世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

ロボットシャトルと自律走行車 2020-2040年:旅の新しい形としての多目的ロボットシャトルポッド


Robot Shuttles and Autonomous Buses 2020-2040

このレポートはロボットシャトルと自律走行バスの市場を分析し、現在使われているロボットシャトルの紹介や、2040年までの市場予測、技術の紹介を掲載しています。 主な掲載内容  ※目次より抜粋... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2019年12月12日 US$6,500
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報・注文方法はこちら
369 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。


 

サマリー

このレポートはロボットシャトルと自律走行バスの市場を分析し、現在使われているロボットシャトルの紹介や、2040年までの市場予測、技術の紹介を掲載しています。

主な掲載内容 ※目次より抜粋

  1. エグゼクティブサマリーと結論
  2. イントロダクション
  3. 現行のロボットシャトル - 15か国でのシャトル37タイプ
  4. 自律の先のロボットシャトル技術
  5. 自律技術
  6. コストと収入分析

Report Details

  • Robot shuttles and precursors: manufacturer profiles 36
  • Robot shuttle manufacturer countries 15
  • Countries with deployments analysed 20
  • New infograms and forecasts/ graphs 64
  • Allied markets forecasted such as all buses, autonomous buses 7
  • Pages 360
 
IDTechEx has issued the first in-depth report on this called "Robot Shuttles and Autonomous Buses 2020-2040". Robot shuttles are an important new, reconfigurable form of transportation for goods and people that may even function as mobile offices, restaurants and more. It finds that the heart of the subject is upright, boxy, 8-20 person vehicles that are symmetrical so they never do a U turn. Small footprint, all-round vision, large doors, quiet, zero emission, they can go indoors and over piazzas and roads and are able perform many different tasks even in one day. Primarily intended for intensive urban use, they are gated to never exceed a determined speed, typically in the range 50-60 kph. It all adds up to a new form of transport backed by both huge companies like Toyota and Baidu and startups, one having raised one billion dollars for the task. Their trials explore many possible applications, from empowering the poor and disabled, to viably filing in gaps in the transportation network and replacing very underutilised vehicles such as school buses and private cars, reducing congestion and cost.
 
City road congestion will be eliminated by banning little used and weakly filled vehicles such as private cars and some school buses and introducing robot shuttles intensively used because they reconfigure in use, even go indoors, move sideways and arrive at your door.
 
The Executive Summary presents the dreams, 10 primary conclusions, the 36 models and their 20 projects, the number deployed by the leaders, the big differences from robotaxis covered in a sister IDTechEx report. It picks winners on IDTechEx criteria and forecasts 20 years ahead with prices tumbling for identified reasons and a tipping point of sales when full Level 5 autonomy can be widespread. The overall bus and the autonomous large bus market is forecasted. See graphs of the robot shuttle hardware business of tens of billions of dollars emerging and additionally the market for associated services.
 
The Introduction talks through the needs, issues, originality and impediments. Chapter 3 critically appraises the 36 robot shuttle companies/models in 15 countries in detail with partners named, stated objectives and dreams of participants with a profusion of photographs and drawings and SOFT reports of each.
 
Chapter 4 explains the huge advances in vehicle technology beyond autonomy that are ahead for robot shuttles and key to major success, from solar, supercapacitor, color changing and self-healing bodywork to smart glass, 360 degree wheels and much more. Autonomy makes the vehicle work but these new structures provide a profusion of income streams and business cases, long life and near zero maintenance. The analysis benchmarks other industries where they are ahead with these vehicle technologies.
 
Chapter 5 is a deep dive into the autonomy technologies including their integration, cost and power reduction ahead plus challenges. That includes detail about lidar, radar, cameras, sensor fusion and more. Chapter 6 is a detailed analysis of cost and income streams, with the most detailed forecasts and background data for buses, autonomous buses, robot shuttles and earning streams 2020-2040. It all makes the IDTechEx report, "Robot Shuttles and Autonomous Buses 2020-2040" exceptionally thorough, insightful and up-to-date, using new information and interviews by PhD level globetrotting analysts from IDTechEx interviewing in local languages.

 



ページTOPに戻る


目次

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Purpose of this report
1.2. SAE levels of automation in land vehicles
1.3. Ten primary conclusions
1.3.1. The dream and the basics for getting there
1.3.2. Specification of a robot shuttle
1.3.3. Very different from a robotaxi
1.3.4. Smart shuttles will address megatrends in society
1.3.5. Robot shuttle business cases from bans and subsidies
1.3.6. Robot shuttle business cases from exceptional penetration of locations
1.3.7. Intensive use business cases are compelling
1.3.8. Campuses are not a quick win
1.3.9. The robot shuttle opportunity cannot be addressed by adapting existing vehicles
1.3.10. The leaders so far
1.3.11. Upfront cost and other impediments
1.3.12. Dramatic technical improvements are coming
1.4. Two generations of robot shuttle
1.4.1. Envisaged applications compared
1.4.2. Second generation robot shuttle 2025-2040
1.5. Robot shuttles: the good things
1.5.1. Many benefits
1.5.2. Building on the multi-purposing of the past
1.6. Robot shuttles: the bad things
1.7. Analysis of 36 robot shuttles and their dreams
1.8. Geographical, size, deployment distribution of 36 robot shuttles
1.8.1. Manufacture by country
1.8.2. Manufacture by major region
1.8.3. Designs by size
1.8.4. Number deployed
1.9. Timelines and forecasts
1.9.1. Technology and launch roadmap 2020-2030
1.9.2. Predicting when the robot shuttle has lower up-front price than a legal diesel midibus 2020-2040
1.9.3. Hype 2018-2040
1.9.4. Robot shuttles total market size in unit numbers thousand
1.9.5. Robot shuttles total market size in US$ million
1.9.6. Bus and shuttle global market number projection by size 2020-2040
1.9.7. Bus and shuttle global market number projection by size by % 2020-2040: growth of shuttle and smaller buses
1.9.8. Market share Level 4 and Level 5 autonomy in buses projection by size 2020-2040
1.9.9. Global bus market by level of autonomy and projection by bus/ robot shuttle size 2018-2040
1.9.10. Bus and robot shuttle total market projection by level of autonomy 2020-2030
1.9.11. Cost projection of pure electric bus and shuttle (minus autonomy) 2020-2040
1.9.12. Cost of autonomy 2020-2040
1.9.13. Total 20-year market forecast for all bus/shuttle sizes and levels of autonomy
1.9.14. Total 20-year market forecast (purpose-built shuttles and small-sized buses)
1.9.15. Total 20-year market forecast (medium and large sized buses)
1.9.16. Accumulated fleet size projected number 2020-2040
1.9.17. Service revenue forecast $ billion 2020-2040
1.9.18. Total revenue forecast $ billion 2020-2030
2. INTRODUCTION
2.1. Bus and robot shuttle types compared
2.2. Bus population worldwide by types 2020
2.3. Pure electric buses for lowest TCO
2.4. Peak car coming: global passenger car sales forecast 2020-2040 - moderate scenario (unit numbers)
2.5. Background to robot shuttles
2.6. Tough for robot shuttles to compete
2.7. Second generation robot shuttles
2.8. Michigan Mobility Challenge: seniors, disabled, veterans
2.9. Texas trials: downtown circulator
2.10. Trials in Japan
2.11. Einride Sweden: not quite a robot shuttle
2.12. Rinspeed dreams embrace robot shuttles
3. ROBOT SHUTTLES IN ACTION - 37 TYPES IN 15 COUNTRIES
3.1. 2getthere Netherlands
3.1.1. Business
3.1.2. Product/Solution
3.2. 5GX shuttle SKT Korea
3.3. ANA collaboration Japan
3.4. Apollo Apolong: Baidu King Long China
3.5. Apple VWT6 USA
3.6. Astar Golden Dragon China
3.7. Aurrigo UK
3.8. BlueSG/ Nanyang France Singapore
3.9. Capri AECOM UK
3.10. Coast Autonomous
3.11. DeLijn Belgium
3.12. e-BiGO Dubai
3.13. eGo Mover Germany
3.14. E-Palette Toyota
3.15. EZ10 EasyMile France
3.16. GACHA Sensible4 Finland
3.17. Heathrow pod ULTraFairwood UK
3.18. Hino Poncho SB Drive Japan
3.19. IAV HEAT Germany
3.20. iCristal Torc Robotics USA
3.21. KAMAZ shuttles Russia
3.22. KTI Hyundai Korea
3.23. LG Korea
3.24. Myla: May Mobility USA
3.25. Navya France
3.26. NEVS Sweden
3.27. Ohmio Automation New Zealand
3.28. Olli: Local Motors USA
3.29. Optimus Ride USA
3.30. Ridecell Auro USA
3.31. Scania NXT - a second generation robot shuttle Sweden
3.32. Sedric Germany
3.33. ST Engineering Land Systems Singapore
3.34. Tony: Perrone Robotics USA
3.35. Volkswagen ID Buzz Germany
3.36. Yutong Xiaoyu China
3.37. Zoox USA
4. ROBOT SHUTTLE TECHNOLOGY BEYOND AUTONOMY
4.1. Overview
4.2. Challenges being addressed
4.3. How eight key enabling technologies for robot shuttles are improving to serve 10 primary needs
4.4. How to reduce diesel shuttle parts by 90% with advanced electrics
4.5. Big change in relative importance of parts
4.6. Future electric vehicle powertrains - relevance to robot shuttles
4.7. Platform evolution
4.7.1. Overview
4.7.2. Toyota REE chassis: huge advances
4.8. Voltage trends
4.9. Typical pure electric bus technology
4.10. Electric motors
4.10.1. Overview
4.10.2. Synchronous or asynchronous
4.10.3. Operating principles for most EV uses
4.10.4. Electric motor choices for robot shuttles and their current EV uses
4.10.5. Electric motors for pure electric cars, vans: lessons for shuttle buses
4.10.6. Company experience and designer preferences
4.10.7. Motor material cost trends spell trouble
4.11. In-wheel motors
4.12. Sideways steerable wheels
4.13. 360 degree wheels with in-wheel motor: Protean and Productiv
4.14. Energy storage for pure electric buses
4.14.1. Conventional buses see batteries shrink
4.14.2. Robot shuttles stay battery hungry
4.14.3. Even better batteries and supercapacitors a real prospect: future W/kg vs Wh/kg
4.14.4. Location and protection of batteries
4.14.5. Bus battery type, performance, future for 31 manufacturers
4.14.6. Best of both worlds?
4.15. Charger standardisation: bus/truck commonality
4.16. Energy Independent Electric Vehicles EIEV
4.17. Stella Vie showing the way to an energy positive robot shuttle?
5. AUTONOMY TECHNOLOGY
5.1. Overview
5.1.1. The automation levels in detail
5.1.2. Functions of autonomous driving at different levels
5.1.3. Future mobility scenarios: autonomous and shared
5.1.4. Chess pieces: autonomous driving tasks
5.1.5. Typical toolkit for autonomous cars
5.1.6. Perception technologies and AI
5.1.7. Anatomy of an autonomous vehicle
5.1.8. Evolution of sensor suite from Level 1 to Level 5
5.1.9. What is sensor fusion?
5.1.10. Sensor fusion: past and future
5.2. Lidars
5.2.1. 3D Lidar: market segments & applications
5.2.2. 3D Lidar: four important technology choices
5.2.3. Comparison of Lidar, Radar, Camera & Ultrasonic sensors
5.2.4. Automotive Lidar: SWOT analysis
5.2.5. Emerging technology trends
5.2.6. Comparison of TOF & FMCW Lidar
5.2.7. Laser technology choices
5.2.8. Comparison of common laser type & wavelength options
5.2.9. Beam steering technology choices
5.2.10. Comparison of common beam steering options
5.2.11. Photodetector technology choices
5.2.12. Comparison of common photodetectors & materials
5.2.13. Mechanical Lidar players, rotating & non-rotating
5.2.14. Micromechanical Lidar players, MEMS & other
5.2.15. Pure solid-state Lidar players, OPA & liquid crystal
5.2.16. Pure solid-state Lidar players, 3D flash
5.2.17. Players by technology & funding secured
5.2.18. Average Lidar cost per vehicle by technology
5.3. Radars
5.3.1. Why are radars essential to ADAS and autonomy?
5.3.2. Towards ADAS and autonomous driving: increasing radar use
5.3.3. SRR, MRR and LRR: different functions
5.3.4. Radar: which parameters limit the achievable KPIs
5.3.5. Towards the radar of the future
5.3.6. Evolution of semiconductor technology in automotive radar
5.3.7. Benchmarking of semiconductor technologies for mmwave radars
5.3.8. Many chip makers are on-board
5.3.9. Function integration trends: towards true radar-in-a-chip
5.3.10. Evolution of radar chips towards all-in-one designs
5.3.11. Board trends: from separate RF board to hybrid to full package integration?
5.3.12. The evolving role of the automotive radar towards full 360degree imaging
5.3.13. AI trend: moving beyond just presence detection
5.3.14. Other trends: increasing range, angular and elevation resolution
5.3.15. Radar data: challenges of spare point cloud
5.3.16. Data fusion challenge: mismatch in point cloud densities
5.3.17. Training neutral networks on radar data: the labelling challenge
5.3.18. Automatic data labelling: early fusion of camera, lidar and radar data
5.4. AI software and computing platform
5.4.1. Terminologies explained: AI, machine learning, artificial neural networks, deep neural networks
5.4.2. Artificial intelligence: waves of development
5.4.3. Classical method: feature descriptors
5.4.4. Typical image detection deep neutral network
5.4.5. Algorithm training process in a single layer
5.4.6. Towards deep learning by deepening the neutral network
5.4.7. The main varieties of deep learning approaches explained
5.4.8. There is no single AI solution to autonomous driving
5.4.9. Application of AI to autonomous driving
5.4.10. End-to-end deep learning vs classical approach
5.4.11. Imitation learning for trajectory prediction: Valeo (1)
5.4.12. Imitation learning for trajectory prediction: Valeo (2)
5.4.13. Hybrid AI for Level 4/5 automation
5.4.14. Hybrid AI for sensor fusion
5.4.15. Hybrid AI for motion planning
5.4.16. Autonomous driving requires different validation system
5.4.17. Validation of deep learning system?
5.4.18. The vulnerable road user challenge in city traffic
5.4.19. Multi-layered security needed for vehicle system
5.5. High-definition (HD) map
5.5.1.  

ページTOPに戻る


 

Summary

このレポートはロボットシャトルと自律走行バスの市場を分析し、現在使われているロボットシャトルの紹介や、2040年までの市場予測、技術の紹介を掲載しています。

主な掲載内容 ※目次より抜粋

  1. エグゼクティブサマリーと結論
  2. イントロダクション
  3. 現行のロボットシャトル - 15か国でのシャトル37タイプ
  4. 自律の先のロボットシャトル技術
  5. 自律技術
  6. コストと収入分析

Report Details

  • Robot shuttles and precursors: manufacturer profiles 36
  • Robot shuttle manufacturer countries 15
  • Countries with deployments analysed 20
  • New infograms and forecasts/ graphs 64
  • Allied markets forecasted such as all buses, autonomous buses 7
  • Pages 360
 
IDTechEx has issued the first in-depth report on this called "Robot Shuttles and Autonomous Buses 2020-2040". Robot shuttles are an important new, reconfigurable form of transportation for goods and people that may even function as mobile offices, restaurants and more. It finds that the heart of the subject is upright, boxy, 8-20 person vehicles that are symmetrical so they never do a U turn. Small footprint, all-round vision, large doors, quiet, zero emission, they can go indoors and over piazzas and roads and are able perform many different tasks even in one day. Primarily intended for intensive urban use, they are gated to never exceed a determined speed, typically in the range 50-60 kph. It all adds up to a new form of transport backed by both huge companies like Toyota and Baidu and startups, one having raised one billion dollars for the task. Their trials explore many possible applications, from empowering the poor and disabled, to viably filing in gaps in the transportation network and replacing very underutilised vehicles such as school buses and private cars, reducing congestion and cost.
 
City road congestion will be eliminated by banning little used and weakly filled vehicles such as private cars and some school buses and introducing robot shuttles intensively used because they reconfigure in use, even go indoors, move sideways and arrive at your door.
 
The Executive Summary presents the dreams, 10 primary conclusions, the 36 models and their 20 projects, the number deployed by the leaders, the big differences from robotaxis covered in a sister IDTechEx report. It picks winners on IDTechEx criteria and forecasts 20 years ahead with prices tumbling for identified reasons and a tipping point of sales when full Level 5 autonomy can be widespread. The overall bus and the autonomous large bus market is forecasted. See graphs of the robot shuttle hardware business of tens of billions of dollars emerging and additionally the market for associated services.
 
The Introduction talks through the needs, issues, originality and impediments. Chapter 3 critically appraises the 36 robot shuttle companies/models in 15 countries in detail with partners named, stated objectives and dreams of participants with a profusion of photographs and drawings and SOFT reports of each.
 
Chapter 4 explains the huge advances in vehicle technology beyond autonomy that are ahead for robot shuttles and key to major success, from solar, supercapacitor, color changing and self-healing bodywork to smart glass, 360 degree wheels and much more. Autonomy makes the vehicle work but these new structures provide a profusion of income streams and business cases, long life and near zero maintenance. The analysis benchmarks other industries where they are ahead with these vehicle technologies.
 
Chapter 5 is a deep dive into the autonomy technologies including their integration, cost and power reduction ahead plus challenges. That includes detail about lidar, radar, cameras, sensor fusion and more. Chapter 6 is a detailed analysis of cost and income streams, with the most detailed forecasts and background data for buses, autonomous buses, robot shuttles and earning streams 2020-2040. It all makes the IDTechEx report, "Robot Shuttles and Autonomous Buses 2020-2040" exceptionally thorough, insightful and up-to-date, using new information and interviews by PhD level globetrotting analysts from IDTechEx interviewing in local languages.

 



ページTOPに戻る


Table of Contents

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Purpose of this report
1.2. SAE levels of automation in land vehicles
1.3. Ten primary conclusions
1.3.1. The dream and the basics for getting there
1.3.2. Specification of a robot shuttle
1.3.3. Very different from a robotaxi
1.3.4. Smart shuttles will address megatrends in society
1.3.5. Robot shuttle business cases from bans and subsidies
1.3.6. Robot shuttle business cases from exceptional penetration of locations
1.3.7. Intensive use business cases are compelling
1.3.8. Campuses are not a quick win
1.3.9. The robot shuttle opportunity cannot be addressed by adapting existing vehicles
1.3.10. The leaders so far
1.3.11. Upfront cost and other impediments
1.3.12. Dramatic technical improvements are coming
1.4. Two generations of robot shuttle
1.4.1. Envisaged applications compared
1.4.2. Second generation robot shuttle 2025-2040
1.5. Robot shuttles: the good things
1.5.1. Many benefits
1.5.2. Building on the multi-purposing of the past
1.6. Robot shuttles: the bad things
1.7. Analysis of 36 robot shuttles and their dreams
1.8. Geographical, size, deployment distribution of 36 robot shuttles
1.8.1. Manufacture by country
1.8.2. Manufacture by major region
1.8.3. Designs by size
1.8.4. Number deployed
1.9. Timelines and forecasts
1.9.1. Technology and launch roadmap 2020-2030
1.9.2. Predicting when the robot shuttle has lower up-front price than a legal diesel midibus 2020-2040
1.9.3. Hype 2018-2040
1.9.4. Robot shuttles total market size in unit numbers thousand
1.9.5. Robot shuttles total market size in US$ million
1.9.6. Bus and shuttle global market number projection by size 2020-2040
1.9.7. Bus and shuttle global market number projection by size by % 2020-2040: growth of shuttle and smaller buses
1.9.8. Market share Level 4 and Level 5 autonomy in buses projection by size 2020-2040
1.9.9. Global bus market by level of autonomy and projection by bus/ robot shuttle size 2018-2040
1.9.10. Bus and robot shuttle total market projection by level of autonomy 2020-2030
1.9.11. Cost projection of pure electric bus and shuttle (minus autonomy) 2020-2040
1.9.12. Cost of autonomy 2020-2040
1.9.13. Total 20-year market forecast for all bus/shuttle sizes and levels of autonomy
1.9.14. Total 20-year market forecast (purpose-built shuttles and small-sized buses)
1.9.15. Total 20-year market forecast (medium and large sized buses)
1.9.16. Accumulated fleet size projected number 2020-2040
1.9.17. Service revenue forecast $ billion 2020-2040
1.9.18. Total revenue forecast $ billion 2020-2030
2. INTRODUCTION
2.1. Bus and robot shuttle types compared
2.2. Bus population worldwide by types 2020
2.3. Pure electric buses for lowest TCO
2.4. Peak car coming: global passenger car sales forecast 2020-2040 - moderate scenario (unit numbers)
2.5. Background to robot shuttles
2.6. Tough for robot shuttles to compete
2.7. Second generation robot shuttles
2.8. Michigan Mobility Challenge: seniors, disabled, veterans
2.9. Texas trials: downtown circulator
2.10. Trials in Japan
2.11. Einride Sweden: not quite a robot shuttle
2.12. Rinspeed dreams embrace robot shuttles
3. ROBOT SHUTTLES IN ACTION - 37 TYPES IN 15 COUNTRIES
3.1. 2getthere Netherlands
3.1.1. Business
3.1.2. Product/Solution
3.2. 5GX shuttle SKT Korea
3.3. ANA collaboration Japan
3.4. Apollo Apolong: Baidu King Long China
3.5. Apple VWT6 USA
3.6. Astar Golden Dragon China
3.7. Aurrigo UK
3.8. BlueSG/ Nanyang France Singapore
3.9. Capri AECOM UK
3.10. Coast Autonomous
3.11. DeLijn Belgium
3.12. e-BiGO Dubai
3.13. eGo Mover Germany
3.14. E-Palette Toyota
3.15. EZ10 EasyMile France
3.16. GACHA Sensible4 Finland
3.17. Heathrow pod ULTraFairwood UK
3.18. Hino Poncho SB Drive Japan
3.19. IAV HEAT Germany
3.20. iCristal Torc Robotics USA
3.21. KAMAZ shuttles Russia
3.22. KTI Hyundai Korea
3.23. LG Korea
3.24. Myla: May Mobility USA
3.25. Navya France
3.26. NEVS Sweden
3.27. Ohmio Automation New Zealand
3.28. Olli: Local Motors USA
3.29. Optimus Ride USA
3.30. Ridecell Auro USA
3.31. Scania NXT - a second generation robot shuttle Sweden
3.32. Sedric Germany
3.33. ST Engineering Land Systems Singapore
3.34. Tony: Perrone Robotics USA
3.35. Volkswagen ID Buzz Germany
3.36. Yutong Xiaoyu China
3.37. Zoox USA
4. ROBOT SHUTTLE TECHNOLOGY BEYOND AUTONOMY
4.1. Overview
4.2. Challenges being addressed
4.3. How eight key enabling technologies for robot shuttles are improving to serve 10 primary needs
4.4. How to reduce diesel shuttle parts by 90% with advanced electrics
4.5. Big change in relative importance of parts
4.6. Future electric vehicle powertrains - relevance to robot shuttles
4.7. Platform evolution
4.7.1. Overview
4.7.2. Toyota REE chassis: huge advances
4.8. Voltage trends
4.9. Typical pure electric bus technology
4.10. Electric motors
4.10.1. Overview
4.10.2. Synchronous or asynchronous
4.10.3. Operating principles for most EV uses
4.10.4. Electric motor choices for robot shuttles and their current EV uses
4.10.5. Electric motors for pure electric cars, vans: lessons for shuttle buses
4.10.6. Company experience and designer preferences
4.10.7. Motor material cost trends spell trouble
4.11. In-wheel motors
4.12. Sideways steerable wheels
4.13. 360 degree wheels with in-wheel motor: Protean and Productiv
4.14. Energy storage for pure electric buses
4.14.1. Conventional buses see batteries shrink
4.14.2. Robot shuttles stay battery hungry
4.14.3. Even better batteries and supercapacitors a real prospect: future W/kg vs Wh/kg
4.14.4. Location and protection of batteries
4.14.5. Bus battery type, performance, future for 31 manufacturers
4.14.6. Best of both worlds?
4.15. Charger standardisation: bus/truck commonality
4.16. Energy Independent Electric Vehicles EIEV
4.17. Stella Vie showing the way to an energy positive robot shuttle?
5. AUTONOMY TECHNOLOGY
5.1. Overview
5.1.1. The automation levels in detail
5.1.2. Functions of autonomous driving at different levels
5.1.3. Future mobility scenarios: autonomous and shared
5.1.4. Chess pieces: autonomous driving tasks
5.1.5. Typical toolkit for autonomous cars
5.1.6. Perception technologies and AI
5.1.7. Anatomy of an autonomous vehicle
5.1.8. Evolution of sensor suite from Level 1 to Level 5
5.1.9. What is sensor fusion?
5.1.10. Sensor fusion: past and future
5.2. Lidars
5.2.1. 3D Lidar: market segments & applications
5.2.2. 3D Lidar: four important technology choices
5.2.3. Comparison of Lidar, Radar, Camera & Ultrasonic sensors
5.2.4. Automotive Lidar: SWOT analysis
5.2.5. Emerging technology trends
5.2.6. Comparison of TOF & FMCW Lidar
5.2.7. Laser technology choices
5.2.8. Comparison of common laser type & wavelength options
5.2.9. Beam steering technology choices
5.2.10. Comparison of common beam steering options
5.2.11. Photodetector technology choices
5.2.12. Comparison of common photodetectors & materials
5.2.13. Mechanical Lidar players, rotating & non-rotating
5.2.14. Micromechanical Lidar players, MEMS & other
5.2.15. Pure solid-state Lidar players, OPA & liquid crystal
5.2.16. Pure solid-state Lidar players, 3D flash
5.2.17. Players by technology & funding secured
5.2.18. Average Lidar cost per vehicle by technology
5.3. Radars
5.3.1. Why are radars essential to ADAS and autonomy?
5.3.2. Towards ADAS and autonomous driving: increasing radar use
5.3.3. SRR, MRR and LRR: different functions
5.3.4. Radar: which parameters limit the achievable KPIs
5.3.5. Towards the radar of the future
5.3.6. Evolution of semiconductor technology in automotive radar
5.3.7. Benchmarking of semiconductor technologies for mmwave radars
5.3.8. Many chip makers are on-board
5.3.9. Function integration trends: towards true radar-in-a-chip
5.3.10. Evolution of radar chips towards all-in-one designs
5.3.11. Board trends: from separate RF board to hybrid to full package integration?
5.3.12. The evolving role of the automotive radar towards full 360degree imaging
5.3.13. AI trend: moving beyond just presence detection
5.3.14. Other trends: increasing range, angular and elevation resolution
5.3.15. Radar data: challenges of spare point cloud
5.3.16. Data fusion challenge: mismatch in point cloud densities
5.3.17. Training neutral networks on radar data: the labelling challenge
5.3.18. Automatic data labelling: early fusion of camera, lidar and radar data
5.4. AI software and computing platform
5.4.1. Terminologies explained: AI, machine learning, artificial neural networks, deep neural networks
5.4.2. Artificial intelligence: waves of development
5.4.3. Classical method: feature descriptors
5.4.4. Typical image detection deep neutral network
5.4.5. Algorithm training process in a single layer
5.4.6. Towards deep learning by deepening the neutral network
5.4.7. The main varieties of deep learning approaches explained
5.4.8. There is no single AI solution to autonomous driving
5.4.9. Application of AI to autonomous driving
5.4.10. End-to-end deep learning vs classical approach
5.4.11. Imitation learning for trajectory prediction: Valeo (1)
5.4.12. Imitation learning for trajectory prediction: Valeo (2)
5.4.13. Hybrid AI for Level 4/5 automation
5.4.14. Hybrid AI for sensor fusion
5.4.15. Hybrid AI for motion planning
5.4.16. Autonomous driving requires different validation system
5.4.17. Validation of deep learning system?
5.4.18. The vulnerable road user challenge in city traffic
5.4.19. Multi-layered security needed for vehicle system
5.5. High-definition (HD) map
5.5.1.  

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります


よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/07/03 10:27

162.61 円

175.23 円

209.12 円

ページTOPに戻る