Summary
この調査レポートは、5G mmWaveおよび今後の6Gネットワークの要件を満たすように設計されたAiP技術についてについて詳細に調査・分析しています。
主な掲載内容(目次より抜粋)
-
包装技術入門
-
5Gと6G
-
ミリ波通信のためのビームフォーミング
-
フェーズドアレイ技術
-
フェーズドアレイアンテナのパッケージング技術
-
100GHzを超えるアプリケーションのためのパッケージングと統合の可能性
-
EMIシールド
-
市場予測
-
企業プロファイル
Report Summary
Millimeter-wave (mmWave), previously confined to military, satellite, and automotive radar applications, has now entered the mobile communications frequency spectrum, offering high data throughput of up to 20 Gbps with an ultralow latency of just 1 ms. This shift necessitates innovative technological advancements across devices, including RF and optical components, low-loss materials, and advanced semiconductor packaging technologies. Among these innovations, packaging stands out as a critical area requiring significant development and is the key focus of IDTechEx's report "Antenna in Package (AiP) for 5G and 6G 2024-2034: Technologies, Trends, Markets".
IDTechEx's report, "Antenna in Package (AiP) for 5G and 6G 2024-2034," offers an in-depth exploration of AiP technologies designed to meet the requirements of 5G mmWave and upcoming 6G networks. It provides comprehensive analysis of diverse substrate materials including organic, LTCC, and glass, as well as packaging methods like flip-chip and fan-out. The report thoroughly examines these aspects from material properties, manufacturing feasibility, and supply chain viewpoints.
Additionally, it delves into antenna integration for applications beyond 100 GHz, offering insightful case studies and addressing prevalent challenges in the field. Leveraging IDTechEx's expertise, the report provides valuable insights into the dynamic landscape of antenna packaging technologies, forecasting the industry's future trajectory with advanced semiconductor packaging solutions at its core.
The overarching trend in antenna packaging technologies, especially at higher frequencies, is towards greater integration.
Antenna-in-package (AiP) represents an advanced antenna packaging technology utilized in high-frequency telecommunications. Leveraging the short wavelengths of mmWave applications, AiP enables the creation of significantly smaller antennas that can be seamlessly integrated directly into semiconductor packages, unlike traditional discrete antennas assembled as individual components on PCB. This integration of the antenna with the transceiver on a single chip offers a host of advantages, including enhanced antenna performance and greatly reduced package footprints. Advancing into the sub-THz range, potentially within the spectrum of 6G, research is underway on new antenna packaging technologies aimed at integrating antennas directly onto RF components. However, this area is still in the research phase due to various manufacturing and scalability challenges.
Overview of antenna packaging technologies vs operational frequency. Source: Antenna in Package (AiP) for 5G and 6G 2024-2034: Technologies, Trends, Markets from IDTechEx
Key design considerations for AiP
In the development of AiP technology for high-frequency communication devices, cost-effectiveness emerges as the utmost crucial consideration. With a target price of US$2 per 1x1 AiP module, affordability becomes pivotal for widespread adoption, although this presents a chicken-and-egg challenge where adoption must precede cost reduction through economies of scale. Utilizing cost-effective packaging materials and processes is essential. Additionally, miniaturization plays a critical role, especially for integration into consumer devices like smartphones, where component size is paramount. Ensuring that package size can be shrunk while maintaining performance and cost-effectiveness necessitates leveraging new packaging technologies.
Moreover, achieving high performance is vital for AiP platforms. This entails the fabrication and integration of high-gain, broadband mmWave antenna arrays, along with ensuring intra-system electromagnetic compatibility (EMC). Additionally, optimizing equivalent isotropic radiated power (EIRP) and ensuring signal integrity (SI) and power integrity (PI) are crucial aspects. Integrating high-quality factor (Q factor) passives to co-design active mmWave front-end transceiver components further enhances performance. Furthermore, reliability is essential, necessitating a direct thermal passage from the chip to the exterior to dissipate heat from power amplifiers. Scalability adds another layer of versatility, enabling the design of basic modules that can be upscaled to meet various applications with different power requirements. Addressing all these requirements is essential when designing an AiP module for high-frequency communication devices. Questions such as the choice of antenna element, substrate technology, substrate materials, limitations of each substrate technology, integration of passive devices, and supply chain maturity are all explored in IDTechEx's report.
Key aspects in the report:
Overview of 5G mmWave Development and 6G Roadmap:
a. Explore the status of 5G mmWave development, technology innovation roadmap, key applications, and market outlook.
b. Understand the landscape of 6G, including potential spectrum, enabling THz communication technologies, key research and industry activities, roadmap, technical targets, and applications.
Deep Dive into Beamforming Technologies Enabled by Phased Array Antenna for 5G mmWave:
a. Compare beamforming technologies of 5G sub-6 vs mmWave.
b. Examine phased array technologies, including antenna, semiconductor, and packaging integration components, technical requirements, trends, and design considerations.
Antenna Integration Technologies for 5G mmWave:
a. Discuss antenna substrate technology, benchmarking, material requirements, and packaging for phased arrays.
b. Explore various antenna packaging technologies for 5G mmWave, including antenna on PCB and antenna in package (AiP), categorized by packaging technologies: Flip-chip vs fan-out. Also, discuss substrate material choices, such as LTCC, low-loss organic-based, and glass, covering production challenges, material choices and benchmark, solutions/case studies from key players, and substrate design considerations for each packaging technology.
Antenna Integration Technologies for Applications Beyond 100 GHz:
a. Address challenges in 6G transceiver development, focusing on power requirements, antenna gain, and phased array demands.
b. Discuss various potential packaging technologies for beyond 100 GHz applications, covering thermal management options and low-loss material choices for antenna substrates. Include case studies showcasing D-band (110-170 GHz) phased array technology.
10-year granular market forecast of:
-
5G infrastructure:-5G mmWave base station forecast 2023-2034
-
Antenna Elements Forecast (Infrastructure)
-
AiP for 5G mmWave infrastructure shipment forecast 2023-2034
-
AiP for mmWave 5G infrastructure shipment forecast by packaging technology 2024-2034
-
mmWave antenna substrate forecast for 5G infrastructure (m2) 2023-2034
-
mmWave antenna substrate forecast by material type for 5G infrastructure 2023-2034
5G consumer devices: Smartphone and CPE-AiP module shipment in mmWave compatible smartphone forecast 2023-2034
-
AiP module shipment in mmWave-compatible smartphones by packaging technology 2023-2034
-
mmWave smartphone antenna area substrate by packaging technology 2023-2034
-
5G mmWave CPE shipment forecast 2023-2034
-
5G CPE mmWave AiP module shipment forecast by packaging technology 2023-2034
-
5G CPE mmWave AiP substrate area forecast by packaging technology 2023-2034
ページTOPに戻る
Table of Contents
1. |
EXECUTIVE SUMMARY |
1.1. |
5G&6G development and standardization roadmap |
1.2. |
Mobile Telecommunication Spectrum and Network Deployment Strategy |
1.3. |
5G Commercial/Pre-commercial Services by Frequency |
1.4. |
mmWave now and future |
1.5. |
Global trends and new opportunities in 5G/6G |
1.6. |
Overview of challenges, trends and innovations for high frequency communication (mmWave & THz) devices |
1.7. |
Navigating Challenges and Solutions in mmWave phased array system |
1.8. |
Integration requirement for phased array |
1.9. |
Antenna packaging requirement |
1.10. |
Benchmarking three antenna packaging technologies |
1.11. |
The goal of next generation phased array |
1.12. |
Overview of antenna packaging technologies vs operational frequency |
1.13. |
Antenna-in-Package (AiP) vs Conventional Discrete Antenna Techniques in Wireless Systems |
1.14. |
Key Design Considerations for AiP |
1.15. |
Overview of low-loss materials for phased array substrate |
1.16. |
Dk and Df comparison of material for phased array substrate |
1.17. |
Other Material Requirement for Phased Array Substrate |
1.18. |
Benchmark of substrate material properties for AiP |
1.19. |
Benchmark of substrate technology for AiP |
1.20. |
Trend: Choices of low-loss materials for AiP |
1.21. |
Summary of substrate technology for AiP |
1.22. |
Flip-chip vs Fan-out AiP: Benchmark |
1.23. |
Choices of antenna packaging technologies for 6G |
1.24. |
Antenna on chip (AoC) for 6G |
1.25. |
Methods to improve antenna performance in AoC |
1.26. |
Key trends for EMI shielding implementation |
1.27. |
AiP for 5G mmWave infrastructure shipment forecast 2023-2034 |
1.28. |
AiP for mmWave 5G infrastructure shipment forecast by packaging technology 2024-2034 |
1.29. |
5G CPE mmWave AiP module shipment forecast by packaging technology |
1.30. |
AiP module shipment in mmWave-compatible smartphones by packaging technology 2023-2034 |
1.31. |
Summary: Choices of packaging technology for AiP |
1.32. |
Roadmap for antenna packaging development for 6G |
1.33. |
mmWave AiP ecosystem |
2. |
INTRODUCTION TO PACKAGING TECHNOLOGIES |
2.1. |
General electronic packaging - an overview |
2.2. |
Advanced semiconductor packaging - an overview |
2.3. |
Overview of semiconductor packaging technologies |
2.4. |
System in Package (SIP) |
2.5. |
System in Package (SiP) |
2.6. |
System-in-package enabling technologies for mobile |
3. |
5G AND 6G: OVERVIEW |
3.1. |
5G&6G development and standardization roadmap |
3.2. |
Spectrum Characteristics From 2G to 6G |
3.3. |
6G performance with respect to 5G |
3.4. |
5G |
3.5. |
Two types of 5G: Sub-6 GHz and mmWave |
3.6. |
Mobile Telecommunication Spectrum and Network Deployment Strategy |
3.7. |
5G Commercial/Pre-commercial Services by Frequency (by end of 2023) |
3.8. |
Drivers for Ultra Dense Network (UDN) Deployment in 5G |
3.9. |
5G base station types: Macro cells and small cells |
3.10. |
Range/data rates for 5G base station |
3.11. |
Three types of 5G services |
3.12. |
5G brings in new use cases beyond mobile applications |
3.13. |
5G for home: Fixed wireless access (FWA) |
3.14. |
5G Customer Premise Equipment (CPE) |
3.15. |
The main technique innovations in 5G |
3.16. |
Overview of challenges, trends and innovations for high frequency communication (mmWave & THz) devices |
3.17. |
5G supply chain overview |
3.18. |
6G |
3.19. |
Beyond 5G Wireless - the pros and the cons |
3.20. |
Summary of Key 6G Activities and Future Roadmap |
3.21. |
Overview of key technologies that enable THz communication |
3.22. |
Short and long term technical targets for 6G radio |
3.23. |
6G - an overview of key applications |
4. |
BEAMFORMING FOR MMWAVE COMMUNICATION |
4.1. |
Beamforming required for mmWave communication |
4.2. |
How to create beamforming in mmWave? |
4.3. |
Beamforming Technology Options: Analog, Digital, or Hybrid? - 1 |
4.4. |
Beamforming Technology Options: Analog, Digital, or Hybrid? - 2 |
4.5. |
Achieve mmWave beamforming with phased array design |
4.6. |
5G Sub-6 vs mmWave: Different beamforming approaches |
5. |
PHASED ARRAY TECHNOLOGY |
5.1. |
Navigating Challenges and Solutions in mmWave phased array system |
5.2. |
Antenna technology |
5.3. |
Antenna size shrinks with higher frequency |
5.4. |
System channel capacity |
5.5. |
Key metrics that predict the antenna performance |
5.6. |
Overview of antenna design considerations |
5.7. |
Choices of antenna type |
5.8. |
Antenna type benchmark |
5.9. |
Key aspects of phased array antenna packaging consideration |
5.10. |
RF front-end technology |
5.11. |
RF front-end for mmWave phased array - 1 |
5.12. |
RF front-end for mmWave phased array - 2 |
5.13. |
mmWave RF beamformer (beamforming integrated circuit (BFIC)) |
5.14. |
mmWave BFIC suppliers for 5G infrastructures |
5.15. |
Choices of semiconductors for mmWave phased array |
5.16. |
Five forces analysis of the 5G mmWave RF module market |
5.17. |
Integration |
5.18. |
Phased array antenna front-end density |
5.19. |
Phased array antenna architecture |
5.20. |
Integration requirement for phased array |
5.21. |
A modular approach to phased array scaling |
5.22. |
Modular phased array on flexile LCP substrate |
5.23. |
Example: A Scalable Heterogeneous phase array AiP Module - IBM |
5.24. |
Considerations related to scaling phased arrays |
5.25. |
Summary of phase array technology for mmWave |
6. |
PHASED ARRAY ANTENNA PACKAGING TECHNOLOGIES |
6.1. |
Introduction |
6.1.1. |
Challenges and trends for mmWave phased array |
6.1.2. |
Antenna packaging requirement |
6.1.3. |
Antenna Integration Challenges in mmWave phased array |
6.1.4. |
Benchmarking three antenna packaging technologies |
6.2. |
Antenna Substrate Technology |
6.2.1. |
The goal of next generation phased array |
6.2.2. |
Key Substrate Features Impacting Phased Array Antenna Performance |
6.2.3. |
Impact of the number of metal layers and L/S features on insertion loss |
6.2.4. |
Via dimension |
6.2.5. |
Bumping technology |
6.2.6. |
Evolution of bumping technologies |
6.2.7. |
Overview of low-loss materials for phased array substrate |
6.2.8. |
Dk and Df comparison of material for phased array substrate |
6.2.9. |
Other Material Requirement for Phased Array Substrate |
6.2.10. |
Effect of dielectric material on antenna package thickness - 1 |
6.2.11. |
ページTOPに戻る
本レポートと同分野(半導体)の最新刊レポート
- 半導体マイクロ部品の世界市場 2024-2028
- ディスクリートダイオードの世界市場 2024-2028
- チップレット技術 2025-2035技術、ビジネスチャンス、アプリケーション
- 先端半導体パッケージングの材料とプロセス 2025-2035年:技術、プレーヤー、予測
- Medical Power Supply Devices Market by Product Type, End-Users, and Geography (North America, Europe, Asia Pacific, Latin America, and the Middle East and Africa): Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2024-2033
- Chipless RFID Market by Product Type, End-Users, and Geography (North America, Europe, Asia Pacific, Latin America, and the Middle East and Africa): Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2024-2031
- パワーオーバーイーサネット(PoE)チップセット市場:製品タイプ別、エンドユーザー別、地域別(北米、欧州、アジア太平洋地域、中南米、中東・アフリカ):世界の産業分析、規模、シェア、成長、動向、予測、2024-2031年
- コネクテッドTV市場:製品タイプ、エンドユーザー、地域別(北米、欧州、アジア太平洋地域、中南米、中東・アフリカ):世界の産業分析、規模、シェア、成長、動向、予測、2024-2031年
- 採掘ロボット市場:製品タイプ、エンドユーザー、地域別(北米、欧州、アジア太平洋地域、中南米、中東・アフリカ):世界の産業分析、規模、シェア、成長、動向、予測、2024-2031年
- シリコンキャパシタ市場:製品タイプ、エンドユーザー、地域別(北米、欧州、アジア太平洋地域、中南米、中東・アフリカ):世界の産業分析、規模、シェア、成長、動向、予測、2024-2033年
IDTechEx社の半導体、コンピュータ、AI - Semiconductors, Computing, AI分野での最新刊レポート
本レポートと同じKEY WORD(5G)の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
IDTechEx社はどのような調査会社ですか?
IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|