1. |
EXECUTIVE SUMMARY AND CONCLUSIONS |
1.1. |
Purpose and scope of this report |
1.2. |
Where we are headed |
1.3. |
Why we need electric CAM vehicles |
1.4. |
Construction site of the future: electric vehicles/ robots charged by movable zero emission gensets |
1.5. |
Farm of the future arriving now |
1.5.1. |
Robots and drones charge from on-board solar and mobile "zero gensets" |
1.5.2. |
Robot data scouts, precision drilling and planting robots: pure electric |
1.5.3. |
Precision farming |
1.6. |
Types of mine emerging beyond open pit |
1.6.1. |
Deep mines, block caving and sea floor |
1.6.2. |
Open pit (open cast) all-electric mine of the future |
1.6.3. |
Electric land and air deep pit vehicles charging from zero emission microgrids |
1.7. |
Primary conclusions of this report: industry |
1.8. |
Major suppliers' coverage |
1.9. |
Supplier appraisal Caterpillar |
1.10. |
Supplier appraisal CNH Industrial |
1.11. |
Supplier appraisal John Deere |
1.12. |
Supplier appraisal Komatsu |
1.13. |
Primary conclusions of this report: regional |
1.14. |
Primary conclusions of this report: technical |
1.15. |
Progress towards the end game: all electric CAM vehicles |
1.16. |
CAM electric vehicle value market share % in 2020 and EV CAM % 2030 |
1.16.1. |
Market forecasts number k of CAM electric land vehicles 2020-2030 |
1.16.2. |
Market forecasts CAM electric land vehicles 2020-2030 - unit price $k |
1.16.3. |
Market forecasts CAM electric land vehicles 2020-2030 - market value $ billion |
1.16.4. |
Market value of CAM electric land vehicles 2020 and 2030 - $ billion |
1.16.5. |
Number of CAM electric vehicles 2020-2030 - all categories |
1.16.6. |
Unit price of CAM electric vehicles $k 2020-2030 - all categories |
1.16.7. |
Market value of CAM electric vehicles 2020-2030 - all categories |
1.17. |
Predicting when CAM pure electric vehicles have lower up-front price vs diesel 2020-2040 |
1.17.1. |
Evidence of the price parity/ size trend |
1.18. |
CAM vehicle market outlook |
1.19. |
Adoption timeline for CAM vehicles and infrastructure 2020-2030 |
1.20. |
Patent analysis |
1.21. |
Here comes the mine of the future - IDTechEx gives the detail |
2. |
INTRODUCTION |
2.1. |
Some CAM vehicle commonalities |
2.1.1. |
Equipment definitions: market player landscape |
2.1.2. |
Some equipment definitions: by function |
2.2. |
CAM goes electric |
2.2.1. |
Powertrain trends - options: electric motor size up to 100kW |
2.2.2. |
Electric vehicles EV vs non-electric vehicles |
2.2.3. |
Powertrain trends by type of CAM vehicle |
2.2.4. |
Other CAM power trends |
2.3. |
Simplification |
2.3.1. |
Reduce diesel CAM vehicle parts by 90% with electrics: learning from cars |
2.4. |
CAM EV examples today |
2.5. |
Pollution control |
2.5.1. |
Carbon dioxide emissions from mobile machinery |
2.5.2. |
Emission push for pure electric equipment |
2.6. |
Hybrids as interim stage |
2.6.1. |
Hybrid CAM vehicles Bosch |
2.6.2. |
Dana Oerlikon |
2.7. |
Introduction to construction |
2.8. |
Agriculture worldwide and its future |
2.8.1. |
Overview: Needs and emissions |
2.8.2. |
Growing population and growing demand for food |
2.8.3. |
Agriculture by region |
2.8.4. |
Major crop yields are plateauing |
2.8.5. |
Greenhouse and local emissions in agriculture |
2.8.6. |
Aging farmer population and urban migration |
2.8.7. |
Economics of agricultural machines |
2.8.8. |
Towards ultra precision agriculture: variable rate technology |
2.8.9. |
Transition towards to swarms of small, slow, cheap robots |
2.8.10. |
Agricultural robotics and ultra precision = value chain upheaval |
2.8.11. |
Business models between RaaS and equipment sales |
2.9. |
Here come mines electrified then unmanned |
2.9.1. |
Overview |
2.9.2. |
Goldcorp Chapleau unmanned electric mine 2020 |
3. |
CONSTRUCTION |
3.1. |
Drones in construction |
3.2. |
Overview of land EVs for CAM |
3.2.1. |
Quieter, cleaner, lower cost of ownership |
3.2.2. |
Autonomy |
3.2.3. |
Pure electric or hybrid construction excavators? |
3.3. |
Mini excavators |
3.3.1. |
Mini excavator market shares |
3.3.2. |
Caterpillar |
3.3.3. |
Hyundai |
3.3.4. |
JCB |
3.3.5. |
Komatsu |
3.3.6. |
Mecalac |
3.3.7. |
Suncar |
3.3.8. |
Verkooyen Machines BV |
3.3.9. |
Volvo Construction Equipment |
3.3.10. |
Wacker Neuson |
3.3.11. |
Yanmar |
3.4. |
Mainstream excavators |
3.4.1. |
Overview: hybrid electric drive and some pure electric coming in |
3.4.2. |
Caterpillar |
3.4.3. |
Hidromec |
3.4.4. |
Hitachi |
3.4.5. |
Komatsu |
3.5. |
Wheel and backhoe loaders |
3.5.1. |
Avant Tecno |
3.5.2. |
Huddig |
3.5.3. |
Kramer-Werke |
3.5.4. |
Volvo CE |
3.6. |
Telehandlers, boom lifts, AWPs |
3.6.1. |
JLG (Oshkosh) |
3.6.2. |
Leibherr |
3.6.3. |
Manitou |
3.7. |
Dumpers |
3.7.1. |
Ausa |
3.7.2. |
Wacker Neuson |
3.7.3. |
Zhengzhou Lianke Machinery Manufacture Co., Ltd. |
3.8. |
Heavy trucks |
3.8.1. |
Volvo Group |
3.8.2. |
CNH Industrial with Nikola |
4. |
AGRICULTURE, FORESTRY, TURF |
4.1. |
Overview: drones, land EVs and swarming |
4.1.1. |
Swarming robots: land and air |
4.1.2. |
Low cost standard software |
4.1.3. |
Hopping drones: Crop Hopper |
4.2. |
Land based EVs for agriculture: overview |
4.3. |
Electric robot weeders |
4.4. |
Tractors |
4.4.1. |
Overview |
4.4.2. |
Electrification of tractors: efficiency, new functions, solar |
4.4.3. |
Solar assistance |
4.4.4. |
Autonxt |
4.4.5. |
Belarus Tractors |
4.4.6. |
CNH Industrial |
4.4.7. |
Farmtrac |
4.4.8. |
Fendt (AGCO) |
4.4.9. |
John Deere |
4.4.10. |
STW |
4.5. |
Planters |
4.5.1. |
AGCO (Fendt) Xaver |
4.6. |
Transporters |
4.6.1. |
Alke |
4.6.2. |
Nelson Mandela University |
4.7. |
Forestry and turf |
4.7.1. |
Overview |
4.7.2. |
Forestry: hybrids and supercapacitors |
5. |
MINING |
5.1. |
Sustainable mining |
5.1.1. |
Mining by use of self-produced zero emission electricity |
5.2. |
Future of quarrying |
5.3. |
Future of underground mining |
5.4. |
Some electrification timelines and models involved |
5.5. |
Mining EV manufacturers by type and maturity |
5.6. |
EVs in operation by mine: examples |
5.7. |
Examples of EVs for mines |
5.8. |
Examples: load haul dump LHD |
5.9. |
Artisan Vehicle Systems |
5.10. |
Atlas Copco |
5.11. |
BYD |
5.12. |
Caterpillar |
5.13. |
Epiroc |
5.14. |
GE |
5.15. |
Hitachi |
5.16. |
Komatsu Joy Global |
5.17. |
Kuhn Schweiz AG - Komatsu |
5.18. |
LuiGong |
5.19. |
Maclean Engineering |
5.20. |
Normet |
5.21. |
Partisan Motors |
5.22. |
Sandvik |
6. |
ENABLING TECHNOLOGIES |
6.1. |
Seven key EV enabling technologies for CAM EVs |
6.2. |
Here come moveable, minimal energy storage microgrids |
6.3. |
Progress to CAM electrics with off-grid zero emission |
6.4. |
Overview of electrics in CAM vehicles |
6.5. |
Traction motors |
6.5.1. |
Overview |
6.5.2. |
Operating principles for EV use |
6.5.3. |
Electric motor choices in EVs for CAM applications |
6.5.4. |
Example: Le Tourneau and others |
6.5.5. |
Choices of motor position |
6.5.6. |
Example: Dana Corp. including TM4 |
6.5.7. |
Example: Saminco |
6.5.8. |
Example: Siemens |
6.5.9. |
Motor trends: Protean Electric, Lightyear, YASA |
6.5.10. |
Possible long term trend |
6.6. |
Batteries and supercapacitors |
6.6.1. |
Overview |
6.6.2. |
Battery requirements for CAM electric vehicles |
6.6.3. |
Example: JCB excavators |
6.6.4. |
Future W/kg vs Wh/kg 2020-2030 |
6.6.5. |
Energy density 2020-2030 |
6.6.6. |
Disadvantages of Li-ion batteries |
6.6.7. |
Forecast of Li-ion battery cost (industrial) $/kWh) |
6.6.8. |
Battery packs |
6.6.9. |
BYD |
6.6.10. |
Akasol |
6.6.11. |
Lithium storage GmbH |
6.6.12. |
Battery Packs - Saminco |
6.7. |
How to charge CAM vehicles |
6.7.1. |
The challenge |
6.7.2. |
The answer to CAM EV charging |
6.7.3. |
Solar bodywork |
6.7.4. |
Solar gensets |
6.7.5. |
Floatovoltaics and mining |
6.7.6. |
Solar vs diesel cost analysis |
6.7.7. |
Zero emission microgrids: solar, water, wind reinvented |
6.7.8. |
New options beyond solar: relocatable, much less intermittent |
6.7.9. |
New power generating technology kVA comparison |
6.7.10. |
Airborne Wind Energy developers |
6.7.11. |
Open sea wave power technologies |
6.8. |
Fuel cell and other hybrids |
7. |
CAM VEHICLE AUTONOMY IN ACTION |
7.1. |
Construction example: Built Robotics |
7.2. |
Agriculture autonomy by application |
7.2.1. |
Market and technology readiness by agricultural activity |
7.2.2. |
Driverless tractors: AGCO, ATC, Kubota, Yanmar, Kinze, CNH |
7.2.3. |
Robotic fresh fruit harvesting |
7.2.4. |
Autonomous, ultra precision weeding |
7.3. |
Mining examples |
7.3.1. |
Gemini Scout, Julius |
7.3.2. |
UNEXMiN, Simba, Komatsu |
7.3.3. |
GMG mining robot guidelines |
8. |
AUTONOMY COMPONENTS AND INTEGRATION |
8.1. |
Overview |
8.2. |
Lidars |
8.3. |
Radars |
8.4. |
AI software and computing platform |
8.5. |
ページTOPに戻る
IDTechEx社の自動車 - Vehicles分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
IDTechEx社はどのような調査会社ですか?
IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|