世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Thermal Interface Materials 2024-2034: Technologies, Markets, and Forecasts


サーマルインターフェース材料 2024-2034:技術、市場、予測

この調査レポートは、EVバッテリー、EVパワーエレクトロニクス、データセンター、5G、ADAS、コンシューマーエレクトロニクス向けのサーマルインターフェイス材料について詳細に調査・分析しています。 ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2024年5月16日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
534 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。


 

Summary

この調査レポートは、EVバッテリー、EVパワーエレクトロニクス、データセンター、5G、ADAS、コンシューマーエレクトロニクス向けのサーマルインターフェイス材料について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • ティムフィラーズ
  • EVパワーエレクトロニクスの熱インターフェース材料
  • EVバッテリーのTIM
  • データセンターの熱インターフェース材料
  • アダス用サーマル・マテリアル
  • 5G用サーマル・マテリアル
  • 民生用電子機器における熱インターフェース材料とヒートスプレッダー
  • 電磁波シールドにおけるTIMS
 
Report Summary
This report offers a detailed technical analysis of thermal interface materials for EV batteries, EV power electronics, data centers, 5G, ADAS, and consumer electronics (TIMs for all mentioned above and die-attach materials for some applications). It provides 10-year forecasts in terms of area, mass, revenue, and unit price of TIMs. The report covers TIM fillers, costs, thermal conductivities, high-performance TIMs, commercial applications, historical acquisitions/partnerships, and emerging trends.
 
A Thermal Interface Material (TIM) is a material used to improve heat transfer between two surfaces, typically a heat source (such as a computer processor) and a heat sink (such as a metal heatsink or other cooling system). TIMs are used everywhere ranging from batteries in electrical vehicles on the road, data center server boards to your personal smart phones and laptops, 5G base stations and advanced driver-assistance systems (ADAS) electronics.
 
With all these emerging technologies and fast-growing markets, the TIM market is expecting a double-digit CAGR between 2024 and 2034, representing significant opportunities. IDTechEx's report "Thermal Interface Materials: Technologies, Markets and Forecasts 2024-2034" offers a comprehensive and granular analysis of the opportunities for TIMs and the future trend. The purpose of a TIM is to fill the small gaps and imperfections between the two surfaces, reducing the thermal resistance and increasing the heat transfer efficiency.
 
TIMs come in various forms, including pastes, pads, liquid metals, films, and many others. A TIM typical consists of a highly conductive filler in a polymer matrix. The properties of TIMs (e.g., thermal conductivity, cost, viscosity, etc) are largely dependent on the filler materials, particle sizes, loading percentage, particle geometries and many others. A few typical filler materials include alumina, alumina hydroxide (ATH), AlN, boron nitrite (BN), ZnO and MgO. However, depending on the costs, regional regulations, difficulty of filler treatment, and abrasiveness and many other factors, the preferred filler varies across industry and application. This TIM report includes a technical and cost analysis of the filler materials, as well as a benchmark comparison of the filler materials by cost (US$/kg), thermal conductivity (W/mK), toxicity, coefficient of thermal expansion (CTE), dielectric strength, electric conductivity, density, and a few other factors.
 
TIMs have been widely adopted in many industries such as consumer electronics, electric vehicle batteries, electric vehicle power electronics, data centers, 5G, and advanced driver-assistance systems (ADAS). However, with the rapid growth of many of these sectors and increasing power density, TIMs are facing greater challenges in balancing costs, thermal conductivities, viscosities, dielectric strength, and other physical properties. The specific requirements vary across industries. For instance, TIMs in EV batteries are highly cost-sensitive; TIMs for 5G in the mmWave spectrum ideally need to have both high thermal conductivity and excellent electromagnetic absorbent properties; and TIMs in high-performance applications such as data centers are moving towards higher thermal conductivity. Meanwhile, there are key design transitions in the target applications, such as EV batteries becoming more integrated, data centers trending towards higher powers driven by AI, the increasing adoption of autonomous driving and challenges in thermal management for ADAS sensors, mmWave in 5G, as well as the transition from Si IGBT to SiC MOSFET for EV power electronics and the higher junction temperature. Trends like these, among others, are expected to drive a revolution in the TIM market.
 
This report from IDTechEx considers the forms, filler materials, and matrix materials of TIM2s along with die-attach materials (TIM1s), benchmarks commercial products, details recent high-performance materials and their commercial successes, and identifies the market trends based on the collaboration and acquisitions of leading TIM suppliers. It also analyzes current TIM applications in fast-growing industries, along with the key drivers and requirements in each of these areas such as electric vehicle batteries, electric vehicle power electronics, data centers, 5G infrastructure, consumer electronics (smartphones, tablets, and laptops), EMI shielding, and ADAS sensor components (e.g., LiDAR, cameras, etc). In addition, 10-year granular area (m2), mass (kg), revenue (US$), and TIM unit price (US$) forecasts were given for EV batteries, data centers, consumer electronics, ADAS electronics, and 5G infrastructure.
 
Electric Vehicle Batteries and Power Electronics
Electric vehicle (EV) industry is currently the largest target application for thermal interface materials (TIMs) with EV batteries dominating the TIM adoption. With the increasing popularity of EVs, the market demand has been increasing rapidly and this trend is expected to continue for the upcoming decade. Battery technology, as one of the core technologies in EVs is also seeing rapid changes. With the increasing demand for long mileage, there is a trend towards higher energy density, reduced weight, faster charging, and fire safety, all of which require effective thermal management and materials to support. Within EV batteries, the property of TIM highly depends on cell formats, thermal management strategies, pack designs, and costs of TIMs. This report conducts extensive research into EV battery designs, covering the transition from modular designs to cell-to-pack designs, CATL Qilin's latest CTP3.0 using inter-cell liquid cooling chambers and analyzes its impacts on energy density and TIM forms. 10-year TIM area (m2), mass (kg), and revenue (US$) forecasts are provided across multiple vehicle segments (cars, buses, trucks, vans, and two-wheelers) and by TIM form (thermally conductive adhesives, gap fillers, and gap pads).
 
In terms of EV power electronics, the mega trend is the transition from Si IGBT to SiC MOSFETs. This transition leads to a higher junction temperature (175+ or even 200+ for SiC MOSFET compared with up to 150 for Si IGBT). This trend imposes a rising demand for high-performance TIMs and die-attach materials. Typical TIM2s for EV power electronics as of early 2024 have a thermal conductivity around 3.5W/mK, but this is expected to increase over time. Similarly, die-attach materials, due to more stringent requirements, are also seeing transitions from traditional solder alloys to Ag sintering, and this trend will potentially extend to Cu sintering to reduce the cost in the future.
 
Data Centers and ADAS Electronics
Driven by AI, cloud computing, telecommunication and crypto mining, data centers become more powerful and densely packed, leading to a rising difficulty in thermal management. If the heat is not dissipated properly, it can lead to decreased performance, shortened lifespan, and even hardware failure, thereby causing significant technical issues. This report conducts extensive research into data center components, analyzing TIMs used in commercially available server boards, line cards, switches/supervisors, and power supplies with a number of case studies including the latest AI GPUs from Nvidia. 10-year TIM area (m2), mass (kg), and revenue (US$) forecasts are provided across key data center components (processors, chipsets, switches, and power supplies) with analysis of the TIM requirements for data center applications with the increasing thermal design power and upcoming transition to direct-to-chip or even immersion cooling.
 
With the greater demand for autonomous driving and smart interiors (e.g., driver monitoring and occupant monitoring, etc), advanced driver assistance systems (ADAS) are becoming increasingly popular. In ADAS, various electronic components such as sensors, cameras, and processors are used to collect and process data, and make decisions. These components can generate heat during operation, and with the continuous densification of designs, the heat dissipation will become a bigger challenge. If the heat is not properly managed, it can cause damage to the components, thereby affecting sensors' performance. This report provides a detailed analysis of TIM requirements for ADAS LiDAR, cameras, radar, and computers with commercial use-cases and 10-year granular TIM area (m2), mass (kg), and revenue (US$) forecasts.
 
TIM Market Size For Data Center (DC) and ADAS. DC is largely driven by AI from 2024 to 2025 or 2026. Source: Thermal Interface Materials 2024-2034
 
Electromagnetic Interference (EMI) Shielding and 5G
EMI shielding plays a critical role across many industries ranging from ADAS radar, 5G antenna, to smartphones. One of the exciting segments is 5G. Compared with 4G, 5G uses higher frequencies and shorter wavelengths. The adoption of mmWave and increased frequency shrinks the sizes of antenna and associated electronics, leading to greater heat dissipation challenges. Further to this, a large number of 5G base stations need to be deployed locally because of the inherent short transmission lengths. 5G presents more EMI challenges since the effectiveness of EMI mitigation measures declines with higher frequencies because smaller wavelengths allow energy to escape through gaps in shields. To mitigate this issue, this report analyzes several EMI TIMs that can provide both EMI shielding and high thermal conductivities. In contrast to traditional board-level shields (BLSs), with a layer of TIM inside and outside the shield, a single layer of TIM and EMI absorber can be used directly on the chip to make contact with the heat sink, which not only improves overall thermal performance but also reduces manufacturing complexity.
 
Schematic drawing of an EMI TIM being applied directly on an integrated circuit (IC) component. Source: IDTechEx
 
The growing density of infrastructure and power demands in 5G, coupled with technological shifts, creates a substantial market for Thermal Interface Materials (TIMs). This report examines thermal and EMI challenges within 5G infrastructure, presenting current design solutions through teardowns or use cases and outlining future design progressions. It includes updated databases and detailed market forecasts for station size and frequency. Despite nearing the end of its hype cycle, 5G continues to offer significant market opportunities and growth prospects for thermal management solutions.
 
Key Aspects

Thermal Interface Material (TIM) trends and analysis:

  • Forms of TIM
  • Benchmarking of TIM forms, TIM filler materials, and TIM matrix materials
  • Summary and comparison of commercial products by form
  • TIM Filler: performance and cost comparison
  • Advancements in TIM formulation: fillers and format
  • Drivers for TIM improvements in general
  • Key industry acquisitions
  • Overview of dispensing equipment and requirements
  • TIM1: die-attach:
o Solder alloys
o Silver sintering
o Copper sintering
  • Current utilization, requirements, and drivers for TIM in key emerging or evolving markets:
o Electric vehicle power electronics
o Electric vehicle batteries
o EMI shielding
o Data centers
o ADAS electronics
o 5G infrastructure
o Consumer electronics
  • Teardowns and use-cases in the above categories
  • Primary information from key companies
  • Company profiles

 



ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Introduction to Thermal Interface Materials (TIM)
1.2. Properties of Thermal Interface Materials
1.3. Thermal Conductivity Comparison of TIM Formats
1.4. Differences between thermal pads and grease
1.5. Advanced TIMs and Multi-Functional TIMs
1.6. Metal-Based TIM1 and TIM2
1.7. TIM Area Forecast by Application: 2022-2034 (m2)
1.8. TIM Mass Forecast by Application: 2022-2034 (kg)
1.9. TIM Market Size Forecast by Application: 2022-2034 (US$ Millions)
1.10. TIM Mass Forecast for EV Batteries by TIM Form: 2021-2034 (kg)
1.11. TIM Mass Forecast for Data Centers By Component: 2022-2034 (kg)
1.12. TIM requirements for data center applications
1.13. TIM Market Size Forecast for ADAS by Component: 2020-2034 (US$ Millions)
1.14. Die Attach Area Forecast for Key Components Within ADAS Sensors: 2020-2034 (m2)
1.15. TIM requirements for ADAS components
1.16. TIM & Heat Spreader Market Size Forecast For Consumer Electronics: 2012-2034 (US$ Millions)
1.17. TIM Area Forecast for 5G Stations by Component: 2020-2034 (m2)
1.18. TIM Area Forecast for EV Power Electronics By Technology: 2021-2034 (m2)
1.19. Die-Attach Area Forecast for EV Power Electronics by Technology: 2021-2034 (m2)
1.20. Summary - Pros and Cons of TIM Fillers (1)
1.21. Summary - Pros and Cons of TIM Fillers (2)
1.22. Summary of TIM Fillers
1.23. TIM filler cost comparison
2. INTRODUCTION
2.1. Overview
2.1.1. Introduction to TIMs - (1)
2.1.2. Introduction to TIMs - (2)
2.1.3. Key Factors in System Level Performance
2.1.4. Thermal Conductivity vs Thermal Resistance
2.2. Comparison of Key Factors by TIM Form
2.2.1. Properties of Thermal Interface Materials
2.2.2. Comparisons of Price and Thermal Conductivity
2.2.3. Thermal Conductivity by TIM Format
2.2.4. Price Comparison of TIM Fillers
2.2.5. TIM Chemistry Comparison
2.2.6. 1. Gap Pads
2.2.7. SWOT - Gap Pads
2.2.8. 2. Thermal Gels/ Gap Fillers
2.2.9. SWOT - Thermal Gels/Gap Fillers
2.2.10. 3. Thermal Greases
2.2.11. SWOT - Thermal Greases
2.2.12. 4. Phase Change Materials (PCMs)
2.2.13. SWOT - Phase Change Materials (PCMs)
2.2.14. 5. Adhesive Tapes
2.2.15. SWOT - Adhesive Tapes and TCA
2.2.16. 6. Potting/Encapsulants
2.2.17. SWOT - Potting/Encapsulants
2.3. Advanced TIMs
2.3.1. Summary of Advanced TIMs
2.3.2. Introduction
2.3.3. Advanced TIMs: Introduction
2.3.4. Carbon-based TIMs Overview
2.3.5. Overview of Thermal Conductivity By Filler
2.3.6. Overview of Thermal Conductivity By Matrix
2.4. Carbon-based TIMs
2.4.1. Overview
2.4.2. Comparison of carbon-based TIMs (1)
2.4.3. Comparison of carbon-based TIMs (2)
2.4.4. 1. Graphite - Introduction
2.4.5. Graphite Sheets: Through-plane Limitations
2.4.6. Vertical Graphite with Additives
2.4.7. Graphite Sheets: Interfacing with Heat Source and Disrupting Alignment
2.4.8. Panasonic: Pyrolytic Graphite Sheet (PGS)
2.4.9. Progressions in Vertical Graphite
2.4.10. Graphite Pastes
2.4.11. Thermal Conductivity Comparison of Graphite TIMs
2.4.12. 2. Carbon Nanotube (CNT) - Introduction
2.4.13. Challenges with CNT-TIMs
2.4.14. Notable CNT TIM Examples from Commercial Players: Carbice
2.4.15. Notable CNT TIM Examples from Commercial Players: Fujitsu
2.4.16. Notable CNT TIM Examples from Commercial Players: Zeon
2.4.17. Notable CNT TIM Examples from Commercial Players: Hitachi Zosen
2.4.18. CNT TIM Fabrication
2.4.19. 3. Graphene - Overview
2.4.20. Achieving through-plane alignment
2.4.21. Graphene in Thermal Management: Application Roadmap
2.4.22. Graphene Heat Spreaders: Commercial Success
2.4.23. Graphene Heat Spreaders: Performance
2.4.24. Graphene Heat Spreaders: Suppliers Multiply
2.4.25. Nanotech Energy: EMI Armour Series - EIM/TIM
2.4.26. Graphene as an Additive to Thermal Interface Pads
2.4.27. Graphene and Graphite - High Performance Applications
2.4.28. T-Global: TG-P10050
2.4.29. Metal Filled Polymer TIMs
2.4.30. Metal-based TIM - Overview
2.4.31. Recent Collaboration - Arieca and Nissan Chemical - Electrical Conductivity (1)
2.4.32. Recent Collaboration - Arieca and Nissan Chemical - Electrical Conductivity (2)
2.4.33. Recent Collaboration - Arieca and Nissan Chemical - Thermal Conductivity
2.4.34. Laminar Metal Form With High Softness (1)
2.4.35. Laminar Metal Form With High Softness (2)
2.4.36. Commercial Success
2.4.37. Indium Corporation - indium/gallium-based liquid metal TIMs (1)
2.4.38. Indium Corporation - indium/gallium-based liquid metal TIMs (2)
2.4.39. Indium Corporation - Full Metal TIMs
2.4.40. Boron Nitride Nanostructures
2.4.41. Introduction to Nano Boron Nitride
2.4.42. BNNT Players and Prices
2.4.43. BNNT Property Variations
2.4.44. BN Nanostructures in TIMs
2.5. TIM1 - Die-Attach and Substate-Attach
2.5.1. Comparison of TIM1 and TIM2
2.5.2. Solder TIM1 and Liquid Metal
2.5.3. Solders as TIM1
2.5.4. Solder TIM1 - Minimize Warpage and Delamination (1)
2.5.5. Solder TIM1 - Minimize Warpage and Delamination (2)
2.5.6. Trend Towards Sintering
2.5.7. Market News and Trends of Sintering
2.5.8. Ag Sintered TIM
2.5.9. Metal Sheet, Graphite Sheet, and Ag Sintered TIM
 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/21 10:26

156.13 円

165.08 円

200.38 円

ページTOPに戻る