世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

1000マイル(1600km)二次電池式電気自動車 2021-2041年


Routes to 1000 Mile (1600km) Battery Electric Cars 2021-2041

この調査レポートは、電動の長距離走行車がどのように太陽光パネル搭載の車体を軽量化、簡素化したか、どのように新規部品や進化したバッテリー用ハードウェアとソフトウェアの産業にビジネスチャンスを生み出... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2021年6月1日 US$6,500
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報・注文方法はこちら
298 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。

下記、日本語のページは自動翻訳を利用し作成しています。


 

サマリー

この調査レポートは、電動の長距離走行車がどのように太陽光パネル搭載の車体を軽量化、簡素化したか、どのように新規部品や進化したバッテリー用ハードウェアとソフトウェアの産業にビジネスチャンスを生み出すのか詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  1. 全体概要および結論
  2. はじめに
  3. テスラの総合的アプローチ
  4. 範囲を拡大する簡素化、効率、軽量化
  5. 範囲を拡大したソーラーカー
Report Details
Fast charging is all the talk now but doubling then trebling the range is seismic. The world solves its problems by eliminating infrastructure. The 285 page IDTechEx report, "Routes to 1000 Mile (1600km) Battery Electric Cars 2021-2041" spells it out.
 
The report answers such questions as:
 
  • Why is range improvement an ongoing, primary car battleground?
  • What are the best ways of making affordable cars with 1000mile (1600km) range and when will it happen?
  • What percentage of cars will have what best range 2021-2041?
  • What percentage contributions from each technology and who leads?
  • Detail on emerging simplification, lightweighting, solar bodywork, new components, batteries?
  • What is the technology roadmap by year to achieving these ranges 2021-2041?
  • Best ranges are currently achieved in different ways. How can we combine them?
  • What other options will emerge from the research pipeline. When, from whom?
  • What to believe about solid state batteries. Critically compare and predict?
  • Decade of huge improvement in lithium-ion battery format, software, chemistry, cost. Detail and timing?
  • What about supercapacitors, multifunctional composites, the two zero-emission range-extender options?
  • Lessons from 30 different approaches from 30 vehicle companies appraised?
 
IDTechEx heavily discounts many promises, given the history of over-optimism, but it predicts strengthening demand for range, giving the many reasons why, and huge progress towards it. Learn how the technologies enabling long range bring other delights. Solar bodywork gives gentle users travel without ever using a charging station and the first get-you-home feature. If you drain the battery, you just wait and the body charges the car enough to get to a charger. Lightweighting aids acceleration and cost. The day is coming when there is no reason to buy a car that needs frequent charging.
 
Researched by multilingual PhD level IDTechEx analysts worldwide, the unique 285 page IDTechEx report, "Routes to 1000Mile (1600km) Battery Electric Cars 2021-2041" starts with an Executive Summary and Conclusions. Here you see the many reasons for increasing maximum range, the existing and the planned enabling technologies. Detailed infograms show trends, achievements, research pipeline with roadmaps 2021-2041. See when there will be wide availability of given long ranges and the percentage of cars with them. Quantified are the four primary contributors to widely-available range being 760 miles in 2031, up a startling 2.4 times on today. IDTechEx calculations are discounted by factoring in past over-promising by developers and OEMs and by deep analysis of technical and scaleup challenges and solutions ahead. For example, contrary to popular understanding, the next decade is not primarily about solid state batteries though they figure strongly in 2031-2041 forecasts and roadmaps presented for range extension.
 
Introduction
Chapter 2 Introduction concerns perpetual cars, relevant smart city issues, geopolitical implications, iterative methodology for introducing range-extending technologies. A sensible starting point for the detail is Tesla, the world's most valuable auto company, because it got there largely by offering longest range and being exclusively focussed on battery-electric vehicles.
 
Tesla Holistic Approach
Chapter 3 "Tesla Holistic Approach" describes how it has achieved range by many small things such as cable elimination, more efficient motors, low drag factor, best batteries. See how it will go much further with massive simplification beyond those giant aluminium diecastings. Read its advice on how to design motors. Then come chapters on the technologies emerging with many new examples.
 
Simplification and lightweighting
Chapter 4 is on simplification and lightweighting to increase range. See in-wheel and eAxle motors with integrated power electronics, voltage increase shrinking cables and motors, structural energy storage, in-mold, 3D, transparent and edit-able electronics and electrics, merging components, new battery-cooling achievements, multi-functional composites. This is a 20 year view including Rivian, VW Group and other innovators. It is supported by a detailed jargon buster at the start of the report and by company profiles.
 
Solar cars with increased range
Chapter 5 concerns solar cars with increased range. This just got serious with major moves by Hyundai, Tesla, Toyota, VW Group and other giants plus startups selling solar vehicles, not just dreaming. How did Sono Motors get over 13,000 orders by emphasising all-over solar? The many solar formats such as film-wrap or load-bearing are critically appraised and the roadmaps and benefits are compared now and in future, even unfolding, sun tracking and super-efficient versions. Chapter 6 dives into the chemistries with many actual examples of single crystal silicon, CIGS and GaAs on cars, comparison charts, edit-able, multijunction and other options even metamaterial-boosting and comparison of solar cars that never plug in.
 
Advanced energy storage
The 26 pages of chapter 7 deeply examine batteries and supercapacitors increasing range. Here is the structural battery, module elimination, potential disruptors to lithium-ion quantified and criticised, questioning trumpeted solid-state car batteries promised in cars 2024-6. See academic figures for energy density improvement by chemistry into the future then IDTechEx prediction of commercially available energy density by year.
 
Future thermal management
Chapter 8 presents range increases from future thermal management.
 
Company profiles
Chapter 9 gives 20 company profiles each accompanied by SWOT analysis. This focuses on what they are doing to extend car ranges.


ページTOPに戻る


目次

 

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Purpose of this report
1.2. The race is on. Why?
1.3. Primary conclusions: general
1.4. Primary conclusions: long-range technology options
1.5. Routes to more energy/ longer range by harvesting external energy
1.6. Routes to more energy/ longer range by zero-emission range extenders
1.7. Routes to more energy/ longer range by new components
1.8. Routes to more energy/ longer range by vehicle design and materials
1.9. Market forecasts and technology timelines for long range BEVs 2021-2041
1.9.1. New range-extending technology options widely adopted 2021-2041
1.9.2. When several manufacturers mass produce EPA/WLTP long range BEV cars 2021-2041
1.9.3. Commercialisation timeline for edit-able electronics 2020-2041
1.9.4. Application roadmap of perovskite photovoltaics
1.10. Market forecast for long range premium BEV cars including Tesla
1.10.1. Number of long range units sold globally by year as % of all cars 500 mile and 1000 mile range 2021-2041
1.10.2. Global photovoltaic technology share $bn 2041 for all markets including cars
2. INTRODUCTION
2.1. Perpetual cars
2.2. Coping with the red-hot city donut
2.3. Major geopolitical implications
2.4. Global differences
2.5. No - not fuel cells
2.6. Trend to larger more power-hungry cars
2.7. Progress now
2.8. Complexity reduced
2.9. Increased range means limit the increase in parts
2.10. Iterative improvement
2.11. Solar is very powerful
2.12. Solar car patents
2.13. New battery materials increase range
3. TESLA HOLISTIC APPROACH
3.1. Overview
3.2. Tesla holistic approach
3.3. Tesla structural battery and next chemistries and processes
3.4. Tailored battery chemistries
3.5. Tesla Model 3 and Y greatly simplified by large diecasting
3.6. Tesla autonomy simplification - no radar or lidar
3.7. Tesla motor designs - performance with range
4. SIMPLIFICATION, EFFICIENCY, LIGHTWEIGHTING TO INCREASE RANGE
4.1. Overview
4.2. Improving and integrating motors to increase range
4.2.1. eAxles integrate many components
4.2.2. Controls integrated with motors
4.2.3. In-wheel motor systems replace many parts
4.2.4. Less motor cooling increases range
4.2.5. Voltage increase improves range
4.3. Thermal management can increase range
4.4. Merging aircon compressor and motor
4.5. Power cable weight reduction: Aluminium graphene, high voltage, intentions, issues
4.6. Metamaterials and metal patterning for simplification and lightweighting
4.7. Multifunctional composites
4.8. Structural electronics
4.9. Routes to self-healing composite parts
4.10. 3D electronics, electrics, optics, magnetics
4.10.1. 3D printing, In-Mold Structural Electronics™
4.10.2. Edit-able electronic and electric smart materials
4.11. Transparent electronics and electrics
4.11.1. Overview
4.11.2. How transparent and translucent materials in cars increase range and more
4.11.3. RadarGlass™
4.11.4. SmartMesh™ transparent heater wrap increasing range 6%
4.11.5. Conclusions
4.12. Structural batteries and supercapacitors
5. SOLAR CARS WITH INCREASED RANGE
5.1. Basics
5.1.1. Definitions and history
5.1.2. Amount of range increase by solar car bodywork
5.1.3. Benchmarking
5.2. Tesla solar Cybertruck and alternatives
5.3. Mainstream solar cars and car-like vehicles
5.3.1. Aptera solar car
5.3.2. Economia Pakistan
5.3.3. Fisker USA
5.3.4. Fraunhofer ISE Germany
5.3.5. Hyundai-Kia Korea
5.3.6. Karma USA no longer
5.3.7. Lightyear Netherlands
5.3.8. Manipal IT India
5.3.9. Sono Motors Germany
5.3.10. Toyota Japan
5.3.11. Stella Lux, Stella Era, Stella Vie Netherlands
5.4. Conclusions
6. PHOTOVOLTAIC VEHICLE TECHNOLOGIES
6.1. New geometry can greatly increase range
6.2. Choice of chemistry
6.3. Cell geometries of transparent photovoltaics
6.4. Efficiency and affordability
6.5. What is fitted on satellites appears on cars later
6.6. Single junction PV options beyond silicon
6.7. scSi PV on vehicles
6.8. CIGS PV on vehicles
6.9. Solar racers show the future - triple junction lll-V, solar on sides
6.10. GaAs PV on vehicles
6.11. Leading solar car specifications: Sono, Lightyear and research by Toyota
6.12. Potential for multi-junction solar on cars
6.13. Photovoltaics progresses to become paint
6.14. Materials problems and opportunities being pursued
6.14.1. Overview
6.14.2. CIGS
6.14.3. Perovskite photovoltaics overlayers and transparent film
6.14.4. lll-V materials
6.14.5. Metamaterial boosts photovoltaic cooling and capture increasing range
6.14.6. Examples of EIEV technologies in cars
 

ページTOPに戻る


 

Summary

この調査レポートは、電動の長距離走行車がどのように太陽光パネル搭載の車体を軽量化、簡素化したか、どのように新規部品や進化したバッテリー用ハードウェアとソフトウェアの産業にビジネスチャンスを生み出すのか詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  1. 全体概要および結論
  2. はじめに
  3. テスラの総合的アプローチ
  4. 範囲を拡大する簡素化、効率、軽量化
  5. 範囲を拡大したソーラーカー
Report Details
Fast charging is all the talk now but doubling then trebling the range is seismic. The world solves its problems by eliminating infrastructure. The 285 page IDTechEx report, "Routes to 1000 Mile (1600km) Battery Electric Cars 2021-2041" spells it out.
 
The report answers such questions as:
 
  • Why is range improvement an ongoing, primary car battleground?
  • What are the best ways of making affordable cars with 1000mile (1600km) range and when will it happen?
  • What percentage of cars will have what best range 2021-2041?
  • What percentage contributions from each technology and who leads?
  • Detail on emerging simplification, lightweighting, solar bodywork, new components, batteries?
  • What is the technology roadmap by year to achieving these ranges 2021-2041?
  • Best ranges are currently achieved in different ways. How can we combine them?
  • What other options will emerge from the research pipeline. When, from whom?
  • What to believe about solid state batteries. Critically compare and predict?
  • Decade of huge improvement in lithium-ion battery format, software, chemistry, cost. Detail and timing?
  • What about supercapacitors, multifunctional composites, the two zero-emission range-extender options?
  • Lessons from 30 different approaches from 30 vehicle companies appraised?
 
IDTechEx heavily discounts many promises, given the history of over-optimism, but it predicts strengthening demand for range, giving the many reasons why, and huge progress towards it. Learn how the technologies enabling long range bring other delights. Solar bodywork gives gentle users travel without ever using a charging station and the first get-you-home feature. If you drain the battery, you just wait and the body charges the car enough to get to a charger. Lightweighting aids acceleration and cost. The day is coming when there is no reason to buy a car that needs frequent charging.
 
Researched by multilingual PhD level IDTechEx analysts worldwide, the unique 285 page IDTechEx report, "Routes to 1000Mile (1600km) Battery Electric Cars 2021-2041" starts with an Executive Summary and Conclusions. Here you see the many reasons for increasing maximum range, the existing and the planned enabling technologies. Detailed infograms show trends, achievements, research pipeline with roadmaps 2021-2041. See when there will be wide availability of given long ranges and the percentage of cars with them. Quantified are the four primary contributors to widely-available range being 760 miles in 2031, up a startling 2.4 times on today. IDTechEx calculations are discounted by factoring in past over-promising by developers and OEMs and by deep analysis of technical and scaleup challenges and solutions ahead. For example, contrary to popular understanding, the next decade is not primarily about solid state batteries though they figure strongly in 2031-2041 forecasts and roadmaps presented for range extension.
 
Introduction
Chapter 2 Introduction concerns perpetual cars, relevant smart city issues, geopolitical implications, iterative methodology for introducing range-extending technologies. A sensible starting point for the detail is Tesla, the world's most valuable auto company, because it got there largely by offering longest range and being exclusively focussed on battery-electric vehicles.
 
Tesla Holistic Approach
Chapter 3 "Tesla Holistic Approach" describes how it has achieved range by many small things such as cable elimination, more efficient motors, low drag factor, best batteries. See how it will go much further with massive simplification beyond those giant aluminium diecastings. Read its advice on how to design motors. Then come chapters on the technologies emerging with many new examples.
 
Simplification and lightweighting
Chapter 4 is on simplification and lightweighting to increase range. See in-wheel and eAxle motors with integrated power electronics, voltage increase shrinking cables and motors, structural energy storage, in-mold, 3D, transparent and edit-able electronics and electrics, merging components, new battery-cooling achievements, multi-functional composites. This is a 20 year view including Rivian, VW Group and other innovators. It is supported by a detailed jargon buster at the start of the report and by company profiles.
 
Solar cars with increased range
Chapter 5 concerns solar cars with increased range. This just got serious with major moves by Hyundai, Tesla, Toyota, VW Group and other giants plus startups selling solar vehicles, not just dreaming. How did Sono Motors get over 13,000 orders by emphasising all-over solar? The many solar formats such as film-wrap or load-bearing are critically appraised and the roadmaps and benefits are compared now and in future, even unfolding, sun tracking and super-efficient versions. Chapter 6 dives into the chemistries with many actual examples of single crystal silicon, CIGS and GaAs on cars, comparison charts, edit-able, multijunction and other options even metamaterial-boosting and comparison of solar cars that never plug in.
 
Advanced energy storage
The 26 pages of chapter 7 deeply examine batteries and supercapacitors increasing range. Here is the structural battery, module elimination, potential disruptors to lithium-ion quantified and criticised, questioning trumpeted solid-state car batteries promised in cars 2024-6. See academic figures for energy density improvement by chemistry into the future then IDTechEx prediction of commercially available energy density by year.
 
Future thermal management
Chapter 8 presents range increases from future thermal management.
 
Company profiles
Chapter 9 gives 20 company profiles each accompanied by SWOT analysis. This focuses on what they are doing to extend car ranges.


ページTOPに戻る


Table of Contents

 

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Purpose of this report
1.2. The race is on. Why?
1.3. Primary conclusions: general
1.4. Primary conclusions: long-range technology options
1.5. Routes to more energy/ longer range by harvesting external energy
1.6. Routes to more energy/ longer range by zero-emission range extenders
1.7. Routes to more energy/ longer range by new components
1.8. Routes to more energy/ longer range by vehicle design and materials
1.9. Market forecasts and technology timelines for long range BEVs 2021-2041
1.9.1. New range-extending technology options widely adopted 2021-2041
1.9.2. When several manufacturers mass produce EPA/WLTP long range BEV cars 2021-2041
1.9.3. Commercialisation timeline for edit-able electronics 2020-2041
1.9.4. Application roadmap of perovskite photovoltaics
1.10. Market forecast for long range premium BEV cars including Tesla
1.10.1. Number of long range units sold globally by year as % of all cars 500 mile and 1000 mile range 2021-2041
1.10.2. Global photovoltaic technology share $bn 2041 for all markets including cars
2. INTRODUCTION
2.1. Perpetual cars
2.2. Coping with the red-hot city donut
2.3. Major geopolitical implications
2.4. Global differences
2.5. No - not fuel cells
2.6. Trend to larger more power-hungry cars
2.7. Progress now
2.8. Complexity reduced
2.9. Increased range means limit the increase in parts
2.10. Iterative improvement
2.11. Solar is very powerful
2.12. Solar car patents
2.13. New battery materials increase range
3. TESLA HOLISTIC APPROACH
3.1. Overview
3.2. Tesla holistic approach
3.3. Tesla structural battery and next chemistries and processes
3.4. Tailored battery chemistries
3.5. Tesla Model 3 and Y greatly simplified by large diecasting
3.6. Tesla autonomy simplification - no radar or lidar
3.7. Tesla motor designs - performance with range
4. SIMPLIFICATION, EFFICIENCY, LIGHTWEIGHTING TO INCREASE RANGE
4.1. Overview
4.2. Improving and integrating motors to increase range
4.2.1. eAxles integrate many components
4.2.2. Controls integrated with motors
4.2.3. In-wheel motor systems replace many parts
4.2.4. Less motor cooling increases range
4.2.5. Voltage increase improves range
4.3. Thermal management can increase range
4.4. Merging aircon compressor and motor
4.5. Power cable weight reduction: Aluminium graphene, high voltage, intentions, issues
4.6. Metamaterials and metal patterning for simplification and lightweighting
4.7. Multifunctional composites
4.8. Structural electronics
4.9. Routes to self-healing composite parts
4.10. 3D electronics, electrics, optics, magnetics
4.10.1. 3D printing, In-Mold Structural Electronics™
4.10.2. Edit-able electronic and electric smart materials
4.11. Transparent electronics and electrics
4.11.1. Overview
4.11.2. How transparent and translucent materials in cars increase range and more
4.11.3. RadarGlass™
4.11.4. SmartMesh™ transparent heater wrap increasing range 6%
4.11.5. Conclusions
4.12. Structural batteries and supercapacitors
5. SOLAR CARS WITH INCREASED RANGE
5.1. Basics
5.1.1. Definitions and history
5.1.2. Amount of range increase by solar car bodywork
5.1.3. Benchmarking
5.2. Tesla solar Cybertruck and alternatives
5.3. Mainstream solar cars and car-like vehicles
5.3.1. Aptera solar car
5.3.2. Economia Pakistan
5.3.3. Fisker USA
5.3.4. Fraunhofer ISE Germany
5.3.5. Hyundai-Kia Korea
5.3.6. Karma USA no longer
5.3.7. Lightyear Netherlands
5.3.8. Manipal IT India
5.3.9. Sono Motors Germany
5.3.10. Toyota Japan
5.3.11. Stella Lux, Stella Era, Stella Vie Netherlands
5.4. Conclusions
6. PHOTOVOLTAIC VEHICLE TECHNOLOGIES
6.1. New geometry can greatly increase range
6.2. Choice of chemistry
6.3. Cell geometries of transparent photovoltaics
6.4. Efficiency and affordability
6.5. What is fitted on satellites appears on cars later
6.6. Single junction PV options beyond silicon
6.7. scSi PV on vehicles
6.8. CIGS PV on vehicles
6.9. Solar racers show the future - triple junction lll-V, solar on sides
6.10. GaAs PV on vehicles
6.11. Leading solar car specifications: Sono, Lightyear and research by Toyota
6.12. Potential for multi-junction solar on cars
6.13. Photovoltaics progresses to become paint
6.14. Materials problems and opportunities being pursued
6.14.1. Overview
6.14.2. CIGS
6.14.3. Perovskite photovoltaics overlayers and transparent film
6.14.4. lll-V materials
6.14.5. Metamaterial boosts photovoltaic cooling and capture increasing range
6.14.6. Examples of EIEV technologies in cars
 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD(batteries)の最新刊レポート


よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/07/03 10:27

162.61 円

175.23 円

209.12 円

ページTOPに戻る