世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Smart Materials as Structural Electronics and Electrics 2020-2030


ストラクチュラルエレクトロニクスとエレクトリックとしてのスマート材料 2020-2030 年:フレキシブル携帯電話、車両の超簡略化、部品交換セット

このレポートはストラクチュラルエレクトロニクスとエレクトリックに使われるスマート材料の市場を調査し、2029年までの市場の予測や用途を分析しています。 主な掲載内容   ※ 目次より抜粋 ... もっと見る

 

 

出版社 出版年月 価格 ページ数 言語
IDTechEx
アイディーテックエックス
2019年10月29日 お問い合わせください
ライセンス・価格情報
注文方法はこちら
298 英語

※価格はデータリソースまでお問い合わせください。


 

Summary

このレポートはストラクチュラルエレクトロニクスとエレクトリックに使われるスマート材料の市場を調査し、2029年までの市場の予測や用途を分析しています。

主な掲載内容  ※ 目次より抜粋

  1. エグゼクティブサマリーと結論
  2. イントロダクション:携帯電話、ウェアラブル、車両、構成
  3. 車両一体型太陽光発電(VIPV)
  4. スマート道路、橋、建物
  5. 製造と素材:大型ストラクチュラルエレクトリックス
  6. 単一フレキシブルディスプレイ素材と技術
  7. 車両と消費者向け製品の簡略化:インモールドエレクトロニクス
  8. コンフォーマルプリンティング、成形回路部品(MID)、3Dプリンテッドエレクトロニクス、スプレー

 

Report Contents

The new IDTechEx report, "Smart Material Opportunities in Structural Electronics 2020-2030" analyses and forecasts a $200 billion opportunity. Making dumb structures smart means saving in weight, space and cost but it also makes new things possible such as huge solar drones up for five years beaming the internet to everyone. The new solar cars never plug in. The Executive Summary and Conclusions says expect better appliances, wearables, vehicles lasting generations. Think one-piece flexible phones with no case, smart fuselages and smart roads. Learn enablers: additive metal and dielectric patterning and new organic, inorganic and composite materials merged. From transparent concrete to stretchable ink patterns, it introduces the e-window performing three functions and the wave blanket as a power station, all facilitated by new materials and processing with huge sales potential. Many infograms pull together market readiness of composites and how improved metal patterning can create electricity and bend light. See separate forecasts for vehicles, building and ground-integrated photovoltaics, for in-mold electronics, flexible AMOLEDs and other SE technologies. Even elements of this are forecasted including embedded RFID, solar cars, building integrated photovoltaics, smart glass. Appraise technology roadmaps for flexible phones as they integrate flexible batteries.
 
The Introduction reveals the evolution of the needs and practices with phones, wearables, vehicles, structures and more. Which of the 12 energy harvesting technologies lend themselves to being incorporated in the new monolithic smart structures? Tesla sunroof with electric tinting and lighting functions in one glass, human body area networks, energy positive solar boats and self-healing plastics are among the host of examples explained.
 
Chapter 3 Vehicle Integrated Photovoltaics VIPV introduces such things as energy positive solar cars, autonomous solar flying wings that replace trucks and those upper atmosphere solar drones. Infograms show how many disciplines leverage to deliver many benefits here. Why the importance of single crystal silicon bodywork but potential of GaAs film and thin film, 3 junction InGaP, GaAs, InGaAs. Which companies, why, by when?
 
Chapter 4 pulls together Smart Roads, Bridges, Buildings emphasising new materials and potential. Here is the largest sector BIPV including solar tiles and windows. What materials and benefits? Scope for heat and piezoelectric harvesting roads? Why did solar roads and environs fail in Germany and France but they look good in the UK, Netherlands, Japan, China and Hungary? What new materials? What next?
 
Chapter 5 goes deeper with Materials and Manufacturing: Large Structural Electrics. Here is structural battery and supercapacitor technology from graphene and CNT, glass and carbon fiber to vanadium and ruthenium boosting pseudocapacitance. Learn new reinforcement with multifunctional resins. Understand progress of electrically multifunctional fibers, smart glass electrically changing color, tint, display, darkness, photovoltaic action, even greenhouses optimising both electricity creation and plant growth with new dyes. Throughout there are many examples of research progress and deployment.
 
Chapter 6 Monolithic Flexible Display Materials and Technology examines the materials and processes as glass-free AMOLEDS become a complete flexible phone or other device. No need for a case. What is monolithic now and what gets incorporated later? How do you print flexible quantum dot displays? What seven key components merge into flexible OLEDs?
 
Chapters 7 addresses in detail the vital new subject of Vehicle and Consumer Goods Simplification: In Mold Electronics with its stretchable inks, dielectric patterning and so on. Chapter 8 covers alternatives and complementary materials and processes such as Conformal Printing, MID, 3D printed electronics using elastomers and metals, optronics and the research on spraying of electrically active new materials. "Smart Material Opportunities in Structural Electronics 2020-2030" analyses and forecasts a formidable new business opportunity.


ページTOPに戻る


Table of Contents

Table of Contents

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Changing the world
1.2. Purpose of this report
1.3. Primary conclusions
1.3.1. Technological megatrend
1.3.2. Benefits
1.3.3. Challenges
1.3.4. Why now?
1.3.5. Focus
1.4. Evolution
1.5. Most promising SE functions in business potential with examples
1.6. SE opportunity vs progress by business sector
1.7. SE manufacturing and technology readiness by applicational sector and date
1.8. Structural electronics as protective coating or wrap: applications compared
1.9. Structural electronics as load bearing structure: applications compared
1.10. Structural electronics technologies compared
1.10.1. Thickness vs area
1.10.2. In use
1.10.3. Working well in laboratory and trials
1.10.4. Later
1.11. Formats of technology
1.12. Status of multifunctional composites by application
1.13. Much more can be done with metal patterning on appropriate substrates
1.14. Some organisations attempting significant SE advances
1.15. Patent analysis
1.15.1. Structural electronics
1.15.2. Structural solar
1.16. Market forecasts
1.16.1. Overview 2020-2030
1.16.2. Solar energy-independent cars 2019-2030 - Number of vehicles (thousand)
1.16.3. Solar energy-independent cars 2019-2030 - Market Value (US$ billion)
1.16.4. Smart glass market size ($ million) 2019-2030
1.16.5. Building integrated photovoltaics BIPV
1.16.6. RFID sensor tags and systems $ million
1.17. SE product and technology roadmaps 2019-2040
1.17.1. General
1.17.2. Roadmap to flexible displays and phones
1.17.3. Roadmap for solar and supercapacitor cars
2. INTRODUCTION: PHONES, WEARABLES, VEHICLES, STRUCTURES
2.1. Progression to structural electronics
2.1.1. Sequence
2.1.2. Multiple sources
2.1.3. Beginnings: PCBs: multilayer, heat pipe vias, load bearing PCB
2.1.4. True structural electronics: Plastic Electronic, Smart Plastics Network
2.1.5. Hybrid structural-conventional
2.1.6. Hybrid structural conventional: wearables Matrix Powerwatch
2.1.7. Flexible mobile phones
2.2. Emerging structural electronics
2.2.1. Tesla sunroof with electric tinting and integrated lighting
2.2.2. Energy harvesting suitable for SE
2.3. Combining many functions
2.3.1. Overview and healthcare
2.3.2. Triboelectric integrated with other sensing/ harvesting
2.4. Vehicles
2.4.1. Load bearing supercapacitors replace steel bodywork
3. VEHICLE INTEGRATED PHOTOVOLTAICS VIPV
3.1. Basics
3.1.1. Definitions and history
3.1.2. Energy positive vehicles
3.1.3. New user propositions enabled by structural solar
3.2. Importance of solar cars
3.3. Tipping points for sales of solar cars
3.4. Tipping points for sales of solar trucks, buses and trains
3.5. Corporate and geographical positioning
3.6. Chemistry
3.7. Format
3.8. Leading solar cars compared: Sono, Lightyear, Hanergy, Toyota
3.9. Solar buses and trucks
3.10. Energy Independent Electric Vehicles EIEV
4. SMART ROADS, BRIDGES, BUILDINGS
4.1. Overview
4.2. Smart roads and other paving
4.2.1. Overview
4.2.2. Smart road probability of success vs current investment
4.2.3. Piezoelectric motion harvesting US, UK
4.2.4. Realistic solar roads, parking, paths, barriers overview
4.2.5. Solar roads in France and Germany a failure
4.2.6. Mirai Labo Japan¶
4.2.7. Pavenergy China
4.2.8. Platio Hungary
4.2.9. Solar Roadways USA
4.2.10. Tokyo Government Japan
4.2.11. TNO SolaRoad Netherlands
4.3. Gantry vs road surface: Korea, China
4.4. Solar wind / sound barriers: Eindhoven University of Technology
4.5. Building integrated photovoltaics
4.5.1. Overview
4.5.2. BAPV vs BIPV
4.5.3. BIPV technologies and location
5. MATERIALS AND MANUFACTURING: LARGE STRUCTURAL ELECTRICS
5.1. Overview
5.2. Dream for supercapacitors and their derivatives: other planned benefits
5.3. Structural battery technology
5.4. Structural supercapacitor technology
5.4.1. Imperial College London; Chalmers Sweden
5.4.2. Queensland University of Technology Australia, Rice University USA
5.4.3. Trinity College Dublin Ireland
詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/12/20 10:28

158.95 円

165.20 円

201.28 円

ページTOPに戻る