世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

持続可能なバイオ燃料とE燃料市場2025-2035年:技術、プレーヤー、予測

持続可能なバイオ燃料とE燃料市場2025-2035年:技術、プレーヤー、予測


Sustainable Biofuels & E-Fuels Market 2025-2035: Technologies, Players, Forecasts

輸送の脱炭素化における持続可能な燃料の必要性 世界の運輸部門は温室効果ガス排出の大きな要因であり、エネルギー関連のCO2排出量の約25%を占めている。それゆえ、輸送の脱炭素化は重要な優先課題とな... もっと見る

 

 

出版社 出版年月 電子版価格 納期 言語
IDTechEx
アイディーテックエックス
2024年10月1日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
お問合わせください 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。

日本語のページは自動翻訳を利用し作成しています。


 

サマリー

輸送の脱炭素化における持続可能な燃料の必要性
世界の運輸部門は温室効果ガス排出の大きな要因であり、エネルギー関連のCO2排出量の約25%を占めている。それゆえ、輸送の脱炭素化は重要な優先課題となっている。電気自動車(EV)や低炭素水素、メタノール、アンモニアなどの燃料を含め、多くの解決策が存在する。先進バイオ燃料やe燃料も、航空、海運、大型道路輸送など、電動化が大きな課題に直面している輸送部門の二酸化炭素排出量を削減する有望なソリューションとして浮上している。
 
持続可能な炭化水素燃料の最も大きな利点のひとつは、ドロップインが可能なことである。つまり、大規模な改造を必要とせず、既存のエンジンやインフラで使用できるということだ。この特性は、代替推進システムへの移行が複雑でコストと時間のかかる航空や海運のようなセクターにとって特に重要である。
 
本レポートでは、IDTechEx が先進バイオ燃料(第2 世代以降)とe 燃料について詳細な分析を行う。分析は、生産プロセス、関連政策、主要技術革新、技術プロバイダー、プロジェクト開発者をカバーしている。また、同分野における技術経済的課題と機会についても探求している。本レポートは、再生可能ディーゼル、持続可能航空燃料(SAF)、再生可能メタノールなどの主要燃料に焦点を当てている。
 
第一世代バイオ燃料から先進バイオ燃料、e燃料への移行
バイオ燃料の世代。出典 IDTechEx
 
トウモロコシ、サトウキビ、植物油などの食用作物から作られるバイオエタノールやバイオディーゼルなどの第一世代バイオ燃料は、長い間持続可能な燃料市場をリードしてきた。しかし、食糧生産との競合、ライフサイクル排出、土地利用に対する懸念から、欧州や米国などの主要地域では、より先進的な代替燃料の導入が進められている。リグノセルロース系バイオマス、農業残渣、非食料作物を原料とする第2世代バイオ燃料は、持続可能性が高く、食糧資源との競合が少ないことから注目を集めている。第3、第4世代バイオ燃料は、微細藻類やその他の微生物をバイオ燃料生産に利用するもので、課題はあるものの、将来的には実行可能な生産ルートになる可能性がある。
 
一方、PtL(Power-to-Liquid)燃料としても知られる電子燃料は、持続可能な燃料産業における有望な発展である。再生可能な電力を使用した水の電気分解による)グリーン水素と、回収したCO2を組み合わせて製造されるe燃料は、カーボンニュートラル燃料への可能性を提供する。例えば、e-メタン、e-メタノール、e-ガソリン、e-ディーゼル、e-ケロシン/e-SAF(持続可能な航空燃料)などの液体e-燃料がある。市場活動は第2世代バイオ燃料の分野で最も活発だが、e燃料は理論上無限の生産原料が期待できること、カーボンニュートラルの可能性があること、欧米の規制当局や大企業が後押ししていることから、急速に盛り上がっている。
 
e燃料の製造プロセス、主要分子、主要技術の概要。出典 IDTechEx
 
本レポートは、セルロース系エタノール生産、熱分解、ガス化、フィッシャー・トロプシュ(FT)合成、水熱液化(HTL)、アルコール-ジェット/ガソリンといった第二世代バイオ燃料技術を、主要イノベーション、プロジェクト事例、技術サプライヤーとともに包括的に分析している。また、生産経路、主要プレーヤー、合成ガス生成の進歩に焦点を当て、急速に進化するこのセクターに関する貴重な洞察を提供する。
 
再生可能ディーゼルと持続可能航空燃料(SAF)
再生可能ディーゼルは、水素化処理植物油(HVO)またはグリーンディーゼルとしても知られ、従来の化石ディーゼルの直接代替品である。HVOは主に、植物油、動物性油脂、廃油などの原料を水素化処理し、改良する水素化処理エステル・脂肪酸(HEFA)経路を通じて製造される。HEFAはまた、持続可能な航空燃料(SAF)を製造するための主要なプロセスでもある。SAFは、従来のジェット燃料(ジェットA-1)のドロップイン代替となり、既存の航空機エンジンにシームレスに組み込むことができる。
 
SAFと再生可能ディーゼルの他の製造経路として、ガス化後にフィッシャー・トロプシュ(FT)合成を行う方法、アルコールからジェットへ変換する方法、電力から液体へ変換する方法(e-Fuels)などが出現しているが、これらの技術の商業的利用は2035年まで限定的であると予想される。HEFAプロセスは、その確立された拡張性、効率性、および現在の精製インフラとの互換性により、引き続き優位を占めると思われる。加えて、すべてのプロセスは再生可能なディーゼルやSAFを生産するだけでなく、プロパン、ブタン、ナフサを含む軽質留分などの貴重な副産物も生産する。これらの副産物は様々な産業で利用することができ、生産プロセスの経済性を高める。
 
IDTechExのレポートでは、再生可能ディーゼルおよびSAF市場について、市場を牽引する政策ランドスケープ、生産プロセス、注目すべき技術革新、主要プレーヤー、プロジェクトケーススタディに焦点を当てた包括的な分析を行っている。再生可能ディーゼルとSAFの生産における様々な生産技術と生産ルートに焦点を当て、新たな道筋を探るとともに、各分野における独自の課題と機会についての洞察も提供しています。
 
本レポートで分析したSAF生産プロセス 出典 IDTechEx
 
再生可能メタノール
バイオメタノールとeメタノールを含む再生可能メタノールは、多目的な持続可能燃料として注目を集めている。海洋燃料、水素キャリア、他の燃料製造プロセスの原料など、さまざまな用途に使用できる。現在、再生可能メタノールでは、バイオガスの改質やバイオマスのガス化によるバイオメタノールが主流を占めている。しかし、eメタノールはこの10年の後半に台頭し、2035年までに最大の再生可能メタノール源になると予想されている。IDTechExのレポートでは、再生可能メタノール市場を詳細に分析し、技術サプライヤー、主要プロジェクト開発者、発表されたプロジェクト容量を網羅し、再生可能メタノールの将来について詳細な展望を提供しています。
 
本レポートで分析した再生可能メタノールの生産ルート 出典 IDTechEx
 
市場予測と展望
IDTechExは、世界の再生可能ディーゼル及びSAFの生産能力は2035年までに年間5,700万トンを超え、2025年から2035年にかけて年平均成長率8.5%で成長すると予測している。この目覚しい成長軌道は、世界のエネルギーミックスにおける持続可能な燃料の重要性が高まっていることを強調している。
 
この成長の主な原動力は、EUと英国におけるSAF燃料の義務付けや米国のSAFグランド・チャレンジなどの政策展開や、車両運行会社や航空会社による二酸化炭素排出量削減の推進である。また、持続可能な燃料生産プロジェクトにおいて、幅広い生産技術が登場し、商業的に利用されるようになったことも大きな推進力となっている。しかし、このセクターは、全体的なエネルギー効率(特に道路輸送用のEVとe燃料を比較した場合)、原料の入手可能性、プロジェクト開発の問題(長い開発期間と多額の資金が必要)、従来の化石燃料と同等のコストを達成することなどに関連する大きな課題にも直面している。これらの要因や課題が一体となって、急速に発展するこの市場を形成している。
 
本レポートは、再生可能メタノール、再生可能ディーゼル、SAFを含む様々な持続可能燃料の詳細な市場予測を提供している。再生可能ディーゼル、再生可能SAF、再生可能メタノールについて、生産地域別(欧州、北米、南米、APAC)と技術経路別(HEFA/HVO、ガス化-FT、power-to-liquids/e-fuelsなど)に詳細な市場予測を提供している。詳細な技術分析から市場予測、プロジェクトケーススタディまで、本レポートは持続可能な燃料の展望を理解し、ナビゲートするために必要な洞察を提供します。
 
2024年と2035年の先進バイオ燃料とe燃料市場。出典 IDTechEx
 
主要な側面
持続可能な燃料市場の紹介
- 運輸部門の脱炭素化における持続可能な燃料の役割
- 持続可能燃料に関する世界の政策と規制の概要
 
従来型(第一世代)バイオ燃料市場の概要:
- バイオエタノール生産技術、主要原料、主要生産地域
- バイオディーゼル生産技術、主要原料、主要生産地域
- バイオ燃料をめぐる持続可能性への懸念(ライフサイクルでの炭素排出、土地利用の変化、EVなどの競合技術との比較)についての議論。
 
第二世代のバイオ燃料生産技術。IDTechExは以下の各項目について、生産技術、主要イノベーション、プロジェクト事例、技術サプライヤー、課題と機会を分析した:
- 先進バイオ燃料への主要経路の概要
- セルロース系エタノール生産
- 熱分解油生産のためのバイオマス、プラスチック、混合廃棄物の熱分解
- 合成ガス製造のためのバイオマスのガス化
- 直接炭化水素合成のための各種バイオマスおよびプラスチック廃棄物の水熱液化
- 合成ガスを炭化水素に変換するためのフィッシャー・トロプシュ(FT)合成
- バイオ原油の精製・アップグレード技術
- バイオガス改質またはバイオマスガス化によるバイオメタノール製造
- メタノールとエタノールを中心としたアルコール-ジェット(ATJ)とアルコール-ガソリン(ATG)
 
第3・第4世代バイオ燃料技術:
- 微細藻類を中心とした第3・第4世代バイオ燃料生産の概要。
- 培養システム(フォトバイオリアクターとオープンシステム)、培養システムサプライヤーの分析も含む。
- 過去の商業活動と現在の主要プレーヤー
- 第3および第4世代バイオ燃料の商業的展望
 
電子燃料生産の展望 IDTechExは以下の各項目について、生産技術、主要イノベーション、プロジェクト事例、技術サプライヤー、課題と機会を分析した:
- 電子燃料経路の概要、主な機会と課題
- 電子燃料用グリーン水素製造:電解槽技術と市場の概要
- e燃料用炭素回収:ポイントソースおよび直接空気回収技術と市場の概要
- 電子燃料用合成ガス製造:RWGS、SOEC、代替合成ガス生成方法とプレイヤーのレビュー
- 電子メタン製造
従来型(第一世代)バイオ燃料市場の概要:
- バイオエタノール生産技術、主要原料、主要生産地域
- バイオディーゼル生産技術、主要原料、主要生産地域
- バイオ燃料をめぐる持続可能性への懸念(ライフサイクルでの炭素排出、土地利用の変化、EVなどの競合技術との比較)についての議論。


ページTOPに戻る


目次

1. 要旨
1.1. 運輸部門の脱炭素化における持続可能な燃料の役割
1.2. 持続可能な燃料の採用を推進する主要政策
1.3. バイオ燃料の世代 - 従来型バイオ燃料と先進バイオ燃料
1.4. 従来型バイオ燃料の歴史的優位性 - バイオエタノールとバイオディーゼル
1.5. 第1世代バイオエタノール生産の概要
1.6. 世界のバイオディーゼル・再生可能ディーゼルの生産量と消費量
1.7. 第2世代バイオ燃料生産経路
1.8. 再生可能ディーゼル、SAF&ガソリン原料の概要
1.9. HVO/HEFAプロセス-再生可能ディーゼルの主流ルート&SAF
1.10. 再生可能ディーゼルの生産経路
1.11. SAFの生産経路
1.12. 石油精製におけるバイオマス原料のコ・プロセシング
1.13. 将来の総合バイオリファイナリー
1.14. e-燃料の概要
1.15. 電子燃料の用途と製造経路の概要
1.16. 電子燃料の最終製品別技術・プロセス開発企業
1.17. 電子燃料の最終製品別プロジェクト開発者数
1.18. 先進バイオ燃料とe燃料の生産技術プロバイダー
1.19. 持続可能な燃料技術開発者のためのビジネスモデル
1.20. 藻類バイオ燃料生産の概要と展望
1.21. メタノール生産の概要と色
1.22. 再生可能メタノールへの主な道
1.23. メタノール予想比較
1.24. バイオメタノール生産能力-地域別
1.25. バイオメタノール生産能力 - 技術別
1.26. 地域別Eメタノール生産能力
1.27. 再生可能ディーゼル・SAF製造における典型的な製品分割
1.28. 持続可能な燃料プロジェクトに影響を与える主要技術経済要因
1.29. ビジネス・モデル、プロジェクト・デベロッパーと燃料生産者のための考慮事項
1.30. 生産技術別のRD&SAFプロジェクト開発企業
1.31. バイオ燃料プロジェクトにおける主な課題
1.32. 電子燃料(液化発電)プロジェクトにおける主な課題
1.33. 再生可能ディーゼル&SAFライフサイクル・エミッション
1.34. HEFA再生可能ディーゼルに影響を与える要因 & SAF製造コスト
1.35. SAFの生産コスト比較
1.36. 再生可能ディーゼルの製造コスト
1.37. 地域別再生可能ディーゼル生産能力
1.38. 技術別再生可能ディーゼル生産能力
1.39. 地域別SAF生産能力
1.40. 技術別SAF生産能力
1.41. RD&SAF製造の副産物
1.42. 持続可能な燃料の複合予測
1.43. 電子燃料の複合予測
1.44. 主な要点と再生可能ディーゼルの見通し
1.45. SAFの要点と展望
1.46. 再生可能ディーゼルの見通しとSAF市場
2. バイオ燃料入門&政策展望
2.1. 世界の輸送排出量とバイオ燃料の役割
2.1.1. 気温上昇をもたらす地球規模の排出
2.1.2. 幅広い脱炭素ソリューションが必要
2.1.3. 世界の輸送排出量と持続可能な燃料の役割
2.1.4. 運輸部門における持続可能な燃料の役割
2.1.5. 輸送の脱炭素化におけるバイオ燃料の役割
2.1.6. バイオ燃料サプライチェーンの概要と温室効果ガス排出量
2.1.7. バイオ燃料世代 (1/2)
2.1.8. バイオ燃料世代 (2/2)
2.2. 持続可能な燃料政策
2.2.1. 持続可能な燃料の採用を推進する主要政策
2.2.2. 主要地域におけるバイオ燃料優遇措置と義務化 - 米国とEU
2.2.3. 主要地域におけるバイオ燃料の奨励・義務化 - 中国、インド
2.2.4. 主要地域におけるバイオ燃料の奨励・義務化 - ブラジル、アルゼンチン
2.2.5. 主要地域におけるバイオ燃料の奨励・義務化 - インドネシア、タイ
2.2.6. 米国再生可能エネルギー識別番号(RIN)
2.2.7. 米国における再生可能ディーゼル生産能力の促進要因
2.2.8. 先進・再生可能燃料に関するEUの定義
2.2.9. EU加盟国のバイオ燃料目標
2.2.10. EUの輸送における再生可能エネルギーシェア(RES-T)会計原則
2.2.11. RED IIとRED III-輸送目標は何が変わったのか?
2.2.12. EUの乗数はRES-T目標を人為的に膨らませる?
2.2.13. バイオ燃料生産/導入の推進要因と障壁
3. 従来のバイオ燃料バイオエタノール&バイオディーゼル
3.1. バイオエタノール&バイオディーゼル製造
3.1.1. 従来型バイオ燃料の歴史的優位性 - バイオエタノールとバイオディーゼル
3.1.2. バイオエタノールの重要性とその応用
3.1.3. 第1世代バイオエタノール生産の概要
3.1.4. 第1世代バイオエタノール生産の概要プロセス
3.1.5. 典型的なバイオエタノール製造プロセス - 穀物を使った乾式製粉プロセス
3.1.6. 典型的なバイオエタノール製造プロセス - サトウキビエタノールプロセス
3.1.7. 従来のバイオディーゼル(FAME)と石油ディーゼルの比較
3.1.8. 従来のバイオディーゼルとその応用
3.1.9. 世界のバイオディーゼル・再生可能ディーゼルの生産量と消費量
3.1.10. 典型的なバイオディーゼル製造工程
3.1.11. バイオディーゼル生産におけるさらなる考慮事項
3.2. 従来型バイオ燃料市場の現状
3.2.1. 米国におけるバイオ燃料の現状 - バイオエタノール
3.2.2. 米国におけるバイオ燃料の現状 - バイオディーゼル
3.2.3. 2024年のRIN価格動向は、米国におけるバイオマス由来ディーゼルの供給過剰を示す
3.2.4. バイオ燃料の現状 - EU
3.2.5. バイオ燃料の現状 - ブラジル
3.2.6. バイオ燃料の現状 - インドネシア
3.2.7. バイオ燃料の現状-中国
3.3. バイオ燃料をめぐる持続可能性への懸念
3.3.1. バイオ燃料の複雑な持続可能性
3.3.2. バイオ燃料サプライチェーンの概要と温室効果ガス排出量
3.3.3. バイオ燃料の炭素排出の概要 - トウモロコシエタノールの例
3.3.4. 土地利用の変化:直接的(LUC)&間接的(ILUC)
3.3.5. バイオ燃料の持続可能性と土地利用の変化
3.3.6. バイオ燃料のLCA比較
3.3.7. バイオ燃料のライフサイクル排出量と土地利用変化(LUC)
3.3.8. バイオ燃料生成による土地利用排出量
3.3.9. 土地利用変化による排出量の地域差
3.3.10. MJ当たりの燃料炭素原単位の比較
3.3.11. 1km当たりの燃料炭素原単位の比較
3.3.12. 電気自動車からの二酸化炭素排出
3.3.13. 各種自動車のライフサイクル排出量の比較
4. 第二世代バイオ燃料技術
4.1. 先進バイオ燃料の紹介
4.1.1. 石油製品のラインナップと持続可能な代替燃料
4.1.2. 先進バイオ燃料の略語と定義
4.1.3. バイオディーゼルと再生可能ディーゼル:特性とエンジン適合性
4.1.4. 化石ディーゼル、バイオディーゼル、再生可能ディーゼルの比較
4.1.5. ジェット燃料の組成と種類
4.1.6. ジェットA-1のドロップイン代替としてのSAF
4.1.7. 第2世代バイオ燃料生産経路
4.1.8. バイオ燃料技術の概要
4.2. セルロース系エタノール生産
4.2.1. リグノセルロース系バイオマス原料
4.2.2. セルロース系エタノール生産概要
4.2.3. リグノセルロース系バイオマスの分解における課題
4.2.4. バイオ燃料生産における酵素の利用
4.2.5. セルロース系エタノール企業の状況
4.2.6. セルロース系エタノール企業のケーススタディ
4.2.7. セルロース系エタノールは大きな課題に直面している
4.2.8. セルロース系エタノール生産者が直面する共通の課題
4.2.9. セルロース系エタノール生産は死んだのか?
4.2.10. 活発かつ進行中のセルロース系エタノール・プロジェクト
4.2.11. SAF生産はセルロース系エタノール生産者にとって新たなチャンス
4.2.12. SAFをターゲットとする主要セルロース系エタノール企業
4.3. 熱分解技術
4.3.1. バイオマス・プラスチック廃棄物熱分解の紹介
4.3.2. 熱分解製品と市場用途
4.3.3. 熱分解プロセスの設計に影響を与える主な技術的要因
4.3.4. 熱分解リアクターの設計
4.3.5. バイオマス・プラスチック熱分解における分解法の概要
4.3.6. 熱分解プラント設計における考察:加熱方法
4.3.7. 熱分解リアクター設計における最近の進歩 - Itero
4.3.8. 市場プレーヤーが採用しているリアクター・タイプ
4.3.9. プラスチックの触媒熱分解の概要
4.3.10. プラスチック廃棄物の熱分解のための低コスト触媒に関する最近の研究
4.3.11. 熱分解リアクターのサイズ制限
4.3.12. バイオオイル&プラスチック熱分解油の組成
4.3.13. 油の品質に影響を与える要因、燃料への下流工程
4.3.14. 熱分解技術の比較
4.3.15. 油中の水素不足と追加水素の必要性
4.3.16. 持続可能な燃料生産に携わる熱分解企業
4.4. ガス化技術
4.4.1. バイオマス&廃棄物ガス化概要
4.4.2. 熱分解とガス化の比較プロセス
4.4.3. 廃棄物発電所でのガス化&日本での普及
4.4.4. ガス化&フィッシャー・トロプシュバイオマス・ツー・リキッド(BtL)経路
4.4.5. バイオマスおよびプラスチックのガス化のための前処理方法
4.4.6. ガス化炉の種類
4.4.7. ガス化炉の性能比較
4.4.8. ガス化炉のタイプ別の長所と短所
4.4.9. ガス化技術開発者
4.4.10. バイオマスに使用される主なガス化炉のタイプ
4.4.11. ガス化の課題
4.4.12. バイオマスガス化技術の革新
4.4.13. バイオマスガス化技術の革新
4.4.14. コンコルド・ブルー - 新しいガス化・改質コンセプト
4.4.15. ガス化技術サプライヤー
4.5. 水熱液化(HTL)技術
4.5.1. 水熱液化(HTL)の概要
4.5.2. 熱水液化における水の役割
4.5.3. 水熱液化原料 - バイオマス
4.5.4. 水熱液化原料 - プラスチック
4.5.5. プラスチック廃棄物の水熱液化 - リセラのケーススタディ
4.5.6. 水熱液化原料 - バイオマス対プラスチック
4.5.7. 主要なHTL炉設計の概要
4.5.8. HTL炉の設計革新 - オーフス大学
4.5.9. HTL触媒の概要
4.5.10. カタリスト・イノベーション
4.5.11. 水熱液化技術開発者 - リアクタータイプ
4.5.12. 水熱液化技術開発者 - プロセス規模と原料
4.5.13. HTL技術を開発するプロジェクト・コンソーシアム
4.6. フィッシャー・トロプシュ(FT)合成
4.6.1. ガス化または熱分解からの合成ガスのオプション
4.6.2. フィッシャー・トロプシュ合成:合成ガスから炭化水素へ
4.6.3. フィッシャー・トロプシュ(FT)合成概要
4.6.4. 既存のFT触媒の概要
4.6.5. FT炉設計の概要
4.6.6. FT炉の概要
4.6.7. FT炉の設計比較
4.6.8. FTリアクターの革新 - マイクロチャンネル反応器
4.6.9. フィッシャー・トロプシュ(FT)技術サプライヤー(リアクタータイプ別
4.6.10. プラント規模別のフィッシャー・トロプシュ(FT)技術サプライヤー
4.7. バイオ原油精製・アップグレード技術
4.7.1. Refining & upgradingプロセス used in biorefineries
4.7.2. 水素化処理プロセス
4.7.3. 水素化分解プロセス
4.7.4. 異性化プロセス
4.7.5. 脱蝋プロセス
4.7.6. 分別蒸留プロセス:概要
4.7.7. 分別蒸留プロセス:詳細考察
4.7.8. アップグレードによる水素消費量プロセス
4.7.9. アップグレードにおける水素大量消費の意味プロセス
4.7.10. アップグレードにおける主な課題とプロセスプロセス
4.7.11. アップグレード触媒イノベーションのためのアカデミアにおけるR&D
4.7.12. 水素化処理水素化分解・異性化技術サプライヤー
4.7.13. 水素化処理水素化分解・異性化技術サプライヤー
4.8. バイオメタノール生産
4.8.1. メタノール生産の概要と色
4.8.2. 従来のメタノール製造
4.8.3. グレーメタノール・プロセスのケーススタディ
4.8.4. バイオメタノール生産の主な経路
4.8.5. バイオガス改質からのバイオメタノール
4.8.6. バイオガスと新しい改質技術を利用したバイオメタノール・プロジェクト
4.8.7. バイオマスガス化からのバイオメタノール
4.8.8. ガス化とメタノール製造の統合例 - Enerkem
4.8.9. 水熱ガス化からのバイオメタノール
4.8.10. メタノール合成技術の主要企業
4.9. アルコール-ジェット(ATJ)&アルコール-ガソリン(ATG):メタノール&エタノール
4.9.1. エタノール原料
4.9.2. メタノール原料
4.9.3. メタノール-ガソリン(MTG)プロセス概要
4.9.4. 従来の固定床MTGプロセス
4.9.5. 新しい流動床MTGプロセス
4.9.6. アルコール・ツー・ジェット(ATJ)プロセスステップ
4.9.7. エタノール・メタノール製造
4.9.8. アルコール脱水&オリゴマー化
4.9.9. 水素化、異性化&分別蒸留からジェットへ
4.9.10. MTGとMTJのプロセス比較
4.9.11. アルコール・ツー・ジェット(ATJ)と競合SAFルートの長所と短所
4.9.12. メタノール-ガソリン(MTG)技術プロバイダー
4.9.13. アルコール・ジェット(ATJ)技術プロバイダー
5. 第三・第四世代バイオ燃料技術
5.1. 第三・第四世代バイオ燃料の紹介
5.2. 大型藻類、微細藻類、シアノバクテリア
5.3. 藻類は様々な市場に応用できる
5.4. CO₂回収・利用 - 微細藻類・シアノバクテリアの主要用途
5.5. 第3世代バイオ燃料生産:原料
5.6. 大型藻類を用いたバイオ燃料製造プロセス
5.7. 微細藻類/シアノバクテリアを用いたバイオ燃料製造プロセス
5.8. 藻類バイオ燃料生産 - プロセス例
5.9. 微細藻類培養における代謝経路
5.10. 微細藻類培養における主要成長基準
5.11. 微細藻類培養用オープン容器
5.12. 微細藻類培養用密閉容器
5.13. 開放型と閉鎖型の藻類培養システム
5.14. 微細藻類培養システムサプライヤー:フォトバイオリアクター(PBR)&ポンド
5.15. ケーススタディ-藻類を使ったセメント工場からのCO₂回収
5.16. ケーススタディ - 持続可能な航空燃料(SAF)製造に藻類を使用
5.17. 藻類バイオ燃料開発は歴史的課題に直面してきた
5.18. 藻類バイオ燃料企業は焦点を移すか、倒産したか
5.19. Key players in algal and microbial biofuelプロセス & projects
5.20. 微細藻類の利用を計画するSAFプロジェクト
5.21. 第3・第4世代バイオ燃料生産のSWOT分析
5.22. 第3・第4世代バイオ燃料の見通し
6. e燃料製造
6.1. e-燃料の概要
6.1.1. e-燃料の概要
6.1.2. 合成燃料の主要原料としてのCO
6.1.3. 電子燃料の用途と製造経路の概要
6.1.4. 電子燃料と化石燃料およびバイオ燃料との比較
6.1.5. 電子燃料製造におけるエネルギーと炭素の流れの概要
6.1.6. E燃料の生産効率
6.1.7. 電子燃料を取り巻くエネルギー効率の課題
6.1.8. E燃料は特定の状況で使用されなければならない
6.1.9. e燃料製造の高コスト
6.1.10. e-燃料のSWOT分析
6.2. 電子燃料用グリーン水素製造
6.2.1. 電子燃料製造におけるグリーン水素の役割
6.2.2. 電解槽セル、スタック、プラントバランス(BOP)
6.2.3. 電解槽技術の概要
6.2.4. 電解槽の性能特性
6.2.5. 電解槽技術の概要市場展望
6.2.6. 電解槽メーカー - 主要企業
6.2.7. 電解槽技術の長所と短所
6.2.8. IDTechEx's "Green Hydrogen Production & Electrolyzer Market2024-2034"
6.3. 電子燃料のための炭素回収
6.3.1. 主なCO₂回収システム
6.3.2. CCUSのバリューチェーン
6.3.3. 炭素回収技術
6.3.4. CO₂を原料とする燃料は、航空・海運セクターから需要がある
6.3.5. 回収されたCO
6.3.6. EUの再生可能エネルギー指令に基づく電子燃料製造のためのCO₂源
6.3.7. 電子燃料製造のためのDACの状況
6.3.8. ダイレクト・エア・キャプチャー(DAC)各社の状況
6.3.9. Carbon Capture, Utilization, and Storage (CCUS) Markets2025-2045: Technologies, Market Forecasts, and Players
6.4. 電子燃料用合成ガス製造
6.4.1. 電子燃料用合成ガス製造オプションの概要
6.4.2. 逆水ガスシフト(RWGS)概要
6.4.3. RWGS原子炉イノベーション・ケーススタディ
6.4.4. 直接フィッシャー・トロプシュ合成:CO₂から炭化水素へ
6.4.5. RWGS触媒イノベーション・ケーススタディ
6.4.6. 低温電気化学的CO₂還元
6.4.7. ECO₂燃料プロジェクト
6.4.8. 固体酸化物電解槽(SOEC)概要
6.4.9. SOEC共電解プロジェクトのケーススタディ
6.4.10. RWGS & SOEC共電解ルートの比較
6.4.11. 電子燃料用リバース・ウォーター・ガス・シフト(RWGS)の主要企業
6.4.12. 電子燃料用リバース・ウォーター・ガス・シフト(RWGS)の立ち上げ
6.4.13. SOEC & SOFCシステム・サプライヤー
6.4.14. 代替CO₂ 削減技術企業の状況
6.4.15. 太陽光発電によるE燃料
6.5. Eメタン製造
6.5.1. メタンガスの分類と発電からガスへの転換(P2G)
6.5.2. メタン化概要
6.5.3. 電子メタンへの熱触媒経路
6.5.4. 熱触媒メタン化のケーススタディ
6.5.5. CO₂の電子メタンへの生物学的発酵
6.5.6. バイオ触媒によるメタン化のケーススタディ
6.5.7. 熱触媒によるメタン化と生体触媒によるメタン化
6.5.8. メタン化技術のSWOT
6.5.9. 世界のメタン発電プロジェクト - 現在進行中および発表済み
6.5.10. メタン化会社風景
6.6. Eメタノール製造
6.6.1. メタノール生産の概要と色
6.6.2. Eメタノール製造オプション
6.6.3. E-メタノール製法概要
6.6.4. トプソーのCO₂-メタノール触媒
6.6.5. メタノール合成のケーススタディ
6.6.6. メタノール合成のケーススタディ
6.6.7. H2O&CO₂からの直接メタノール合成
6.6.8. バイオeメタノールのケーススタディ
6.6.9. メタノール合成の主要企業
6.6.10. 新規メタノール合成コンセプトの新興企業
6.7. 液体電子燃料製造
6.7.1. 液体炭化水素e燃料への経路の概要
6.7.2. RWGS-FTとSOEC-FTの主なイノベーションのまとめプロセス
6.7.3. メタノール合成とMTG/MTJにおける主要技術革新のまとめプロセス
6.7.4. モジュール式e燃料プラントのコンセプト
6.7.5. 大規模産業用e-fuelプラント構想
6.7.6. MTG電子燃料プラントのケーススタディ
6.7.7. RWGS-FT電子燃料プラントのケーススタディ
6.7.8. 既存の液化ガス(GTL)設備の電子燃料への転換
6.7.9. 電子燃料の最終製品別技術・プロセス開発企業
6.7.10. 電子燃料の最終製品別プロジェクト開発者数
7. 先進バイオ燃料と電子燃料市場
7.1. 再生可能メタノール市場
7.1.1. メタノール市場の現状
7.1.2. 将来のメタノール用途
7.1.3. 低炭素メタノールの主な成長ドライバー
7.1.4. メタノール生産の概要と色
7.1.5. バイオメタノール生産の主な経路
7.1.6. バイオメタノールプロジェクト開発者会社風景
7.1.7. バイオガスを利用したバイオメタノールプラント
7.1.8. ガス化を利用したバイオメタノールプラント
7.1.9. Eメタノール製造オプション
7.1.10. 現在開発中のE-メタノール・プロジェクト(事業化可能性調査終了後)
7.1.11. 再生可能メタノール・プロジェクトの能力
7.2. 再生可能ディーゼル&SAF - 一般的な市場シナリオ
7.2.1. 再生可能ディーゼル、SAF&ガソリン原料の概要
7.2.2. 再生可能ディーゼル・SAF製造における典型的な製品分割
7.2.3. 石油精製におけるバイオマス原料のコ・プロセシング
7.2.4. 将来の総合バイオリファイナリー
7.2.5. 持続可能な燃料技術開発者のためのビジネスモデル
7.2.6. 先進バイオ燃料とe燃料の生産技術プロバイダー
7.2.7. 持続可能な燃料プロジェクトに影響を与える主要技術経済要因
7.2.8. ビジネス・モデル、プロジェクト・デベロッパーと燃料生産者のための考慮事項
7.2.9. 生産技術別のRD&SAFプロジェクト開発企業
7.2.10. バイオ燃料プロジェクトにおける主な課題
7.2.11. 電子燃料(液化発電)プロジェクトにおける主な課題
7.2.12. 再生可能ディーゼル&SAFライフサイクル・エミッション
7.2.13. HEFA再生可能ディーゼルに影響を与える要因 & SAF製造コスト
7.2.14. SAFの生産コスト比較
7.2.15. 再生可能ディーゼルの製造コスト
7.3. 再生可能ディーゼル市場
7.3.1. 再生可能ディーゼルとその最終用途市場
7.3.2. 再生可能ディーゼルの政府目標と義務化
7.3.3. 米国における再生可能ディーゼル生産能力の促進要因
7.3.4. 再生可能ディーゼル市場における最近の商業活動(2023~2024年)
7.3.5. バイオディーゼルと再生可能ディーゼル:原料と製造プロセス
7.3.6. 再生可能ディーゼルの生産経路
7.3.7. HEFA/HVO再生可能ディーゼルのケーススタディ - Neste
7.3.8. ガス化-FT再生可能ディーゼルのケーススタディ
7.3.9. HTLバイオ燃料のケーススタディ - リセラ&アルビオス・バイオテック
7.3.10. 熱分解バイオクリュード企業のケーススタディ - Alder Renewables
7.3.11. Eディーゼル商業活動
7.3.12. 主な要点と再生可能ディーゼルの見通し
7.4. 持続可能な航空燃料(SAF)市場
7.4.1. 航空業界の現状
7.4.2. 航空機の脱炭素化におけるSAFの重要性
7.4.3. Jet fuel price action2020-2024
7.4.4. 政府目標とSAFの義務
7.4.5. 政府目標とSAFの義務 - EUと英国に注目
7.4.6. SAF生産者に対する政府のインセンティブ
7.4.7. 旅客・貨物航空会社によるSAFコミットメントの概要
7.4.8. 主要旅客航空会社のコミットメントとSAFでの活動
7.4.9. 主要貨物航空会社のコミットメントとSAFでの活動
7.4.10. SAFアライアンス&業界イニシアティブ
7.4.11. SAFの主要市場ドライバーの概要
7.4.12. メインSAFの生産経路
7.4.13. バイオSAFとe-SAF - SAFへの2つの主要経路
7.4.14. ASTM認可の製造経路
7.4.15. HEFA-SPK生産者ケーススタディ - Neste
7.4.16. ガス化-FTバイオSAFプロジェクトのケーススタディ - Altalto Immingham
7.4.17. ATJプロジェクトのケーススタディ
7.4.18. e-SAFプロジェクトのケーススタディ - Norsk e-Fuel
7.4.19. BP、バイオ燃料生産におけるカバークロップの使用を提唱
7.4.20. フルクラム・バイオエナジー - 失敗したSAF生産者
7.4.21. その他のSAFプロジェクト中止と失敗の理由
7.4.22. SAFの価格 - 普及を阻む重要な問題
7.4.23. SAFのグリーンプレミアムは誰が負担するのか?
7.4.24. SAFコスト削減の主な推進要因と課題
7.4.25. SAFの生産能力
7.4.26. SAFの要点と展望
8. 市場予測
8.1. サステイナブル燃料市場予測手法と前提条件
8.2. メタノール予想比較
8.3. 持続可能な燃料の複合予測
8.4. 電子燃料の複合予測
8.5. 再生可能ディーゼルの見通しとSAF市場
8.6. バイオメタノール生産能力-地域別
8.7. バイオメタノール生産能力 - 技術別
8.8. 地域別Eメタノール生産能力
8.9. 地域別再生可能ディーゼル生産能力
8.10. 技術別再生可能ディーゼル生産能力
8.11. 地域別SAF生産能力
8.12. 技術別SAF生産能力
8.13. RD&SAF製造の副産物
9. 会社概要
9.1. 水熱液化(HTL):
9.1.1. アドゥロ・クリーン・テクノロジーズ
9.1.2. チルクリア・ノルディック
9.1.3. リセラ
9.2. フィッシャー・トロプシュ(FT)合成:
9.2.1. OXCCU
9.2.2. ベロシス
9.2.3. イネラーテック
9.3. ガス化:
9.3.1. コンコード・ブルー・エンジニアリング
9.3.2. シェル触媒&テクノロジー
9.3.3. KEWテクノロジー
9.3.4. エネルケム
9.4. E燃料:
9.4.1. アビオックス
9.4.2. カーボンニュートラル燃料
9.4.3. 次元エネルギー
9.4.4. リキッド・ウインド(2021年)&リキッド・ウインド(2023年更新)
9.4.5. シンヘリオン(2021年)&シンヘリオン(2024年更新)
9.4.6. プロメテウス燃料(2021年)&プロメテウス燃料(2023年更新)
9.5. メタン化:
9.5.1. Qパワー
9.5.2. 日立造船株式会社
9.6. メタノール:
9.6.1. カーボン・リサイクル・インターナショナル
9.6.2. カーボンブリッジ
9.7. アルコール・ジェット(ATJ)&その他:
9.7.1. ランザジェット
9.7.2. ランザテック(2021年)&ランザテック(2023年更新)

 

 

ページTOPに戻る


 

Summary

この調査レポートでは、先進バイオ燃料(第2 世代以降)とe 燃料について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • バイオ燃料と政策状況
  • 従来のバイオ燃料 バイオエタノールとバイオディーゼル
  • 第二世代バイオ燃料技術
  • 第三・第四世代バイオ燃料技術
  • 電子燃料製造
  • 先進バイオ燃料とe燃料市場
  • 市場予測
  • 企業プロフィール
 
Report Summary
The need for sustainable fuels in transport decarbonization
The global transportation sector is a significant contributor to greenhouse gas emissions, accounting for around 25% of energy-related CO2 emissions worldwide. Hence, the decarbonization of transport has become a critical priority. Many solutions exist, including electric vehicles (EVs) as well as fuels like low-carbon hydrogen, methanol and ammonia. Advanced biofuels and e-fuels are also emerging as a promising solution to reduce the carbon footprint of transport sectors where electrification faces significant challenges, including aviation, shipping, and heavy-duty road transport.
 
One of the most significant advantages of sustainable hydrocarbon fuels is their drop-in capability. This means they can be used in existing engines and infrastructure without requiring major modifications. This characteristic is particularly crucial for sectors like aviation and shipping, where the transition to alternative propulsion systems is more complex, costly and time-consuming.
 
In this report, IDTechEx provides an in-depth analysis of advanced biofuels (second generation and beyond) and e-fuels. The analysis covers production processes, relevant policies, key technological innovations, technology providers, and project developers. It also explores the techno-economic challenges and opportunities in the sector. The report focuses on key fuels such as renewable diesel, sustainable aviation fuel (SAF), and renewable methanol, amongst others.
 
Transitioning from first-generation biofuels to advanced biofuels and e-fuels
Biofuel generations. Source: IDTechEx
 
First-generation biofuels, such as bioethanol and biodiesel, made from food crops like corn, sugarcane, and vegetable oils, have long led the sustainable fuel market. However, concerns over competition with food production, lifecycle emissions, and land use are pushing key regions like Europe and the US to adopt more advanced alternatives. Second-generation biofuels, derived from lignocellulosic biomass, agricultural residues, and non-food crops, are gaining attention for their greater sustainability and reduced competition with food resources. Third and fourth generation biofuels use microalgae or other microorganisms for biofuel production, which despite all their challenges could become a viable production route in the future.
 
Meanwhile, e-fuels, also known as power-to-liquid (PtL) fuels, represent a promising development in the sustainable fuel industry. Produced by combining green hydrogen (from water electrolysis using renewable electricity) with captured CO2, e-fuels offer a potential path to carbon-neutral fuels. Examples include e-methane, e-methanol, and liquid e-fuels like e-gasoline, e-diesel, and e-kerosene / e-SAF (sustainable aviation fuel). Market activity is highest in the second gen biofuel space, but e-fuels are quickly picking up due to the promise of theoretically unlimited feedstocks for production, potential for carbon neutrality and a push from regulators and large corporations in Europe and the US.
 
Overview of the e-fuel production process, key molecules, and key technologies. Source: IDTechEx
 
This report provides a comprehensive analysis of second-generation biofuel technologies, such as cellulosic ethanol production, pyrolysis, gasification, Fischer-Tropsch (FT) synthesis, hydrothermal liquefaction (HTL) and alcohol-to-jet/gasoline, along with key innovations, project case studies, and technology suppliers. It also extensively covers the e-fuel landscape, focusing on production pathways, key players, and advancements in syngas generation, offering valuable insights into this rapidly evolving sector.
 
Renewable diesel & sustainable aviation fuel (SAF)
Renewable diesel, also known as hydrotreated vegetable oil (HVO) or green diesel, is a direct replacement for conventional fossil diesel. It is produced primarily through the hydroprocessed esters and fatty acids (HEFA) pathway, which involves hydrotreating and upgrading feedstocks such as vegetable oils, animal fats, and waste oils. HEFA is also the dominant process for producing sustainable aviation fuel (SAF), a critical solution for decarbonizing the aviation sector. SAF offers a drop-in replacement for conventional jet fuel (Jet A-1), seamlessly integrating with existing aircraft engines.
 
While other production pathways for SAF and renewable diesel are emerging, such as gasification followed by Fischer-Tropsch (FT) synthesis, alcohol-to-jet, and power-to-liquids (e-fuels), commercial uptake of these technologies is expected to remain limited through 2035. HEFA processes will continue to dominate due to their established scalability, efficiency, and compatibility with current refining infrastructure. In addition, all processes not only produce renewable diesel and SAF but also yield valuable by-products such as lighter fractions, including propane, butane, and naphtha. These by-products can be utilized in various industries, enhancing the economic viability of the production processes.
 
The IDTechEx report provides a comprehensive analysis of the renewable diesel and SAF markets, focusing on policy landscapes driving the market, production processes, notable technological innovations, key players, and project case studies. It highlights the different production technologies and routes for renewable diesel and SAF production, exploring emerging pathways, as well as providing insights into the unique challenges and opportunities within each sector.
 
SAF production processes analyzed in this report. Source: IDTechEx
 
Renewable methanol
Renewable methanol, including both biomethanol and e-methanol, is gaining attention as a versatile sustainable fuel option. It can be used in various applications, including as a marine fuel, hydrogen carrier and as a feedstock for other fuel production processes. Today, biomethanol from biogas reforming and biomass gasification dominate the renewable methanol landscape. However, e-methanol is expected to emerge in the later half of this decade, becoming the largest renewable methanol source by 2035. IDTechEx's report offers an in-depth analysis of the renewable methanol market, covering technology suppliers, key project developers, and announced project capacities, providing a detailed outlook on the future of renewable methanol.
 
Renewable methanol production routes analyzed in this report. Source: IDTechEx
 
Market forecasts & outlook
The sustainable fuel market is poised for significant growth in the coming years with IDTechEx forecasting the global renewable diesel and SAF production capacity is forecast to exceed 57 million tonnes annually by 2035, growing at a CAGR of 8.5% between 2025 and 2035. This impressive growth trajectory underscores the increasing importance of sustainable fuels in the global energy mix.
 
The major drivers for this growth are policy developments, such as SAF fuel mandates in the EU and UK or the US' SAF Grand Challenge, as well as a push from vehicle fleet operators and airlines to reduce carbon emissions. Another major driver is the emergence of a wide range of production technologies and their commercial uptake in sustainable fuel production projects. However, the sector also faces significant challenges associated with overall energy efficiency (especially when comparing e-fuels to EVs for road transport), feedstock availability, project development issues (long development timelines and significant funding needed) and achieving cost parity with conventional fossil fuels. Together, these drivers and challenges are shaping this rapidly developing market.
 
The report provides detailed market forecasts for various sustainable fuel types, including renewable methanol, renewable diesel, and SAF. Detailed market forecasts are provided, broken down by production regions (Europe, North America, South America, and APAC) and technological pathways (e.g., HEFA/HVO, gasification-FT, and power-to-liquids/e-fuels) for renewable diesel, SAF, and renewable methanol. From detailed technology analyses to market forecasts and project case studies, this report provides the insights needed to understand and navigate the sustainable fuel landscape.
 
Advanced biofuels & e-fuels market in 2024 and 2035. Source: IDTechEx
 
Key aspects
Introduction to the sustainable fuel market:
• Role of sustainable fuels in decarbonizing transport sectors
• Overview of global policies & regulation for sustainable fuels
 
Overview of the conventional (first generation) biofuel market:
• Bioethanol production technology, key feedstocks, key producing regions
• Biodiesel production technology, key feedstocks, key producing regions
• Discussions addressing sustainability concerns around biofuels (lifecycle carbon emissions, land use change, comparison to competing technologies like EVs).
 
Second generation biofuel production technologies. For each of the below, IDTechEx analyzed the production technologies, key innovations, project case studies, technology suppliers, challenges & opportunities:
• Overview of key pathways to advanced biofuels
• Cellulosic ethanol production
• Pyrolysis of biomass, plastic and mixed waste for pyrolysis oil production
• Gasification of biomass for syngas production
• Hydrothermal liquefaction of various biomass and plastic wastes for direct hydrocarbon synthesis
• Fischer-Tropsch (FT) synthesis for conversion of syngas to hydrocarbons
• Refining and upgrading technologies for biocrude oil
• Biomethanol production via biogas reforming or biomass gasification
• Alcohol-to-jet (ATJ) and alcohol-to-gasoline (ATG), focusing on methanol and ethanol
 
Third & fourth generation biofuel technologies:
• Overview of 3rd and 4th generation biofuel production, focusing on microalgae.
• Includes analysis of cultivation systems (photobioreactors & open systems), cultivation system suppliers
• Past commercial activities & current key players
• Commercial outlook on 3rd and 4th gen biofuels
 
E-fuel production landscape. For each of the below, IDTechEx analyzed the production technologies, key innovations, project case studies, technology suppliers, challenges & opportunities:
• Overview of e-fuel pathways, key opportunities and challenges
• Green hydrogen production for e-fuels: summary of the electrolyzer technology and market
• Carbon capture for e-fuels: summary of the point-source and direct air capture technologies and market
• Syngas production for e-fuels: review of RWGS, SOEC and alternative syngas generation methods and players
• E-methane production
 


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Role of sustainable fuels in transport sector decarbonization
1.2. Key policies driving adoption of sustainable fuels
1.3. Biofuel generations - conventional & advanced biofuels
1.4. Historical dominance of conventional biofuels - bioethanol & biodiesel
1.5. Overview of 1st generation bioethanol production
1.6. Global biodiesel & renewable diesel production & consumption
1.7. 2nd generation biofuel production pathways
1.8. Overview of feedstocks for renewable diesel, SAF & gasoline
1.9. HVO / HEFA process - the dominant route for renewable diesel & SAF
1.10. Renewable diesel production pathways
1.11. SAF production pathways
1.12. Co-processing of biomass feedstocks in petroleum refineries
1.13. Future integrated biorefineries
1.14. Overview of e-fuels
1.15. Overview of e-fuel uses & production pathways
1.16. Technology & process developers in e-fuels by end-product
1.17. Project developers in e-fuels by end-product
1.18. Production technology providers for advanced biofuels & e-fuels
1.19. Business models for sustainable fuel technology developers
1.20. Overview & outlook on algal biofuel production
1.21. Overview of methanol production & colors
1.22. Main pathways to renewable methanol
1.23. Methanol forecast comparison
1.24. Biomethanol production capacity - by region
1.25. Biomethanol production capacity - by technology
1.26. E-methanol production capacity by region
1.27. Typical product splits in renewable diesel & SAF production
1.28. Key techno-economic factors influencing sustainable fuel projects
1.29. Business models & considerations for project developers & fuel producers
1.30. RD & SAF project developers by production technology
1.31. Key challenges in biofuel projects
1.32. Key challenges in e-fuel (power-to-liquids) projects
1.33. Renewable diesel & SAF lifecycle emissions
1.34. Factors influencing HEFA renewable diesel & SAF production costs
1.35. SAF production cost comparison
1.36. Renewable diesel production costs
1.37. Renewable diesel production capacity by region
1.38. Renewable diesel production capacity by technology
1.39. SAF production capacity by region
1.40. SAF production capacity by technology
1.41. By-products from RD & SAF production
1.42. Combined forecast for sustainable fuels
1.43. Combined forecast for e-fuels
1.44. Key takeaways & outlook on renewable diesel
1.45. Key takeaways and outlook on SAF
1.46. Outlook on renewable diesel & SAF markets
2. INTRODUCTION TO BIOFUELS & POLICY LANDSCAPE
2.1. Global transport emissions & role of biofuels
2.1.1. Global emissions driving temperature increase
2.1.2. Wide range of decarbonization solutions needed
2.1.3. Global transport emissions & role of sustainable fuels
2.1.4. Role of sustainable fuels in transport sectors
2.1.5. Role of biofuels in decarbonization of transportation
2.1.6. Overview of the biofuel supply chain & greenhouse gas emissions
2.1.7. Biofuel generations (1/2)
2.1.8. Biofuel generations (2/2)
2.2. Sustainable fuel policy landscape
2.2.1. Key policies driving adoption of sustainable fuels
2.2.2. Biofuel incentives & mandates in key regions - US & EU
2.2.3. Biofuel incentives & mandates in key regions - China & India
2.2.4. Biofuel incentives & mandates in key regions - Brazil & Argentina
2.2.5. Biofuel incentives & mandates in key regions - Indonesia & Thailand
2.2.6. US Renewable Identification Numbers (RIN)
2.2.7. Drivers of renewable diesel production capacity in US
2.2.8. EU definitions on advanced & renewable fuels
2.2.9. EU member states' biofuel targets
2.2.10. EU renewable energy share in transport (RES-T) accounting principles
2.2.11. RED II vs RED III - what has changed for transport targets?
2.2.12. EU multipliers artificially inflating RES-T targets?
2.2.13. Drivers & barriers for biofuel production / adoption
3. CONVENTIONAL BIOFUELS: BIOETHANOL & BIODIESEL
3.1. Bioethanol & biodiesel production
3.1.1. Historical dominance of conventional biofuels - bioethanol & biodiesel
3.1.2. Importance of bioethanol & its applications
3.1.3. Overview of 1st generation bioethanol production
3.1.4. Overview of 1st generation bioethanol production processes
3.1.5. Typical bioethanol production process - dry milling process using grains
3.1.6. Typical bioethanol production process - sugarcane ethanol process
3.1.7. Conventional biodiesel (FAME) vs petroleum diesel
3.1.8. Conventional biodiesel & its applications
3.1.9. Global biodiesel & renewable diesel production & consumption
3.1.10. Typical biodiesel production process
3.1.11. Further considerations in biodiesel production
3.2. State of the conventional biofuel market
3.2.1. Current state of biofuels in the US - bioethanol
3.2.2. Current state of biofuels in the US - biodiesel
3.2.3. 2024 RIN price trends indicate oversupply of biomass-based diesel in US
3.2.4. Current state of biofuels - EU
3.2.5. Current state of biofuels - Brazil
3.2.6. Current state of biofuels - Indonesia
3.2.7. Current state of biofuels - China
3.3. Sustainability concerns around biofuels
3.3.1. The complex sustainability case for biofuels
3.3.2. Overview of the biofuel supply chain & greenhouse gas emissions
3.3.3. Overview of biofuel carbon emissions - corn ethanol example
3.3.4. Land use change: direct (LUC) & indirect (ILUC)
3.3.5. Sustainability of biofuels & land use change
3.3.6. LCA comparison for biofuels
3.3.7. Lifecycle emissions of biofuels & land use change (LUC)
3.3.8. Land use emissions from biofuel generations
3.3.9. Regional variations in emissions from land use change
3.3.10. Fuel carbon intensity comparison per MJ
3.3.11. Fuel carbon intensity comparisons per km
3.3.12. Carbon emissions from electric vehicles
3.3.13. Comparison of lifecycle emissions from various vehicles
4. SECOND GENERATION BIOFUEL TECHNOLOGIES
4.1. Introduction to advanced biofuels
4.1.1. Petroleum product ranges & sustainable fuel alternatives
4.1.2. Acronyms & definitions for advanced biofuels
4.1.3. Biodiesel vs renewable diesel: properties & engine compatibility
4.1.4. Comparison of fossil diesel, biodiesel & renewable diesel
4.1.5. Jet fuel composition & types
4.1.6. SAF as a drop-in replacement for Jet A-1
4.1.7. 2nd generation biofuel production pathways
4.1.8. Biofuel technology overview
4.2. Cellulosic ethanol production
4.2.1. Lignocellulosic biomass feedstocks
4.2.2. Cellulosic ethanol production overview
4.2.3. Challenges in breaking down lignocellulosic biomass
4.2.4. Enzyme uses in biofuel production
4.2.5. Cellulosic ethanol company landscape
4.2.6. Cellulosic ethanol company case studies
4.2.7. Cellulosic ethanol have faced significant challenges
4.2.8. Common challenges faced by cellulosic ethanol producers
4.2.9. Is cellulosic ethanol production dead?
4.2.10. Active and ongoing cellulosic ethanol projects
4.2.11. SAF production is a new opportunity for cellulosic ethanol producers
4.2.12. Key cellulosic ethanol companies targeting SAF
4.3. Pyrolysis technologies
4.3.1. Introduction to biomass & plastic waste pyrolysis
4.3.2. Pyrolysis products & market applications
4.3.3. Key technical factors that impact the design of the pyrolysis process
4.3.4. Pyrolysis reactor designs
4.3.5. Overview of decomposition methods in biomass & plastic pyrolysis
4.3.6. Considerations in pyrolysis plant design: heating methods
4.3.7. Recent advances in pyrolysis reactor design - Itero
4.3.8. Reactor type being employed by market player
4.3.9. Overview of catalytic pyrolysis of plastic
4.3.10. Recent research into low-cost catalysts for pyrolysis of plastic waste
4.3.11. Size limitations of pyrolysis reactors
4.3.12. Composition of bio-oil & plastic pyrolysis oil
4.3.13. Factors influencing oil quality & downstream processing into fuels
4.3.14. Comparison of pyrolysis technologies
4.3.15. Hydrogen deficiency in oils & need for additional hydrogen
4.3.16. Pyrolysis companies involved in sustainable fuel production
4.4. Gasification technologies
4.4.1. Biomass & waste gasification overview
4.4.2. Comparison of pyrolysis and gasification processes
4.4.3. Gasification in waste-to-energy plants & widespread adoption in Japan
4.4.4. Gasification & Fischer-Tropsch biomass-to-liquid (BtL) pathway
4.4.5. Pre-treatment methods for gasification of biomass and plastics
4.4.6. Gasifier types
4.4.7. Gasifier performance comparison
4.4.8. Pros & cons of different gasifier types
4.4.9. Gasification technology developers
4.4.10. Main gasifier types used for biomass
4.4.11. Challenges in gasification
4.4.12. Innovations in biomass gasification technology
4.4.13. Innovations in biomass gasification technology
4.4.14. Concorde Blue - novel gasification & reforming concept
4.4.15. Gasification technology suppliers
4.5. Hydrothermal liquefaction (HTL) technologies
4.5.1. Overview of hydrothermal liquefaction (HTL)
4.5.2. Role of water in hydrothermal liquefaction
4.5.3. Hydrothermal liquefaction feedstocks - biomass
4.5.4. Hydrothermal liquefaction feedstocks - plastics
4.5.5. Hydrothermal liquefaction of plastic waste - Licella case study
4.5.6. Hydrothermal liquefaction feedstocks - biomass vs plastics
4.5.7. Overview of key HTL reactor designs
4.5.8. HTL reactor design innovation - Aarhus University
4.5.9. Overview of HTL catalysts
4.5.10. Catalyst innovation
4.5.11. Hydrothermal liquefaction technology developers - reactor type
4.5.12. Hydrothermal liquefaction technology developers - process scale & feedstock
4.5.13. Project consortiums developing HTL technology
4.6. Fischer-Tropsch (FT) synthesis
4.6.1. Options for syngas from gasification or pyrolysis
4.6.2. Fischer-Tropsch synthesis: syngas to hydrocarbons
4.6.3. Fischer-Tropsch (FT) synthesis overview
4.6.4. Overview of incumbent FT catalysts
4.6.5. Overview of FT reactor designs
4.6.6. Overview of FT reactors
4.6.7. FT reactor design comparison
4.6.8. FT reactor innovation - microchannel reactors
4.6.9. Fischer-Tropsch (FT) technology suppliers by reactor type
4.6.10. Fischer-Tropsch (FT) technology suppliers by plant scale
4.7. Biocrude oil refining & upgrading technologies
4.7.1. Refining & upgrading processes used in biorefineries
4.7.2. Hydrotreating processes
4.7.3. Hydrocracking process
4.7.4. Isomerization process
4.7.5. Dewaxing process
4.7.6. Fractional distillation process: overview
4.7.7. Fractional distillation process: detailed considerations
4.7.8. Hydrogen consumption by upgrading processes
4.7.9. Implications of high hydrogen consumption in upgrading processes
4.7.10. Key challenges & process considerations in upgrading processes
4.7.11. R&D in academia for upgrading catalyst innovation
4.7.12. Hydrotreating, hydrocracking and isomerization technology suppliers
4.7.13. Hydrotreating, hydrocracking and isomerization technology suppliers
4.8. Biomethanol production
4.8.1. Overview of methanol production & colors
4.8.2. Traditional methanol production
4.8.3. Grey methanol process case study
4.8.4. Main pathways to biomethanol production
4.8.5. Biomethanol from biogas reforming
4.8.6. Biomethanol project using biogas & new reforming technology
4.8.7. Biomethanol from biomass gasification
4.8.8. Integrated gasification & methanol production example - Enerkem
4.8.9. Biomethanol from hydrothermal gasification
4.8.10. Key players in methanol synthesis technology
4.9. Alcohol-to-jet (ATJ) & alcohol-to-gasoline (ATG): methanol & ethanol
4.9.1. Ethanol feedstocks
4.9.2. Methanol feedstocks
4.9.3. Methanol-to-gasoline (MTG) process overview
4.9.4. Conventional fixed bed MTG process
4.9.5. New fluidized bed MTG process
4.9.6. Alcohol-to-jet (ATJ) process steps
4.9.7. Ethanol & methanol production
4.9.8. Alcohol dehydration & oligomerization
4.9.9. Hydrogenation, isomerization & fractional distillation to jet
4.9.10. MTG vs MTJ process comparison
4.9.11. Pros & cons of alcohol-to-jet (ATJ) versus competing SAF routes
4.9.12. Methanol-to-gasoline (MTG) technology providers
4.9.13. Alcohol-to-jet (ATJ) technology providers
5. THIRD & FOURTH GENERATION BIOFUEL TECHNOLOGIES
5.1. Introduction to third & fourth generation biofuels
5.2. Macroalgae, microalgae and cyanobacteria
5.3. Algae has multiple market applications
5.4. CO₂ capture & utilization - key application for microalgae & cyanobacteria
5.5. 3rd generation biofuel production: feedstocks
5.6. Biofuel production process using macroalgae
5.7. Biofuel production process using microalgae / cyanobacteria
5.8. Algal biofuel production - process example
5.9. Metabolic pathways in microalgae cultivation
5.10. Key growth criteria in microalgae cultivation
5.11. Open vessels for microalgae cultivation
5.12. Closed vessels for microalgae cultivation
5.13. Open vs closed algae cultivation systems
5.14. Microalgae cultivation system suppliers: photobioreactors (PBRs) & ponds
5.15. Case study - CO₂ capture from cement plants using algae
5.16. Case study - algae used for sustainable aviation fuel (SAF) production
5.17. Algal biofuel development has faced historical challenges
5.18. Algal biofuel companies shifted focus or went bust
5.19. Key players in algal and microbial biofuel processes & projects
5.20. SAF projects planning to use microalgae
5.21. SWOT analysis for 3rd and 4th generation biofuel production
5.22. Outlook for 3rd and 4th generation biofuels
6. E-FUEL PRODUCTION
6.1. Overview of e-fuels
6.1.1. Overview of e-fuels
6.1.2. CO₂ as a key raw material for synthetic fuels
6.1.3. Overview of e-fuel uses & production pathways
6.1.4. Comparison of e-fuels to fossil and biofuels
6.1.5. Overview of energy & carbon flows in e-fuel production
6.1.6. E-fuel production efficiencies
6.1.7. Energy efficiency challenges surrounding e-fuels
6.1.8. E-fuels must be used in specific contexts
6.1.9. High costs of e-fuel production
6.1.10. SWOT analysis for e-fuels
6.2. Green hydrogen production for e-fuels
6.2.1. Role of green hydrogen in e-fuel production
6.2.2. Electrolyzer cells, stacks and balance of plant (BOP)
6.2.3. Overview of electrolyzer technologies
6.2.4. Electrolyzer performance characteristics
6.2.5. Overview of electrolyzer technologies & market landscape
6.2.6. Electrolyzer companies - key players
6.2.7. Pros & cons of electrolyzer technologies
6.2.8. IDTechEx's "Green Hydrogen Production & Electrolyzer Market 2024-2034"
6.3. Carbon capture for e-fuels
6.3.1. Main CO₂ capture systems
6.3.2. The CCUS value chain
6.3.3. Technologies for carbon capture
6.3.4. Fuels made from CO₂ are seeing demand from the aviation and shipping sectors
6.3.5. The source of captured CO₂ matters
6.3.6. CO₂ source for e-fuel production under the EU's Renewable Energy Directive
6.3.7. Status of DAC for e-fuel production
6.3.8. Direct air capture (DAC) company landscape
6.3.9. Carbon Capture, Utilization, and Storage (CCUS) Markets 2025-2045: Technologies, Market Forecasts, and Players
6.4. Syngas production for e-fuels
6.4.1. Overview of syngas production options for e-fuels
6.4.2. Reverse water gas shift (RWGS) overview
6.4.3. RWGS reactor innovation case study
6.4.4. Direct Fischer-Tropsch synthesis: CO₂ to hydrocarbons
6.4.5. RWGS catalyst innovation case study
6.4.6. Low-temperature electrochemical CO₂ reduction
6.4.7. ECO₂Fuel Project
6.4.8. Solid oxide electrolyzer (SOEC) overview
6.4.9. SOEC co-electrolysis project case study
6.4.10. Comparison of RWGS & SOEC co-electrolysis routes
6.4.11. Key players in reverse water gas shift (RWGS) for e-fuels
6.4.12. Start-ups in reverse water gas shift (RWGS) for e-fuels
6.4.13. SOEC & SOFC system suppliers
6.4.14. Alternative CO₂ reduction technologies company landscape
6.4.15. E-fuels from solar power
6.5. E-methane production
6.5.1. Methane classifications & power-to-gas (P2G)
6.5.2. Methanation overview
6.5.3. Thermocatalytic pathway to e-methane
6.5.4. Thermocatalytic methanation case study
6.5.5. Biological fermentation of CO₂ into e-methane
6.5.6. Biocatalytic methanation case study
6.5.7. Thermocatalytic vs biocatalytic methanation
6.5.8. SWOT for methanation technology
6.5.9. Power-to-methane projects worldwide - current and announced
6.5.10. Methanation company landscape
6.6. E-methanol production
6.6.1. Overview of methanol production & colors
6.6.2. E-methanol production options
6.6.3. E-methanol process overview
6.6.4. Topsoe's CO₂-to-methanol catalysts
6.6.5. Methanol synthesis case-study
6.6.6. Methanol synthesis case-study
6.6.7. Direct methanol synthesis from H2O & CO₂
6.6.8. Bio e-methanol case study
6.6.9. Key players in methanol synthesis
6.6.10. Start-ups with novel methanol synthesis concepts
6.7. Liquid e-fuel production
6.7.1. Overview of pathways to liquid hydrocarbon e-fuels
6.7.2. Summary of key innovations in RWGS-FT & SOEC-FT processes
6.7.3. Summary of key innovations in methanol synthesis & MTG/MTJ processes
6.7.4. Modular e-fuel plant concepts
6.7.5. Large industrial-scale e-fuel plant concepts
6.7.6. MTG e-fuel plant case study
6.7.7. RWGS-FT e-fuel plant case study
6.7.8. Conversion of existing gas-to-liquid (GTL) facilities to e-fuels
6.7.9. Technology & process developers in e-fuels by end-product
6.7.10. Project developers in e-fuels by end-product
7. ADVANCED BIOFUEL & E-FUEL MARKETS
7.1. Renewable methanol market
7.1.1. Current state of the methanol market
7.1.2. Future methanol applications
7.1.3. Main growth drivers for low-carbon methanol
7.1.4. Overview of methanol production & colors
7.1.5. Main pathways to biomethanol production
7.1.6. Biomethanol project developers - company landscape
7.1.7. Biomethanol plants using biogas
7.1.8. Biomethanol plants using gasification
7.1.9. E-methanol production options
7.1.10. E-methanol projects under active development (post-feasibility)
7.1.11. Renewable methanol project capacities
7.2. Renewable diesel & SAF - general market narratives
7.2.1. Overview of feedstocks for renewable diesel, SAF & gasoline
7.2.2. Typical product splits in renewable diesel & SAF production
7.2.3. Co-processing of biomass feedstocks in petroleum refineries
7.2.4. Future integrated biorefineries
7.2.5. Business models for sustainable fuel technology developers
7.2.6. Production technology providers for advanced biofuels & e-fuels
7.2.7. Key techno-economic factors influencing sustainable fuel projects
7.2.8. Business models & considerations for project developers & fuel producers
7.2.9. RD & SAF project developers by production technology
7.2.10. Key challenges in biofuel projects
7.2.11. Key challenges in e-fuel (power-to-liquids) projects
7.2.12. Renewable diesel & SAF lifecycle emissions
7.2.13. Factors influencing HEFA renewable diesel & SAF production costs
7.2.14. SAF production cost comparison
7.2.15. Renewable diesel production costs
7.3. Renewable diesel market
7.3.1. Renewable diesel & its end-use markets
7.3.2. Government targets & mandates for renewable diesel
7.3.3. Drivers of renewable diesel production capacity in US
7.3.4. Recent commercial activity in the renewable diesel market (2023-2024)
7.3.5. Biodiesel vs renewable diesel: feedstocks & production process
7.3.6. Renewable diesel production pathways
7.3.7. HEFA/HVO renewable diesel case study - Neste
7.3.8. Gasification-FT renewable diesel case study
7.3.9. HTL biofuels case study - Licella & Arbios Biotech
7.3.10. Pyrolysis biocrude company case study - Alder Renewables
7.3.11. E-diesel commercial activity
7.3.12. Key takeaways & outlook on renewable diesel
7.4. Sustainable aviation fuel (SAF) market
7.4.1. Current state of the aviation industry
7.4.2. The critical importance of SAF in decarbonizing aviation
7.4.3. Jet fuel price action 2020-2024
7.4.4. Government targets & mandates for SAF
7.4.5. Government targets & mandates for SAF - focus on EU & UK
7.4.6. Government incentives for SAF producers
7.4.7. Overview of SAF commitments by passenger & cargo airlines
7.4.8. Major passenger airline commitments & activities in SAF
7.4.9. Major cargo airline commitments & activities in SAF
7.4.10. SAF alliances & industry initiatives
7.4.11. Summary of key market drivers for SAF
7.4.12. Main SAF production pathways
7.4.13. Bio-SAF vs e-SAF - the two main pathways to SAF
7.4.14. ASTM-approved production pathways
7.4.15. HEFA-SPK producer case study - Neste
7.4.16. Gasification-FT bio-SAF project case study - Altalto Immingham
7.4.17. ATJ project case study
7.4.18. e-SAF project case study - Norsk e-Fuel
7.4.19. BP advocating for use of cover crops in biofuel production
7.4.20. Fulcrum BioEnergy - a failed SAF producer
7.4.21. Other cancelled SAF projects & reasons for failure
7.4.22. SAF prices - a key issue holding back adoption
7.4.23. Who will pay for the green premium of SAF?
7.4.24. Key drivers and challenges for SAF cost reduction
7.4.25. SAF production capacities
7.4.26. Key takeaways and outlook on SAF
8. MARKET FORECASTS
8.1. Sustainable fuel market forecasting methodology & assumptions
8.2. Methanol forecast comparison
8.3. Combined forecast for sustainable fuels
8.4. Combined forecast for e-fuels
8.5. Outlook on renewable diesel & SAF markets
8.6. Biomethanol production capacity - by region
8.7. Biomethanol production capacity - by technology
8.8. E-methanol production capacity by region
8.9. Renewable diesel production capacity by region
8.10. Renewable diesel production capacity by technology
8.11. SAF production capacity by region
8.12. SAF production capacity by technology
8.13. By-products from RD & SAF production
9. COMPANY PROFILES
9.1. Hydrothermal liquefaction (HTL):
9.1.1. Aduro Clean Technologies
9.1.2. Circlia Nordic
9.1.3. Licella
9.2. Fischer-Tropsch (FT) synthesis:
9.2.1. OXCCU
9.2.2. Velocys
9.2.3. INERATEC
9.3. Gasification:
9.3.1. Concord Blue Engineering
9.3.2. Shell Catalysts & Technologies
9.3.3. KEW Technology
9.3.4. Enerkem
9.4. E-fuels:
9.4.1. Avioxx
9.4.2. Carbon Neutral Fuels
9.4.3. Dimensional Energy
9.4.4. Liquid Wind (2021) & Liquid Wind (2023 update)
9.4.5. Synhelion (2021) & Synhelion (2024 update)
9.4.6. Prometheus Fuels (2021) & Prometheus Fuels (2023 update)
9.5. Methanation:
9.5.1. Q Power
9.5.2. Hitachi Zosen Corporation
9.6. Methanol:
9.6.1. Carbon Recycling International
9.6.2. CarbonBridge
9.7. Alcohol-to-jet (ATJ) & other:
9.7.1. LanzaJet
9.7.2. LanzaTech (2021) & LanzaTech (2023 update)

 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野の最新刊レポート

  • 本レポートと同分野の最新刊レポートはありません。

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/01/21 10:26

157.10 円

163.44 円

195.63 円

ページTOPに戻る