農業における電動車両とロボティクス 2020-2030年:耕作、林業、トボティクス、ハイブリッド、純電動
Electric Vehicles and Robotics in Agriculture 2020-2030
このレポートは農業で使われる電動車両やロボティクス市場を調査し、新しい技術や用途の分析を行っています。
主な掲載内容 ※目次より抜粋
エグゼクティブサマリーと結論
... もっと見る
サマリー
このレポートは農業で使われる電動車両やロボティクス市場を調査し、新しい技術や用途の分析を行っています。
主な掲載内容 ※目次より抜粋
-
エグゼクティブサマリーと結論
-
イントロダクション
-
市場機会
-
農業、林業、芝で利用される電動車両
-
実現技術
-
農業向けゼロエミッションマイクログリッド
-
農業における自律走行車
-
自律のための技術:Lidar、Raderなど
Report Details
The new 215 page report, "Electric Vehicles and Robotics in Agriculture 2020-2030" is unique in its breadth and depth. It embraces farming, forestry and turf care in the form of robotics, some initially with diesel vehicles. Mostly however, hybrid and pure electric agricultural vehicles are covered, mostly not robotic as yet.
There is no nostalgia from the past or rambling text, the results of the research being presented mainly in new infograms, graphs and timelines all focussed on the present, including much news from 2020, and future to 2030. Grasp the challenges of this industry from Japan and China to the UK and USA and the remarkable new technologies and systems approaches being adopted and what comes next.
This report is intended to assist all in the value chains of the agricultural sector in the wide sense of including turf care and forestry. Its topic is electrification and robotics because most of the time the two go together and their effect on this industry is pivotal. The up-to-date interviews, analysis and forecasts were prepared by globe-trotting, multi-lingual IDTechEx analysts at PhD level. The depth is unprecedented but it is presented without equations, the emphasis being commercial and societal impact.
The 34 page Executive Summary and Conclusions is sufficient for those in a hurry, with a critical appraisal listing 14 forces on the industry, seven reasons for going electric being compared, two infograms of the farm of the future, detail on main trends such as precision and ultra-precision farming, 18 primary conclusions brought alive with tables and graphics, adoption timelines, patent trend graph. See 16 categories forecasted by units, unit price and market value 2020-2030.
The Introduction then looks at problems, needs, emissions, water shortage, food demand increase and change in mix, regional differences in crops and approaches, crop yield and farmer age, wage and tractor purchasing trends. Here is the electric vehicle powertrain choice emerging and types becoming favoured in agriculture all being mainly in pie charts, graphs, tables and infograms.
Chapter 3 concerns Opportunities. See the UK compared with Japan, the economics of agricultural machines, the interest in small, even swarming robots in fields and precision forms indoors. The value chain and robotics as a service are analysed.
Chapter 5 brings it alive with over 70 organisations making or developing electric and robotic vehicles for agriculture, forestry, turf electric vehicles compared. Specific comparisons include lawnmowing robots and weeding robots for farms, for example. Electric tractors are a particular focus with seven illustrated case studies. Planters, transporters and forestry are also illustrates and there are critical comparisons throughout.
Chapter 6 scopes the six key enabling technologies with the seventh - autonomy - being the subject of chapter 7. "Electric Vehicles and Robotics in Agriculture 2020-2030" will be the reference book of this industry, updates being regularly incorporated as the subject is now changing rapidly.
ページTOPに戻る
目次
Table of Contents
1. |
EXECUTIVE SUMMARY AND CONCLUSIONS |
1.1. |
Purpose of this report |
1.2. |
Primary conclusions: where we are headed |
1.3. |
Why we need electric agricultural vehicles |
1.4. |
Farm of the future arriving now |
1.5. |
Trends in types of farming |
1.6. |
Primary conclusions: impediments to change |
1.7. |
Primary conclusions: industrial trends EV and robotic |
1.8. |
Primary conclusions: regional |
1.9. |
Primary conclusions: technical |
1.10. |
Primary conclusions: agricultural EV adoption |
1.11. |
Patent analysis |
1.12. |
Market forecasts agriculture electric vehicles 2020-2030 - number thousand |
1.13. |
Market forecasts agriculture electric vehicles 2020-2030 - unit price $ thousand |
1.14. |
Market forecasts agriculture electric vehicles 2020-2030 - market value $ billion |
2. |
INTRODUCTION |
2.1. |
The problem with agriculture |
2.2. |
Needs and emissions |
2.3. |
Emission push for pure electric equipment |
2.4. |
Greenhouse and local emissions in agriculture |
2.5. |
Extreme water shortage |
2.6. |
Growing population and growing demand for food |
2.7. |
Agriculture by region |
2.8. |
Major crop yields are plateauing |
2.9. |
Aging farmer population and urban migration |
2.10. |
The case for indoor farming including vertical farming |
2.10.1. |
Challenges in vertical farming |
2.10.2. |
Indoor farming robotics experiments and concepts |
2.11. |
Powertrain trends for electric vehicles in agriculture |
2.12. |
LPWAN and IOT to EVs and assets |
3. |
OPPORTUNITIES |
3.1. |
View from the UK |
3.2. |
View from Japan |
3.3. |
Economics of agricultural machines |
3.4. |
Transition towards to swarms of small, slow, cheap robots |
3.5. |
Agricultural robotics and ultra precision = value chain upheaval |
3.6. |
Business models between RaaS and equipment sales |
4. |
AGRICULTURE, FORESTRY, TURF ELECTRIC VEHICLES IN ACTION |
4.1. |
Overview: drones, land EVs and swarming |
4.2. |
Transition to swarms of small, slow, cheap robots |
4.3. |
Swarming robots: land and air |
4.3.1. |
SAGA and SwarmFarm |
4.4. |
Low cost standard software: DroneAG |
4.5. |
Hopping drones: Crop Hopper |
4.6. |
Land based EVs for agriculture: Overview |
4.7. |
Turf care robots |
4.8. |
Electric robot weeders: FarmWise, Naio etc |
4.9. |
Tractors |
4.9.1. |
Overview |
4.9.2. |
Autonxt |
4.9.3. |
Belarus Tractors |
4.9.4. |
CNH Industrial |
4.9.5. |
Farmtrac |
4.9.6. |
Fendt (AGCO) |
4.9.7. |
John Deere |
4.9.8. |
STW |
4.10. |
Planters |
4.10.1. |
AGCO (Fendt) Xaver |
4.11. |
Transporters |
4.11.1. |
Alke |
4.11.2. |
Nelson Mandela University |
4.12. |
Forestry and turf |
4.12.1. |
Overview |
4.12.2. |
Forestry: Logset, Sennebogen |
5. |
ENABLING TECHNOLOGIES |
5.1. |
Seven key EV enabling technologies for agricultural EVs |
5.2. |
Traction motors |
5.2.1. |
Overview |
5.2.2. |
Choices of motor position |
5.3. |
Batteries and supercapacitors |
5.3.1. |
Overview |
5.3.2. |
Future W/kg vs Wh/kg 2020-2030 |
5.3.3. |
Energy density 2020-2030 |
5.3.4. |
Li-ion battery cost (industrial) $/kWh) 2005-2030 |
6. |
ZERO EMISSION MICROGRIDS FOR AGRICULTURE |
6.1. |
How to charge the vehicles: start with solar for zero emission |
6.2. |
Solar vs diesel cost analysis |
6.3. |
Solar bodywork: agricultural vehicles University of Sydney, Tesla |
6.4. |
Mobile solar gensets |
6.5. |
Envision Solar transportable solar charger tracks the sun |
6.6. |
Anatomy of a typical solar + battery microgrid |
6.7. |
Zero emission microgrids: solar, water, wind reinvented |
6.7.1. |
Overview |
6.7.2. |
New options beyond solar: relocatable, much less intermittent |
6.7.3. |
Open tide "tide stream" power options mimic wind power options |
6.7.4. |
Comparison of off-grid technology options |
6.7.5. |
New power generating technology kVA comparison |
6.7.6. |
Airborne Wind Energy developers |
6.7.7. |
Why AWE may be better than a conventional wind turbine |
6.7.8. |
eWind specifically targets AWE for farms |
6.7.9. |
Open sea wave power technologies for aquaculture |
7. |
AUTONOMOUS VEHICLES IN AGRICULTURE |
7.1. |
Agriculture autonomy by application |
7.2. |
Market and technology readiness by agricultural activity |
7.3. |
Driverless tractors: AGCO, ATC, Kubota, Yanmar, Kinze, CNH |
7.4. |
Robotic fresh fruit harvesting |
7.5. |
Robotic ultra precision weeding |
8. |
AUTONOMY TECHNOLOGY: LIDAR, RADAR ETC. |
8.1. |
Autonomy components and integration |
8.2. |
Lidars |
8.3. |
Radars |
8.4. |
AI software and computing platform |
ページTOPに戻る
Summary
このレポートは農業で使われる電動車両やロボティクス市場を調査し、新しい技術や用途の分析を行っています。
主な掲載内容 ※目次より抜粋
-
エグゼクティブサマリーと結論
-
イントロダクション
-
市場機会
-
農業、林業、芝で利用される電動車両
-
実現技術
-
農業向けゼロエミッションマイクログリッド
-
農業における自律走行車
-
自律のための技術:Lidar、Raderなど
Report Details
The new 215 page report, "Electric Vehicles and Robotics in Agriculture 2020-2030" is unique in its breadth and depth. It embraces farming, forestry and turf care in the form of robotics, some initially with diesel vehicles. Mostly however, hybrid and pure electric agricultural vehicles are covered, mostly not robotic as yet.
There is no nostalgia from the past or rambling text, the results of the research being presented mainly in new infograms, graphs and timelines all focussed on the present, including much news from 2020, and future to 2030. Grasp the challenges of this industry from Japan and China to the UK and USA and the remarkable new technologies and systems approaches being adopted and what comes next.
This report is intended to assist all in the value chains of the agricultural sector in the wide sense of including turf care and forestry. Its topic is electrification and robotics because most of the time the two go together and their effect on this industry is pivotal. The up-to-date interviews, analysis and forecasts were prepared by globe-trotting, multi-lingual IDTechEx analysts at PhD level. The depth is unprecedented but it is presented without equations, the emphasis being commercial and societal impact.
The 34 page Executive Summary and Conclusions is sufficient for those in a hurry, with a critical appraisal listing 14 forces on the industry, seven reasons for going electric being compared, two infograms of the farm of the future, detail on main trends such as precision and ultra-precision farming, 18 primary conclusions brought alive with tables and graphics, adoption timelines, patent trend graph. See 16 categories forecasted by units, unit price and market value 2020-2030.
The Introduction then looks at problems, needs, emissions, water shortage, food demand increase and change in mix, regional differences in crops and approaches, crop yield and farmer age, wage and tractor purchasing trends. Here is the electric vehicle powertrain choice emerging and types becoming favoured in agriculture all being mainly in pie charts, graphs, tables and infograms.
Chapter 3 concerns Opportunities. See the UK compared with Japan, the economics of agricultural machines, the interest in small, even swarming robots in fields and precision forms indoors. The value chain and robotics as a service are analysed.
Chapter 5 brings it alive with over 70 organisations making or developing electric and robotic vehicles for agriculture, forestry, turf electric vehicles compared. Specific comparisons include lawnmowing robots and weeding robots for farms, for example. Electric tractors are a particular focus with seven illustrated case studies. Planters, transporters and forestry are also illustrates and there are critical comparisons throughout.
Chapter 6 scopes the six key enabling technologies with the seventh - autonomy - being the subject of chapter 7. "Electric Vehicles and Robotics in Agriculture 2020-2030" will be the reference book of this industry, updates being regularly incorporated as the subject is now changing rapidly.
ページTOPに戻る
Table of Contents
Table of Contents
1. |
EXECUTIVE SUMMARY AND CONCLUSIONS |
1.1. |
Purpose of this report |
1.2. |
Primary conclusions: where we are headed |
1.3. |
Why we need electric agricultural vehicles |
1.4. |
Farm of the future arriving now |
1.5. |
Trends in types of farming |
1.6. |
Primary conclusions: impediments to change |
1.7. |
Primary conclusions: industrial trends EV and robotic |
1.8. |
Primary conclusions: regional |
1.9. |
Primary conclusions: technical |
1.10. |
Primary conclusions: agricultural EV adoption |
1.11. |
Patent analysis |
1.12. |
Market forecasts agriculture electric vehicles 2020-2030 - number thousand |
1.13. |
Market forecasts agriculture electric vehicles 2020-2030 - unit price $ thousand |
1.14. |
Market forecasts agriculture electric vehicles 2020-2030 - market value $ billion |
2. |
INTRODUCTION |
2.1. |
The problem with agriculture |
2.2. |
Needs and emissions |
2.3. |
Emission push for pure electric equipment |
2.4. |
Greenhouse and local emissions in agriculture |
2.5. |
Extreme water shortage |
2.6. |
Growing population and growing demand for food |
2.7. |
Agriculture by region |
2.8. |
Major crop yields are plateauing |
2.9. |
Aging farmer population and urban migration |
2.10. |
The case for indoor farming including vertical farming |
2.10.1. |
Challenges in vertical farming |
2.10.2. |
Indoor farming robotics experiments and concepts |
2.11. |
Powertrain trends for electric vehicles in agriculture |
2.12. |
LPWAN and IOT to EVs and assets |
3. |
OPPORTUNITIES |
3.1. |
View from the UK |
3.2. |
View from Japan |
3.3. |
Economics of agricultural machines |
3.4. |
Transition towards to swarms of small, slow, cheap robots |
3.5. |
Agricultural robotics and ultra precision = value chain upheaval |
3.6. |
Business models between RaaS and equipment sales |
4. |
AGRICULTURE, FORESTRY, TURF ELECTRIC VEHICLES IN ACTION |
4.1. |
Overview: drones, land EVs and swarming |
4.2. |
Transition to swarms of small, slow, cheap robots |
4.3. |
Swarming robots: land and air |
4.3.1. |
SAGA and SwarmFarm |
4.4. |
Low cost standard software: DroneAG |
4.5. |
Hopping drones: Crop Hopper |
4.6. |
Land based EVs for agriculture: Overview |
4.7. |
Turf care robots |
4.8. |
Electric robot weeders: FarmWise, Naio etc |
4.9. |
Tractors |
4.9.1. |
Overview |
4.9.2. |
Autonxt |
4.9.3. |
Belarus Tractors |
4.9.4. |
CNH Industrial |
4.9.5. |
Farmtrac |
4.9.6. |
Fendt (AGCO) |
4.9.7. |
John Deere |
4.9.8. |
STW |
4.10. |
Planters |
4.10.1. |
AGCO (Fendt) Xaver |
4.11. |
Transporters |
4.11.1. |
Alke |
4.11.2. |
Nelson Mandela University |
4.12. |
Forestry and turf |
4.12.1. |
Overview |
4.12.2. |
Forestry: Logset, Sennebogen |
5. |
ENABLING TECHNOLOGIES |
5.1. |
Seven key EV enabling technologies for agricultural EVs |
5.2. |
Traction motors |
5.2.1. |
Overview |
5.2.2. |
Choices of motor position |
5.3. |
Batteries and supercapacitors |
5.3.1. |
Overview |
5.3.2. |
Future W/kg vs Wh/kg 2020-2030 |
5.3.3. |
Energy density 2020-2030 |
5.3.4. |
Li-ion battery cost (industrial) $/kWh) 2005-2030 |
6. |
ZERO EMISSION MICROGRIDS FOR AGRICULTURE |
6.1. |
How to charge the vehicles: start with solar for zero emission |
6.2. |
Solar vs diesel cost analysis |
6.3. |
Solar bodywork: agricultural vehicles University of Sydney, Tesla |
6.4. |
Mobile solar gensets |
6.5. |
Envision Solar transportable solar charger tracks the sun |
6.6. |
Anatomy of a typical solar + battery microgrid |
6.7. |
Zero emission microgrids: solar, water, wind reinvented |
6.7.1. |
Overview |
6.7.2. |
New options beyond solar: relocatable, much less intermittent |
6.7.3. |
Open tide "tide stream" power options mimic wind power options |
6.7.4. |
Comparison of off-grid technology options |
6.7.5. |
New power generating technology kVA comparison |
6.7.6. |
Airborne Wind Energy developers |
6.7.7. |
Why AWE may be better than a conventional wind turbine |
6.7.8. |
eWind specifically targets AWE for farms |
6.7.9. |
Open sea wave power technologies for aquaculture |
7. |
AUTONOMOUS VEHICLES IN AGRICULTURE |
7.1. |
Agriculture autonomy by application |
7.2. |
Market and technology readiness by agricultural activity |
7.3. |
Driverless tractors: AGCO, ATC, Kubota, Yanmar, Kinze, CNH |
7.4. |
Robotic fresh fruit harvesting |
7.5. |
Robotic ultra precision weeding |
8. |
AUTONOMY TECHNOLOGY: LIDAR, RADAR ETC. |
8.1. |
Autonomy components and integration |
8.2. |
Lidars |
8.3. |
Radars |
8.4. |
AI software and computing platform |
ページTOPに戻る
本レポートと同分野(農業)の最新刊レポート
- ジカンバ除草剤市場 - 世界の産業規模、シェア、動向、機会、予測、作物タイプ別(穀物・穀類、油糧種子・豆類、牧草・飼料作物)、剤型別(酸性・塩類)、物理的形態別(乾燥・液体)、使用パターン別(遺伝子組換え作物、非遺伝子組換え作物)、散布時期別(出穂前・出穂後)、地域別、競合:2020-2030F
- トマト種子市場 - 世界の産業規模、シェア、動向、機会、予測、育種技術別(ハイブリッド、開放受粉品種、ハイブリッド派生品種)、栽培メカニズム別(開放畑、保護栽培)、地域別、競合別、2020-2030F
- インドの精密発酵市場:微生物別(酵母、藻類、細菌、その他)、エンドユーザー別(食品・飲料、医薬品、化粧品、その他)、地域別、競争、予測、機会、2020-2030F
- 液体飼料の世界市場規模、シェア、動向、機会、予測、タイプ別(タンパク質、ミネラル、液体飼料、その他)、原料別(糖蜜、トウモロコシ、尿素、その他)、動物種別(反芻動物、家禽、養豚、養殖、その他)、地域別、競争:2020-2030F
- きのこ栽培市場 - 世界の産業規模、シェア、動向、機会、予測、種類別(ボタンマッシュルーム、オイスターマッシュルーム、しいたけ、その他)、段階別(堆肥化、産卵、莢詰め、ピンニング、収穫)、形態別(缶詰、冷凍、生鮮、乾燥、その他)、手法別(菌床、クッション)、地域別、競争別に分類、2020-2030F
- UAEの養殖市場:魚種別(浮魚類、底魚類、淡水魚類)、流通チャネル別(従来型小売店、スーパーマーケットとハイパーマーケット、専門小売店、オンラインストア、その他)、地域別、競争、予測、機会:2020-2030F
- インドの竹市場:品種別(Bambusa Tulda、Bambusa Bambos、Dendrocalamus Strictus、その他)、タイプ別(群生、走性、矮性、希少、その他)、構造別(均一、非均一)、長さ別(0~10m、10~20m、20~30m、30m以上)、地域別、競争、予測、機会、2020~2030F
- スマート農園管理システム市場 - 世界の産業規模、シェア、動向、機会、予測、タイプ別(灌漑システム、植物成長モニタリングシステム、収穫システム)、コンポーネント別(ハードウェア、ソフトウェア)、作物別(コーヒー、油糧種子、サトウキビ、綿花)、地域別、競争別、2020-2030F
- パキスタン蜂蜜市場:製品別(天然/オーガニック蜂蜜対加工蜂蜜)、タイプ別(アカシア、シードル、オレンジブロッサム、アジュワイン、クローバー、その他)、パックサイズ別(200-250gm、500gm、1000gm以上)、パッケージ別(ジャー、ボトル、パウチ、その他)、流通チャネル別(スーパーマーケット/ハイパーマーケット, コンビニエンスストア, オンライン, その他), 用途別(食品/飲料, パーソナルケア/化粧品, 医薬品, その他), 地域別, 競争予測と機会, 2020-2030F
- ナノ肥料市場 - 世界の産業規模、シェア、動向、機会、予測、カテゴリー別(ナノスケール肥料、ナノスケール添加肥料、ナノスケールコーティング肥料)、原材料別(銀、銅、アルミニウム、炭素、その他), 作物タイプ別 (穀物・穀類, 油糧種子・豆類, 果物・野菜, その他), 施用方法別 (土壌施用法, 葉面施用法または散布法, 浸漬法), 地域別および競合, 2020-2030F
IDTechEx社の自動車 - Vehicles分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
IDTechEx社はどのような調査会社ですか?
IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|