Power Electronics report also summarizes the emerging trends in thermal architecture evolution. Take the two trends below as an example.
1. Double-sided cooling (DSC): Double-sided cooling has been implemented in some mid- to high-end electric vehicles, such as the Porsche Taycan and Audi e-tron. This approach offers superior cooling capacity where the junction temperature can be reduced by 40%. However, the adoption of double-sided cooling results in a more complicated and expensive design. In contrast to single-sided cooling, DSC replaces wire bonding with lead frames and may potentially double the amount of die attach and TIM used.
2. Direct liquid cooling: Another emerging trend is the transition from traditional cooling methods to direct liquid cooling, where the double-bonded copper (DBC) is directly affixed to a pin-fin structured heatsink. This configuration allows for the elimination of the cold plate and thermal grease.
 
Market Opportunities
The report forecasts that the combined market size of die-attach materials, substrate-attach materials, and TIM2 for EV power electronics will reach approximately US$900 million by 2034, presenting significant market opportunities. As thermal power continues to rise, it is expected that more advanced thermal management strategies will be adopted, thereby accelerating market growth at a double-digit Compound Annual Growth Rate (CAGR) from 2024 to 2034.
 
For a deeper understanding of the market opportunities, active players, competitive landscape, technology benchmarking, and recent market developments, readers are encouraged to refer to IDTechEx's latest report, "Thermal Management for EV Power Electronics 2024-2034: Forecasts, Technologies, Markets, and Trends".
 
Key aspects
This report provides critical market intelligence about the area, volume, weight, and market value of die-attached solders, substrates, and TIM2s for electric vehicle power electronics, in particular, Si IGBT, SiC MOSFET, and GaN.
 
  • A review of the power electronics, including Si IGBT, SiC MOSFET, and GaN.
  • An analysis of the TIMs for different layers in EV power electronics, including die attach, substrate attach and TIM2.
  • A summary of SiC MOSFET suppliers by automotive OEMs and semiconductor suppliers.
  • An in-depth technology analysis and commercial use case analysis of single and double-sided cooling.
  • An in-depth technology analysis of TIM1s (die attach and substrate attach), including solders, silver sintered TIMs, and copper sintered TIMs. An overview of Cu sintering paste suppliers.
  • Technology analysis of TIM2 in Si IGBT and SiC MOSFET. A benchmark comparison of thermal conductivity, thickness, and specific gravity.
  • Wire bonding technologies and trends.
  • Review of substrate materials and market share of EV power semiconductor/module suppliers.
  • A comprehensive analysis of power electronics supply chain, including semiconductor suppliers, power module suppliers to inverter makers and automotive OEMs.
  • Review of water and oil cooling of power modules.
  • Comparison of TIM area per kW of power (mm2/kW) for die attach, substrate attach and TIM2.
  • Die attach material area and market value forecast from 2024 to 2034.
  • Substrate attach material area and market value forecast from 2024 to 2034.
  • TIM2 area and market value forecast from 2024 to 2034.
  • Motor and inverter cooling by air, oil, and water-glyco.

 



ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. General Trend of TIMs in Power Electronics (1)
1.2. General Trend of TIMs in Power Electronics (2)
1.3. Where are TIMs used in EV Power Electronics
1.4. SiC MOSFET by Automotive OEMs and Suppliers
1.5. Trend Towards Double-Sided Cooling for Automotive Applications
1.6. Transition to Double-Sided Liquid Cooling
1.7. Market Share of Single and Double-Sided Cooling: 2024-2034
1.8. Summary of TIM2 Properties
1.9. BLT Comparison of TIM2
1.10. Coefficient of Thermal Expansion (CTE) Comparison of Die-Attach and Substrate-Attach
1.11. Thermal Conductivity Comparison of TIM1s
1.12. Yearly Die Attach Area Forecast (1000m2): 2024-2034
1.13. Yearly Die Attach Area Forecast by Type (1000m2): 2024-2034
1.14. Yearly Substrate Attach Area Forecast (1000m2): 2024-2034
1.15. Yearly TIM2 Area Forecast (1000m2): 2024-2034
1.16. Yearly Market Size of TIMs Forecast (US$ Millions): 2024-2034
1.17. Inverter Liquid Cooling Strategy Forecast (Unit: Millions): 2024-2034
2. POWER ELECTRONICS THERMAL MANAGEMENT OVERVIEW
2.1. An Overview of Power Electronics TIMs
2.2. Summary of Cooling Approaches - (1)
2.3. Summary of Cooling Approaches - (2)
2.4. Thermal Management Strategies in Power Electronics (1)
2.5. Thermal Management Strategies in Power Electronics (2)
2.6. What is Power Electronics?
2.7. Power Electronics Use in Electric Vehicles
2.8. Power Electronics Material Evolution
2.9. Transistor History & MOSFET Overview - How Does it Affect Thermal Management?
2.10. Wide Bandgap (WBG) Semiconductor Advantages & Disadvantages
2.11. Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors
2.12. Advantages of SiC Material
2.13. The Transition to SiC (market share 2015-2023)
2.14. Is all 800V SiC? Audi e-tron 2018 and Porsche Taycan?
2.15. Limitations of SiC Power Devices
2.16. GaN's Potential to Reach High Voltage
2.17. SiC & GaN have Substantial Room for Improvement
2.18. Automotive GaN Device Suppliers are Growing
2.19. SiC Drives 800V Platforms
2.20. GaN to Become Preferred OBC Technology
2.21. Challenges for GaN Devices
2.22. Inverter Overview
2.23. Traditional EV Inverter Power Modules
2.24. Inverter Package Designs
2.25. Power Module Packaging
2.26. Module Packaging Material Dimensions
2.27. Trends Toward Minimization
2.28. Single Side, Dual Side, Indirect, and Direct Cooling
2.29. Baseplate, Heatsink, and Encapsulation Materials
2.30. Cooling Concept Assessment
3. SINGLE-SIDED COOLING
3.1. Key Summary of Single-Sided Cooling
3.2. Benefits and Drawbacks of Single-Sided Cooling
3.3. TIM2 Area Largely Similar for Single-Sided Cooling
3.4. onsemi - EliteSiC Power Module
3.5. ST Microelectronics - Tesla Model 3
4. DOUBLE-SIDED COOLING
4.1. Key Summary of Double-Sided Cooling (DSC)
4.2. Double-Sided Cooling Introduction
4.3. Double-Sided Cooling Examples
4.4. The Need for Double-Sided Cooling in Power Modules
4.5. Infineon's HybridPACK DSC
4.6. Inner Structure of HybridPACK DSC
4.7. onsemi - VE-Trac Family modules
4.8. CRRC
4.9. Hitachi Inverter - Double-Sided Cooling
4.10. Trend Towards Double-Sided Cooling for Automotive Applications
4.11. Market Share of Single and Double-Sided Cooling: 2024-2034
5. TIM1 - SOLDER AND SINTERED METAL
5.1. Overview
5.1.1. Introduction to TIM1
5.1.2. TIM1 in Flip Chip Packaging
5.1.3. Trends of TIM1 in 3D Semiconductor Packaging
5.1.4. Solder TIM1 and Liquid Metal
5.1.5. Solders as TIM1
5.1.6. Solder TIM1 - Minimize Warpage and Delamination (1)
5.1.7. Solder TIM1 - Minimize Warpage and Delamination (2)
5.1.8. Device Packaging Dynamics
5.1.9. MacDermid Alpha - Solders for Automotive Power Electronics
5.1.10. Trend Towards Sintering
5.1.11. Market News and Trends of Sintering
5.2. Ag Sintered TIM
5.2.1. Metal Sheet, Graphite Sheet, and Ag Sintered TIM
5.2.2. Process Steps for Applying Ag Sintered Paste
5.2.3. Die-Attach Solution - Summary of Materials (1)
5.2.4. Die-Attach Solution - Summary of Materials (2)
5.2.5. Silver Sintering Paste
5.2.6. Properties and Performance of Solder Alloys and Conductive Adhesives
5.2.7. Solder Options and Current Die Attach
5.2.8. Why Sliver Sintering
5.2.9. Silver-Sintered Paste Performance
5.2.10. Sumitomo Bakelite
5.2.11. Henkel - Die Attach Paste
5.2.12. Osaka Soda - Ag Sintered Paste
5.2.13. MacDermid Alpha
5.2.14. AMOGREENTECH
5.2.15. Company Profiles for Sintered Paste Suppliers
5.3. Cu Sintered TIM
5.3.1. Cu Sinter Materials
5.3.2. Cu Sintering: Characteristics
5.3.3. Reliability of Cu Sintered Joints
5.3.4. Graphene Enhanced Sintered Copper TIMs
5.3.5. Mitsubishi Materials: Cu Sinter Material Poised for Market Entry
5.3.6. Mitsubishi Materials: Copper Alloys to Improve Power Density
5.3.7. Mitsui: Cu Sinter Half the Cost of Ag Sinter
5.3.8. Copper Sintering - Challenges
5.3.9. Porosity (%) of Metal Sinter Paste
5.3.10. Hitachi: Cu Sintering Paste
5.3.11. Indium Corporation: Nano Copper Paste
5.3.12. Mitsui Mining. - Copper Sinter Paste Pressure and Pressureless
5.3.13. Mitsui Mining: Nano Copper Under N2
5.3.14. Showa Denko, formerly Hitachi Chemical - Cu sinter [P]
5.3.15. Showa Denko, formerly Hitachi Chemical - Cu sinter [N] and Cu sinter [F]
5.3.16. Mitsui: Cu Sinter - Half the Cost of Ag Sinter
5.3.17. Summary of Cu sinter [P], Cu sinter [N], and Cu sinter [F]
 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(半導体)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/21 10:26

156.13 円

165.08 円

200.38 円

ページTOPに戻る