世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Zero Emission Electric Vehicle Charging: Off-Grid 2020-2040

Zero Emission Electric Vehicle Charging: Off-Grid 2020-2040


ゼロエミッション電動車両充電:オフグリッド 2020-2040年:マイクログリッドとオンボード充電:陸水空

このレポートはゼロエミッション電動車両充電の市場を調査し、太陽光や風力を使った技術や用途について言及しています。     Report Details The new IDTechEx report, "Z... もっと見る

 

 

出版社 出版年月 価格 納期 ページ数 言語
IDTechEx
アイディーテックエックス
2020年3月24日 お問い合わせください
ライセンス・価格情報
注文方法はこちら
お問合わせください 237 英語

※価格はデータリソースまでお問い合わせください。


 

Summary

このレポートはゼロエミッション電動車両充電の市場を調査し、太陽光や風力を使った技術や用途について言及しています。
 
 
Report Details
The new IDTechEx report, "Zero-Emission Electric Vehicle Charging: Off-Grid 2020-2040" examines how the electric vehicle business is finding it profitable to respond to criticism that clean vehicles should not be charged with fossil fuel electricity. The purpose of this 230 page report is to enable materials, component, vehicle and infrastructure suppliers and putative suppliers and all others in the value chain to understand this large emerging opportunity for off-grid zero-emission (OGZE) charging of electric vehicles land, water and airborne.
 
This is starting to take two basic forms. First is ZE microgrids that are off-grid or capable of being islanded (using the grid as backup called "fringe-of-grid") that charge vehicles - eventually $15 billion in yearly sales on IDTechEx analysis. Second is land and marine vehicles and aircraft progressing to being energy-independent pure-electric vehicles (EIEV), another large emerging market. Some readers need a very long-term view so we look at 2020-2040. The methodology of the new research covering over 100 organisations consists mainly of ongoing global visits and interviews by our multi-lingual, PhD level analysts, use of privileged databases including presentations at our own events on the subject. IDTechEx is an independent analyst company located worldwide and with no conflicts of interest.
 
The executive summary and conclusions presents easily understood, new infograms and graphs revealing off-grid technology options, underlying needs and trends 2020-2040 and which types of EV are suited to OGZE and therefore the primary focus of the report. Learn the types of location matched to the best solutions. Primary conclusions are given for format, chemistry, physics, technology popularity, strategy of photovoltaic leaders, 13 new formats and power electronics 2020-2040. Learn the place of DC microgrids, existing microgrid cost breakdown and action arising. All of this is brought alive by examples of best practice and, given the large off-road opportunity in seven identified industries, the farm, construction site and mine of the future are drawn. Leading solar vehicles are compared and trends explained. Technology roadmap, OGZE charger-microgrid business and solar car business are forecasted 2020-2040.
 
The introduction covers microgrid design from in-a-box to distributed microgrids and why solar usually wins for vehicle charging stations but new options are added. Understand new wind power and energy independent vehicles. Photovoltaic technologies 2020-2040 are compared in Chapter 3 with silicon winning, single crystal gaining share and identified market niches for other options. Chapter 4 explains why copper indium gallium diselenide is carving one of the largest niches for vehicle charging. Chapter 5 addresses wild cards: 2D semiconductors, quantum dots, rectenna arrays. Chapter 6 closely examines where new PV formats such as thin concrete, solar roads and windows are headed, profiling 15 activities.
 
Ocean wave power and tidal power in river or sea is now modular and very useful for charging boats, ships, sea-floor mining vehicles and other vehicles near or under the sea so Chapter 7 thoroughly explores this and the progress with tethered drones making electricity with many examples and predictions.
 
Chapter 8 explains the many containerised microgrids charging EVs. Chapter 9 critically presents examples of ZE microgrids using wind and solar. Chapter 10 does the same for other ZE OG microgrids suitable for vehicle charging then Chapter 11 explains why solar vehicles have become mainstream: land, water, air with examples. The report ends with Chapter 12, "Energy positive ZE and ZE fuel cell vehicles without fuel supply chain".


ページTOPに戻る


Table of Contents

Table of Contents
1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Purpose of this report
1.2. Comparison of off-grid technology options
1.3. New power generating technology kVA comparison
1.4. Much more than a story about cleaner chargers
1.5. Primary conclusions: Underlying needs and trends 2020-2040
1.6. Primary conclusions: making the electricity
1.7. Why zero-emission?
1.8. Primary conclusions: off-grid charging by type of location
1.9. Primary conclusions: basic technological options
1.10. Primary conclusions: format, chemistry, physics 2020-2040
1.11. Technology popularity 2020-2040
1.12. Preferred solar technologies for microgrids and vehicles
1.13. Where the PV leaders are headed
1.14. Best practice: Gridserve solar/ battery forecourts UK
1.15. New high power photovoltaic formats
1.15.1. Best practice: EV ARC solar tracking car charger
1.16. Wind power for vehicle charging
1.17. Advanced power electronics becomes important
1.18. DC microgrids slowly coming in
1.19. Primary conclusions: cost breakdown and action arising
1.20. Construction site of the future arriving now with moveable zero emission gensets
1.21. Farm of the future arriving now
1.22. Self-powered, robotic indoor farming
1.23. Mine of the future
1.24. Primary conclusions: solar vehicles are microgrids on wheels
1.25. Market forecasts and technology roadmap 2020-2040
1.25.1. Global charging infrastructure 2020: on-road vehicles
1.25.2. Existing charging stations that could go zero-emission off-grid
1.25.3. Technology and rollout roadmap 2020-2040
1.25.4. OG ZE charging stations number, unit value, market value 2020-2040
1.25.5. Background information: global microgrid market
1.25.6. Solar cars number, unit value, market value 2019-2030
1.25.7. Electric vehicle forecast 2020-2030 number k for 103 categories
2. INTRODUCTION
2.1. Increased versatility but winners and losers
2.2. Microgrid design
2.2.1. Basic configurations and V2G
2.3. Why solar usually wins for vehicle charging stations
2.4. Decentralised microgrids
2.5. Below 100kW wind turbines have become niche
2.6. Wind turbine choices
2.7. Electric vehicle powertrains
3. PHOTOVOLTAIC TECHNOLOGY AND FORMATS FOR CHARGING EVS 2020-2040
3.1. Benefits sought and leaders in providing them
3.2. Photovoltaic trends and priorities 2020-2040
3.2.1. Silicon the winner so far: variants and successes
3.3. Wafer or thin film PV 2020-2040
3.4. Thin film more efficient than rigid silicon 2030-2040?
3.5. Five basic PV mechanisms: status, benefits, challenges, market potential
3.6. Important PV options beyond silicon compared
3.7. Production readiness of Si alternatives for mainstream vehicle charging
3.8. Best research-cell efficiencies 1975-2020
3.9. Choice of format
3.10. Examples of formats
3.11. Flexible thin film versions slowly gain share
4. COPPER INDIUM GALLIUM DISELENIDE BECOMES IMPORTANT
4.1. Overview
4.2. Ultra-light flexible CIGS
4.3. CIGS PV in action charging vehicles in four countries
4.4. Hurricane proof mobile microgrid MIT USA in Puerto Rico
4.5. Renovagen microgrid unrolls
4.6. CIGS building facades
5. WILD CARDS: 2D SEMICONDUCTORS, QUANTUM DOTS, RECTENNA ARRAYS
5.1. 2D semiconductor nanomaterials
5.2. Quantum dot
5.3. Rectenna nantenna-diode
6. NEW FORMATS: CONCRETE, SOLAR ROADS AND WINDOWS
6.1. Thin concrete solar: ETH Zurich
6.2. Solar roads charge EVs
6.2.1. Pavenergy China
6.2.2. The Netherlands introduces SolaRoad paving - March 2019
6.3. Multi-mode roads and other structures
6.3.1. Solar Roadways USA
6.4. Gantry vs road surface PV
6.5. Transparent and translucent PV
6.6. Solar windows
6.6.1. Basic configurations
6.6.2. Review of 13 organisations
6.7. SolarGaps solar blinds
7. NEW RELOCATABLE WIND, RIVER AND SEA POWER FOR CHARGING EVS
7.1. Zero emission microgrids: solar, water, wind reinvented
7.2. New options beyond solar: relocatable, much less intermittent
7.3. Open tide "tide stream" power options mimic wind power options
7.4. Airborne Wind Energy developers
7.4.1. Why AWE may be better than a conventional wind turbine
7.4.2. eWind Solutions specifically targets AWE for farms
7.5. Open sea wave power technologies
8. CONTAINERISED MICROGRIDS CHARGING EVS
8.1. Transportable microgrids for military, live events, easier installations
8.2. Scale Microgrid
8.3. VERGE and many with expanding solar
8.4. Excellerate
8.5. OffGridBox
9. ZE MICROGRIDS USING WIND AND SOLAR
9.1. Overview
9.2. Bad practice
9.3. Good practice: Porto Santo Island Portugal
9.4. Borkum Island Germany
9.5. Kodiak Island Alaska
9.6. King Island Tasmania
9.7. eVcentres UK
9.8. SmartGreenCharge Highways Franc

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/01/22 10:26

156.55 円

163.61 円

196.14 円

ページTOPに戻る