世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

炭素回収・利用・貯留(CCUS)市場2025-2045:技術、市場予測、参入企業


Carbon Capture, Utilization, and Storage (CCUS) Markets 2025-2045: Technologies, Market Forecasts, and Players

炭素回収・利用・貯留(CCUS)技術は、二酸化炭素(CO2)を廃棄物ガスや大気から直接分離し、地下に貯留するか、さまざまな産業用途に利用する。CO2が大気中に蓄積するのを防ぐことで、CCUSは既存の化石燃料資... もっと見る

 

 

出版社 出版年月 価格 ページ数 言語
IDTechEx
アイディーテックエックス
2024年7月1日 お問い合わせください
ライセンス・価格情報
注文方法はこちら
522 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。


 

サマリー

炭素回収・利用・貯留(CCUS)技術は、二酸化炭素(CO2)を廃棄物ガスや大気から直接分離し、地下に貯留するか、さまざまな産業用途に利用する。CO2が大気中に蓄積するのを防ぐことで、CCUSは既存の化石燃料資産を脱炭素化するための即応性のある経路を提供する一方、ブルー水素やBECCS(炭素回収・貯留を伴うバイオエネルギー)のような新たな持続可能な産業分野の成長も可能にする。したがって、CCUS技術は、世界のCO₂排出を緩和し、パリ協定で概説された温暖化2℃以内に世界を保つために不可欠な役割を果たすことができる。
 
「Carbon Capture, Utilization, and Storage (CCUS) Markets 2025-2045 "は、新興のCCUS産業と炭素市場の包括的な展望を提供し、今後20年間のCCUS産業を形成する技術的、経済的、規制的、環境的側面を詳細に分析している。炭素回収、炭素利用、炭素貯蔵技術を評価し、各分野における最新の進歩、主要プレーヤー、機会と障壁について論じている。また、2045年までのCCUSのCO2回収能力に関する20年間の詳細な予測(CO2エンドポイント、ポイントソースとDAC、さらに5つの産業部門に細分化)を、独自の分析、80社以上のインタビューに基づく企業プロフィール、350社以上の企業とともに掲載しています。
 
ポイントソースによるCO2回収の産業部門別シェアが、今後20年間でどのように変化するかの内訳。出典 IDTechEx.
 
炭素回収技術は成熟しているが、依然として高価
炭素回収技術は技術的には成熟しているが、エネルギー需要が高いため、依然として高価である。新しい溶剤、吸着剤、膜、低温法、オキシ燃料設計を含む代替技術は、より低い回収コストを求めて開発されている。本レポートには、すべての主要な炭素回収技術の分析、ベンチマーク、主要企業、最新の進歩が含まれており、特定の排出シナリオに最適な技術を選択することができる。
 
利益を生む炭素回収はすでに現実のものとなっている
CCUSプロジェクトがいかに経済的な実行可能性を達成できるかは、大規模な展開にとって極めて重要である。歴史的に、CCUSは天然ガス処理施設が主流であった。環境問題が取り沙汰される以前は、CO2を近隣の油田に販売し、石油増進回収法(EOR)を行うのが主流であった。本レポートでは、EORと新たな利用アプリケーションが、いかに採算の取れる炭素回収につながるか、また、政府による直接的な補助金とカーボンプライシング(EUETSや米国45Q税額控除など)の登場が、いかにCO2貯留専用プロジェクトの経済的実現可能性を徐々に拡大しつつあるかを検証する。CCUSの成長の原動力は、既存の炭素市場において炭素価格が上昇し、より多くの地域のより多くのセクターに拡大することである。
 
CCUSビジネスモデルのパラダイムシフト
将来のCCUSプロジェクトは、単一の事業体によって管理されるフルチェーン・アプローチから、第三者サービス・プロバイダーがCO2回収、輸送、貯蔵を行うパートチェーン・ビジネス・モデルへと移行し、排出者にとってはプロジェクト開発が簡素化されると予想される。本レポートでは、CO2輸送と貯蔵に関する技術的、経済的、規制的な考察を行い、このビジネスモデルのパラダイムシフトが、この分野で既存の専門知識とインフラを持つ企業にとってどのような機会をもたらすかを明らかにする。また、産業用CCUSハブ/クラスターの開発は、CO2輸送/貯留の開発を加速させると予想される。
 
炭素回収・利用・貯留(CCUS)の主なステップ。出典 IDTechEx
 
CCUSの主な産業用途
産業界では、CCUSは既存の産業資産を脱炭素化する後付け可能な手段を提供する。また、バイオエネルギーやブルー水素など、新たな持続可能なセクターもCCUSの恩恵を受けることができる。本レポートでは、CCUS導入の機会が最も大きい産業セクターを特定し、セクター特有の推進要因と障壁を検証する。
 
本レポートで答える主な質問
  • CCUSとは何か、気候変動に対処するためにどのように利用できるか?
  • CCUSは現在どこで導入されているのか?
  • CCUS技術に最も適した産業用途は何か?
  • CCUSの市場見通しは?
  • 市場成長の主な推進要因と阻害要因は何か?
  • 炭素価格制度やその他のインセンティブは、CCUSの規模拡大にどのように役立つか?
  • 二酸化炭素回収技術のコストは?
  • 二酸化炭素は産業的に何に利用できるのか?
  • 二酸化炭素利用の主な成長機会はどこにあるのか?
  • CCUSの主要プレーヤーは?
  • CCUSは世界が気候変動に対する野望を達成するのに役立つか?
 
主な内容
本レポートは以下の情報を提供する:
 
技術と市場の分析
  • CCUS導入における課題と機会の分析。
  • 燃焼後回収、燃焼前回収、酸素燃焼回収、空気直接回収、CO2利用、CO2輸送、CO2貯留の各分野における最新技術と技術革新。
  • セメントおよびその他の重工業、水素、電力、石油・ガス、化学など、さまざまな分野におけるCCUSソリューションの詳細な概要と比較。
  • CCUS市場に影響を与える主な規制や炭素価格政策を含む、CCUSの市場ポテンシャル
  • CCUS技術を拡大するための主要戦略と経済性。
  • 技術適合性レベル(TRL)、コスト、規模の可能性などの要因に基づくベンチマーク。
 
プレーヤー分析と動向
  • CCUS関連主要企業の一次情報。80社以上のインタビューに基づく企業プロフィール
  • CCUS関連企業の最新動向、発表されたプロジェクトの観察、資金調達、動向、パートナーシップの分析
 
市場予測と分析:
  • 2045年までの20年間のCCUS市場予測:CCUSを点源回収とDAC、CO2運命(貯留、新たな利用、EOR)、セクター(電力、BECCUS、青色水素/アンモニア、天然ガス処理、産業)別に細分化。人為起源のCO2回収源と回収先に基づく12のサブカテゴリー。

 



 

ページTOPに戻る


 

Summary

この調査レポートは、新興のCCUS産業と炭素市場の包括的な展望を提供し、今後20年間のCCUS産業を形成する技術的、経済的、規制的、環境的側面について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • CCSのビジネスモデル
  • CCU業界の現状
  • 二酸化炭素の回収
  • 二酸化炭素除去(CDR)
  • 二酸化炭素利用
  • 二酸化炭素貯蔵
  • 二酸化炭素輸送
 
Report Summary
Carbon capture, utilization, and storage (CCUS) technologies strip carbon dioxide (CO₂) from waste gases and directly from the atmosphere, before either storing it underground or using it for a range of industrial applications. By preventing CO2 from accumulating in the atmosphere, CCUS offers a ready-now pathway to decarbonize existing fossil fuel assets, whilst also enabling the growth of emerging sustainable industrial sectors such as blue hydrogen and BECCS (bioenergy with carbon capture and storage). Therefore, CCUS technologies can play an essential role in mitigating global CO₂ emissions and keeping the world within the 2°C of warming as outlined in the Paris Agreement.
 
"Carbon Capture, Utilization, and Storage (CCUS) Markets 2025-2045" provides a comprehensive outlook of the emerging CCUS industry and carbon markets, with an in-depth analysis of the technological, economic, regulatory, and environmental aspects that are set to shape the CCUS industry over the next 20 years. Carbon capture, carbon utilization, and carbon storage technologies are evaluated, discussing latest advancements, key players, and opportunities and barriers within each area. The report also includes a 20-year granular forecast until 2045 for CCUS CO2 capture capacity (segmented by CO2 end-point, point-source vs DAC, and further broken down into 5 industrial sectors), alongside exclusive analysis, over 80 interview-based company profiles, and coverage of 350+ companies.
 
Breakdown of how the share of point source captured CO2 by industrial sector will vary over the next twenty years. Source: IDTechEx.
 
Carbon capture technologies are mature but remain expensive
Carbon capture technologies are technologically mature but remain expensive due to a high energy demand. Alternative technologies, including emerging solvents, sorbents, membranes, cryogenic methods, and oxyfuel designs, are being developed in the search for lower capture costs. This report includes analysis, benchmarking, key players, and latest advancements for all major carbon capture technologies, enabling selection of the best technology for a specific emission scenario.
 
Profitable carbon capture is already a reality
How CCUS projects can achieve economic viability is critical for large-scale deployment. Historically, CCUS has been dominated by natural gas processing facilities. Predating environmental concerns, selling CO2 to nearby oilfields for enhanced oil recovery (EOR) was the dominant carbon capture business model. This report examines how EOR and emerging utilization applications can lead to profitable carbon capture, and how direct government subsidies and the advent of carbon pricing (such as the EU ETS and US 45Q tax credit) are slowly expanding the economic feasibility of dedicated CO2 storage projects. Growth of CCUS will be driven by carbon pricing becoming higher in existing carbon markets, as well as extending to more sectors in more regions.
 
A paradigm shift in the CCUS business model
Future CCUS projects are expected to shift from a full-chain approach managed by a single entity to a part-chain business model where third-party service providers handle CO2 capture, or transportation, or storage, simplifying project development for emitters. This report examines technological, economic, and regulatory considerations for CO2 transportation and storage, identifying the opportunities this paradigm shift in business model could represent for companies with existing expertise and infrastructure in the space. The development of industrial CCUS hubs/clusters is also expected to fast-track CO2 transport/storage development.
 
The major steps involved in carbon capture, utilization, and storage (CCUS). Source: IDTechEx
 
Key industrial applications for CCUS
Within industry, CCUS provides a retrofittable means of decarbonizing existing industrial assets. Emerging sustainable sectors can also benefit from CCUS, such as bioenergy and blue hydrogen. This report identifies which industrial sectors hold the greatest opportunity for CCUS deployment and examines sector specific drivers and barriers.
 
Key questions answered in this report
  • What is CCUS and how can it be used to address climate change?
  • Where is CCUS currently deployed?
  • Which industrial applications are most suited for CCUS technologies?
  • What is the market outlook for CCUS?
  • What are the key drivers and restraints of market growth?
  • How can carbon pricing schemes and other incentives help scale up CCUS?
  • How much does carbon capture technology cost?
  • What can carbon dioxide be used for industrially?
  • Where are the key growth opportunities for carbon dioxide utilization?
  • Who are the key players in CCUS?
  • Can CCUS help the world meet its climate ambitions?
 
Key aspects
This report provides the following information:
 
Technology and market analysis:
  • Analysis of the challenges and opportunities in deploying CCUS.
  • State of the art and innovation in the field for post-combustion capture, pre-combustion capture, oxyfuel combustion capture, direct air capture, CO2 utilization, CO2 transportation, and CO2 storage.
  • Detailed overview and comparison of CCUS solutions for different sectors: cement and other heavy industry, hydrogen, power, oil and gas, chemicals.
  • Market potential of CCUS, including key regulations and carbon pricing policies influencing the CCUS market.
  • Key strategies and economics for scaling CCUS technologies.
  • Benchmarking based on factors such as technology readiness level (TRL), cost, and scale potential.
 
Player analysis and trends:
  • Primary information from key CCUS-related companies. 80+ interview-based company profiles
  • Analysis of CCUS players' latest developments, observing projects announced, funding, trends, and partnerships
 
Market forecasts and analysis:
  • 20-year granular CCUS market forecasts until 2045 for CCUS subdivided by point-source capture vs DAC, CO2 fate (storage, emerging utilization, or EOR), and sector (power, BECCUS, blue hydrogen/ammonia, natural gas processing, and industry). 12 sub-categories based on the anthropogenic CO2 capture source and destination.


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. What is Carbon Capture, Utilization and Storage (CCUS)?
1.2. Why CCUS and why now?
1.3. Development of the CCUS business model
1.4. Carbon pricing and carbon markets
1.5. Compliance carbon pricing mechanisms across the globe
1.6. Alternative to carbon pricing: 45Q tax credits
1.7. Capture from certain industries is already profitable
1.8. CCUS business models: full chain, part chain, hubs and clusters
1.9. The CCUS value chain
1.10. From which sectors has CO₂ been captured historically?
1.11. CCUS could help decarbonize hard-to-abate sectors
1.12. High-concentration CO₂ sources are the low-hanging fruits
1.13. Which sectors will dominate CCUS?
1.14. Point-source carbon capture capacity forecast by CO₂ source sector, Mtpa of CO₂
1.15. Point-source carbon capture forecast by CO₂ source - Gas and power
1.16. Main CO₂ capture systems
1.17. Technology Readiness Level (TRL): Carbon capture technologies
1.18. Comparison of CO₂ capture technologies
1.19. Solvent-based CO₂ capture
1.20. Solid sorbent-based CO₂ separation
1.21. Selecting a carbon capture technology
1.22. What is direct air capture (DAC)?
1.23. DAC: key takeaways
1.24. Introduction to CO₂ transportation
1.25. Key takeaways - CO₂ transportation
1.26. CO₂ Utilization
1.27. Comparison of emerging CO₂ utilization applications
1.28. Analyst viewpoint - CO₂ utilization
1.29. CO₂ storage
1.30. CCUS capacity forecast by CO₂ endpoint, Mtpa of CO₂
1.31. CCUS forecast by CO₂ endpoint - Discussion
1.32. Key takeaways - CO₂ storage
1.33. Mixed performance from CCUS projects
1.34. The momentum behind CCUS is building up
1.35. CCUS market forecast - Overall discussion
1.36. Access More With an IDTechEx Subscription
2. INTRODUCTION
2.1. What is Carbon Capture, Utilization and Storage (CCUS)?
2.2. Why CCUS and why now?
2.3. CCUS could help decarbonize hard-to-abate sectors
2.4. The CCUS value chain
2.5. Carbon capture
2.6. The challenges in carbon capture
2.7. Why CO₂ utilization?
2.8. Carbon utilization
2.9. Main emerging applications of CO₂ utilization
2.10. Carbon storage
2.11. Carbon transport
2.12. The costs of CCUS
2.13. When can CCUS be considered net-zero?
2.14. The challenges in CCUS
3. BUSINESS MODELS FOR CCUS
3.1. Introduction
3.1.1. Development of the CCUS business model
3.1.2. Government funding support mechanisms for CCUS
3.1.3. Government ownership of CCUS projects varies across countries
3.1.4. CCUS business model: full value chain
3.1.5. CCUS business model: networks and hub model
3.1.6. CCUS industrial clusters in the UK: East Coast Cluster
3.1.7. CCUS industrial clusters in the UK: HyNet
3.1.8. CCUS industrial clusters in the UK: conclusions
3.1.9. Part chain CCUS business models
3.1.10. Why CO₂ utilization should not be overlooked
3.2. Carbon pricing and carbon markets
3.2.1. Carbon pricing and carbon markets
3.2.2. Compliance carbon pricing mechanisms across the globe
3.2.3. What is the price of CO₂ in global carbon pricing mechanisms?
3.2.4. The European Union Emission Trading Scheme (EU ETS)
3.2.5. Has the EU ETS had an impact?
3.2.6. Carbon pricing in the US
3.2.7. Alternative to carbon pricing: 45Q tax credits
3.2.8. Carbon pricing in China
3.2.9. The role of voluntary carbon markets in supporting CCUS
3.2.10. Carbon accounting: double counting is not allowed
3.2.11. Challenges with carbon pricing
3.2.12. How high does carbon pricing need to be to support CCS?
4. STATUS OF THE CCUS INDUSTRY
4.1. The momentum behind CCUS is building up
4.2. Momentum: Government support for CCUS
4.3. Supportive legal and regulatory framework for CCUS
4.4. Global pipeline of carbon capture facilities built and announced
4.5. Analysis of CCUS development
4.6. CO₂ source: From which sectors has CO₂ been captured historically?
4.7. Which sectors will see the biggest growth in CCUS?
4.8. CO₂ fate: Where does/will the captured CO₂ go?
4.9. Regional analysis of CCUS Projects
4.10. Major CCUS players
4.11. Mixed performance from CCUS projects
4.12. Major CCUS projects performance comparison (1/3)
4.13. Major CCUS projects performance comparison (2/3)
4.14. Major CCUS projects performance comparison (3/3)
4.15. Boundary Dam - battling capture technical issues
4.16. Petra Nova's long shutdown: lessons for the industry?
4.17. How much does CCUS cost?
4.18. Enabling large-scale CCUS
5. CARBON DIOXIDE CAPTURE
5.1. Introduction
5.1.1. Main CO₂ capture systems
5.1.2. The CCUS value chain
5.1.3. Status of point source carbon capture
5.1.4. Comparison of point-source CO₂ capture systems
5.1.5. Natural gas sweetening
5.1.6. Post-combustion CO₂ capture
5.1.7. Post-combustion: Equipment space requirements
5.1.8. Pre-combustion CO₂ capture
5.1.9. Oxy-fuel combustion CO₂ capture
5.1.10. Main CO₂ capture technologies
5.1.11. Technology Readiness Level (TRL): Carbon capture technologies
5.1.12. Carbon capture technology providers for existing large-scale projects
5.1.13. Comparison of CO₂ capture technologies
5.1.14. When should different carbon capture technologies be used?
5.1.15. Typical conditions and performance for different capture technologies
5.1.16. Carbon capture
5.1.17. Going beyond CO₂ capture rates of 90%
5.1.18. 99% capture rate: Suitability of different PSCC technologies
5.1.19. The challenges in carbon capture
5.1.20. CO₂ capture: Technological gaps
5.1.21. Metrics for CO₂ capture agents
5.1.22. CO₂ concentration and partial pressure varies with emission source
5.1.23. How does CO₂ partial pressure influence cost?
5.1.24. High-concentration CO₂ sources are the low-hanging fruits
5.1.25. PSCC technologies: Cost, energy demand, and CO₂ recovery
5.1.26. Techno-economic comparison of CO₂ capture technologies (1/2)
5.1.27. Techno-economic comparison of CO₂ capture technologies (2/2)
5.2. Solvents for CO₂ capture
5.2.1. Solvent-based CO₂ capture
5.2.2. Chemical absorption solvents
5.2.3. Amine-based post-combustion CO₂ absorption
5.2.4. Hot Potassium Carbonate (HPC) process
5.2.5. Comparison of key chemical solvent-based systems (1/2)
5.2.6. Comparison of key chemical solvent-based systems (2/2)
5.2.7. Chemical absorption solvents used in current operational CCUS point-source projects (1/2)
5.2.8. Chemical absorption solvents used in current operational CCUS point-source projects (2/2)
5.2.9. Physical absorption solvents
5.2.10. Comparison of key physical absorption solvents
5.2.11. Physical solvents used in current operational CCUS point-source projects
5.2.12. Innovation addressing solvent-based CO₂ capture drawbacks
5.2.13. When should solvent-based carbon capture be used?
5.3. Emerging solvents for carbon capture
5.3.1. Innovation in carbon capture solvents
5.3.2. Chilled ammonia process (CAP)
5.3.3. Comparison of key chemical solvent-based systems - emerging
5.3.4. Applicability of chemical absorption solvents capture solvents for post-combustion applications
5.3.5. Next generation solvent technologies for point-source carbon capture
5.4. Sorbents for CO₂ capture
5.4.1. Solid sorbent-based CO₂ separation
5.4.2. Overview of solid sorbents explored for carbon capture
5.4.3. Metal organic framework (MOF) adsorbents
5.4.4. Zeolite-based adsorbents
5.4.5. Solid amine-based adsorbents
5.4.6. Carbon-based adsorbents
5.4.7. Polymer-based adsorbents
5.4.8. Solid sorbents in pre-combustion applications
5.4.9. Sorption Enhanced Water Gas Shift (SEWGS)
5.4.10. Solid sorbents in post-combustion applications
5.4.11. Comparison of emerging solid sorbent systems
5.5. Membrane-based CO₂ capture
5.5.1. Membrane-based CO₂ separation
5.5.2. Membranes: Operating principles
5.5.3. How is membrane performance characterised?
5.5.4. Technical advantages and challenges for membrane-based CO₂ separation
5.5.5. Comparison of membrane materials for CCUS (1/2)
5.5.6. Comparison of membrane materials for CCUS (2/2)
5.5.7. Commercial status of membranes in carbon capture (1/2)
5.5.8. Commercial status of membranes in carbon capture (2/2)
5.5.9. Membranes for post-combustion CO₂ capture
5.5.10. Facilitated transport membranes could unlock low-cost operating conditions
5.5.11. When should be membrane carbon capture be used?
5.5.12. Membranes for pre-combustion capture (1/2)
5.5.13. Membranes for pre-combustion capture (2/2)
5.5.14. Key development areas for membranes in carbon capture
5.6. Cryogenic CO₂ capture
5.6.1. Cryogenic CO₂ capture: an emerging alternative
5.6.2. When should cryogenic carbon capture be used?
5.6.3. Status of cryogenic CO₂ capture technologies
5.6.4. Cryogenic CO₂ capture in blue hydrogen: Cryocap™
5.7. Oxyfuel combustion capture
5.7.1. Oxy-fuel combustion CO₂ capture
5.7.2. Oxygen separation technologies for oxy-fuel combustion
5.7.3. Oxyfuel CCUS projects in the cement industry
5.7.4. Large-scale oxyfuel CCUS cement projects in the pipeline
5.7.5. Oxyfuel CCUS in the power generation industry
5.7.6. Novel oxyfuel: Chemical looping combustion (CLC)
5.8. Novel CO₂ capture technologies
5.8.1. LEILAC process: Direct CO₂ capture in cement plants
5.8.2. LEILAC process: Configuration options
5.8.3. Calcium Looping (CaL)
5.8.4. Calcium Looping (CaL) configuration options
5.8.5. CO₂ capture with Solid Oxide Fuel Cells (SOFCs)
5.8.6. CO₂ capture with Molten Carbonate Fuel Cells (MCFCs)
5.8.7. The Allam-Fetvedt Cycle
5.8.8. Summary: PSCC technology readiness and providers (1/2)
5.8.9. Summary: PSCC technology readiness and providers (2/2)
5.9. Point-source Carbon Capture in Key Industrial Sectors
5.9.1. Which sectors will see the biggest growth in CCUS?
5.9.2. Capture costs vary by sector
5.9.3. Power plants with CCUS generate less energy
5.9.4. The impact of PSCC on power plant efficiency
5.9.5. The cost of increasing the rate of CO₂ capture in the power sector
5.9.6. Blue Hydrogen Production and Markets 2023-2033: Technologies, Forecasts, Players
5.9.7. Blue hydrogen: main syngas production technologies
5.9.8. Blue hydrogen production - SMR with CCUS
5.9.9. Pre- vs post-combustion CO₂ capture for blue hydrogen
5.9.10. CO₂ capture retrofit options for blue H2 production (1/2)
5.9.11. CO₂ capture retrofit options for blue H2 production (2/2)
5.9.12. CO₂ capture retrofit options - Honeywell UOP example
5.9.13. Example project value chain
5.9.14. Notable blue hydrogen projects
5.9.15. Cost comparison: Commercial CO₂ capture systems for blue H2
5.9.16. The cost of CO₂ capture in blue hydrogen production
5.9.17. CO₂ capture for blue hydrogen production
5.9.18. Summary of point-source carbon capture for blue H2
5.9.19. Early CCUS opportunity: BECCS
5.9.20. The role of CCUS in decarbonizing cement
5.9.21. Status of carbon capture in the cement industry
5.9.22. Major future CCUS projects in the cement sector
5.9.23. Carbon capture technologies demonstrated in the cement sector
5.9.24. SkyMine® chemical absorption: The largest CCU demonstration in the cement sector
5.9.25. Carbon Capture and Utilization (CCU) in the cement sector: Fortera's ReCarb™
5.9.26. Algae CO₂ capture from cement plants
5.9.27. Cost and technological status of carbon capture in the cement sector
5.9.28. Maritime carbon capture: Onboard Carbon Capture and Storage
5.10. Direct Air Capture
5.10.1. DAC vs point-source carbon capture
5.10.2. What is direct air capture (DAC)?
5.10.3. Why DACCS as a CDR solution?
5.10.4. Current status of DACCS
5.10.5. Momentum: private investments in DAC
5.10.6. Momentum: public investment and policy support for DAC
5.10.7. Momentum: DAC-specific regulation
5.10.8. DAC land requirement is an advantage
5.10.9. CO₂ capture/separation mechanisms in DAC
5.10.10. Direct air capture technologies
5.10.11. DAC solid sorbent swing adsorption processes (1/2)
5.10.12. DAC solid sorbent swing adsorption processes (2/2)
5.10.13. Electro-swing adsorption of CO₂ for DAC
5.10.14. Solid sorbents in DAC
5.10.15. Emerging solid sorbent materials for DAC
5.10.16. Liquid solvent-based DAC
5.10.17. Process flow diagram of S-DAC
5.10.18. Process flow diagram of L-DAC
5.10.19. Process flow diagram of CaO looping
5.10.20. Solid sorbent- vs liquid solvent-based DAC
5.10.21. Electricity and heat sources
5.10.22. Requirements to capture 1 Mt of CO₂ per year
5.10.23. DAC companies by country
5.10.24. Direct air capture company landscape
5.10.25. A comparison of the three DAC pioneers
5.10.26. TRLs of direct air capture players
5.10.27. Climeworks
5.10.28. Carbon Engineering
5.10.29. Global Thermostat
5.10.30. Heirloom
5.10.31. DACCS carbon credit sales by company
5.10.32. Challenges associated with DAC technology (1/2)
5.10.33. Challenges associated with DAC technology (2/2)
5.10.34. Oil and gas sector involvement in DAC
5.10.35. DACCS co-location with geothermal energy
5.10.36. Will DAC be deployed in time to make a difference?
5.10.37. What can DAC learn from the wind and solar industries' scale-up?
5.10.38. What is needed for DAC to achieve the gigatonne capacity by 2050?
5.10.39. The economics of DAC
5.10.40. The CAPEX of DAC
5.10.41. The CAPEX of DAC: sub-system contribution
5.10.42. The OPEX of DAC
5.10.43. Overall capture cost of DAC (1/2)
5.10.44. Overall capture cost of DAC (2/2)
5.10.45. Component specific capture cost contributions for DACCS
5.10.46. Financing DAC
5.10.47. DACCS SWOT analysis
5.10.48. DACCS: summary
5.10.49. DAC: key takeaways
6. CARBON DIOXIDE REMOVAL (CDR)
6.1. Introduction
6.1.1. Carbon Dioxide Removal (CDR) 2024-2044: Technologies, Players, Carbon Credit Markets, and Forecasts
6.1.2. Why carbon dioxide removal (CDR)?
6.1.3. What is CDR and how is it different from CCUS?
6.1.4. Description of the main CDR methods
6.1.5. Technology Readiness Level (TRL): Carbon dioxide removal methods
6.1.6. The state of CDR in compliance markets
6.1.7. The state of CDR in the voluntary carbon market
6.1.8. Shifting buyer preferences for durable CDR in carbon credit markets
6.2. BECCS
6.2.1. Bioenergy with carbon capture and storage (BECCS)
6.2.2. Opportunities in BECCS: heat generation
6.2.3. The economics of BECCS
6.2.4. Opportunities in BECCS: waste-to-energy
6.2.5. BECCS Value Chain
6.2.6. BECCS current status
6.2.7. Trends in BECCUS projects (1/2)
6.2.8. Trends in BECCUS projects (2/2)
6.2.9. The challenges of BECCS
6.2.10. What is the business model for BECCS?
6.2.11. BECCS carbon credits
6.2.12. The energy and carbon efficiency of BECCS
6.2.13. Is BECCS sustainable?
6.2.14. BECCS Outlook: Government support and large-scale demonstrations needed
6.2.15. Ocean-based NETs
6.2.16. Direct ocean capture
6.2.17. State of technology in direct ocean capture
6.2.18. Future direct ocean capture technologies
6.2.19. Ocean-based CDR: key takeaways
6.3. Ocean-based CDR and direct ocean capture
6.3.1. Biochar: key takeaways
6.3.2. Afforestation and reforestation: key takeaways
6.3.3. Mineralization: key takeaways
6.3.4. CDR technologies: key takeaways
7. CARBON DIOXIDE UTILIZATION
7.1. Introduction
7.1.1. Carbon Dioxide Utilization 2024-2044: Technologies, Market Forecasts, and Players
7.1.2. Why CO₂ utilization?
7.1.3. How is CO₂ used and sourced today?
7.1.4. CO₂ utilization pathways
7.1.5. Emerging applications of CO₂ utilization
7.1.6. Comparison of emerging CO₂ utilization applications
7.1.7. Factors driving CO₂ U future market potential
7.1.8. Carbon utilization potential and climate benefits
7.1.9. Cost effectiveness of CO₂ utilization applications
7.1.10. Traction in CO₂ U: funding worldwide
7.1.11. Technology readiness and climate benefits of CO₂ U pathways
7.1.12. When can CO₂ utilization be considered "net-zero"?
7.1.13. How is CO₂ utilization treated in existing regulations?
7.1.14. CO₂ utilization: Analyst viewpoint (i)
7.1.15. CO₂ utilization: Analyst viewpoint (ii)
7.1.16. Carbon utilization business models
7.2. CO₂ -derived concrete
7.2.1. The Basic Chemistry: CO₂ Mineralization
7.2.2. CO₂ use in the cement and concrete supply chain
7.2.3. CO₂ utilization in concrete curing or mixing
7.2.4. CO₂ utilization in carbonates (aggregates and additives)
7.2.5. CO₂ -derived carbonates from waste
7.2.6. CO₂ -derived carbonates from waste (ii)
7.2.7. The market potential of CO₂ use in the construction industry
7.2.8. Supplying CO₂ to a decentralized concrete industry
7.2.9. Future of CO₂ supply for concrete
7.2.10. Prefabricated versus ready-mixed concrete markets
7.2.11. Market dynamics of cement and concrete
7.2.12. CO₂ U business models in building materials
7.2.13. CO₂ utilization players in mineralization
7.2.14. Concrete carbon footprint of key CO₂ U companies
7.2.15. Key takeaways in CO₂ -derived building materials
7.2.16. Key takeaways in CO₂ -derived building materials (ii)
7.2.17. Key takeaways in CO₂ -derived building materials (iii)
7.3. CO₂ -derived chemicals and polymers
7.3.1. CO₂ can be converted into a giant range of chemicals
7.3.2. Using CO₂ as a feedstock is energy-intensive
7.3.3. The basics: types of CO₂ utilization reactions
7.3.4. CO₂ may need to be first converted into CO or syngas
7.3.5. Fischer-Tropsch synthesis: syngas to hydrocarbons
7.3.6. Direct Fischer-Tropsch synthesis: CO₂ to hydrocarbons
7.3.7. Electrochemical CO₂ reduction
7.3.8. Electrochemical CO₂ reduction technologies
7.3.9. Low-temperature electrochemical CO₂ reduction
7.3.10. High-temperature solid oxide electrolyzers
7.3.11. Cost parity has been a challenge for CO₂ -derived methanol
7.3.12. Thermochemical methods: CO₂ -derived methanol
7.3.13. Major CO₂ -derived methanol projects
7.3.14. Aromatic hydrocarbons from CO₂
7.3.15. "Artificial photosynthesis" - photocatalytic reduction methods
7.3.16. Plasma technology for CO₂ conversion
7.3.17. Major pathways to convert CO₂ into polymers
7.3.18. CO₂ -derived linear-chain polycarbonates
7.3.19. Commercial production of polycarbonate from CO₂
7.3.20. Commercial production of CO₂ -derived polymers
7.3.21. Carbon nanostructures made from CO₂
7.3.22. Players in CO₂ -derived chemicals by end-product
7.3.23. CO₂-derived chemicals: Market potential
7.3.24. Are CO₂ -derived chemicals climate beneficial?
7.3.25. Centralized or distributed chemical manufacturing?
7.3.26. Could the chemical industry run on CO₂ ?
7.3.27. Which CO₂ U technologies are more suitable to which products?
7.3.28. Technical feasibility of main CO₂ -derived chemicals
7.3.29. Key takeaways in CO₂ -derived chemicals
7.4. CO₂ -derived fuels
7.4.1. What are CO₂ -derived fuels (power-to-X)?
7.4.2. CO₂ can be converted into a variety of fuels
7.4.3. Summary of main routes to CO₂ -fuels
7.4.4. The challenge of energy efficiency
7.4.5. CO₂ -fuels are pertinent to a specific context
7.4.6. CO₂ -fuels in road vehicles
7.4.7. CO₂ -fuels in shipping
7.4.8. CO₂ -fuels in aviation
7.4.9. Power-to-methane
7.4.10. Synthetic natural gas - thermocatalytic pathway
7.4.11. Biological fermentation of CO₂ into methane
7.4.12. Drivers and barriers for Power-to-Methane technology adoption
7.4.13. Power-to-Methane projects worldwide - current and announced
7.4.14. Can CO₂ -fuels achieve cost parity with fossil-fuels?
7.4.15. CO₂ -fuels rollout is linked to electrolyzer capacity
7.4.16. Low-carbon hydrogen is crucial to CO₂ -fuels
7.4.17. CO₂ -derived fuels projects announced - regional
7.4.18. CO₂ -derived fuels projects worldwide over time - current and announced
7.4.19. CO₂ -fuels from solar power
7.4.20. Companies in CO₂ -fuels by end-product
7.4.21. Are CO₂ -fuels climate beneficial?
7.4.22. CO₂ -derived fuels SWOT analysis
7.4.23. CO₂ -derived fuels: market potential
7.4.24. Key takeaways in CO₂ -derived fuels
7.5. CO₂ utilization in biological yield boosting
7.5.1. CO₂ utilization in biological processes
7.5.2. Main companies using CO₂ in biological processes
7.5.3. CO₂ enrichment in greenhouses
7.5.4. CO₂ enrichment in greenhouses: market potential
7.5.5. CO₂ enrichment in greenhouses: pros and cons
7.5.6. Advancements in greenhouse CO₂ enrichment
7.5.7. CO₂ -enhanced algae or cyanobacteria cultivation
7.5.8. CO₂ -enhanced algae cultivation: open systems
7.5.9. CO₂ -enhanced algae cultivation: closed systems
7.5.10. Algae has multiple market applications
7.5.11. The algae-based fuel market has been rocky
7.5.12. CO₂ -enhanced algae cultivation: pros and cons
7.5.13. CO₂ utilization in biomanufacturing
7.5.14. CO₂ -consuming microorganisms
7.5.15. Food and feed from CO₂
7.5.16. CO₂ -derived food and feed: market
7.5.17. Carbon fermentation: pros and cons
7.5.18. Key takeaways in CO₂ biological yield boosting
8. CARBON DIOXIDE STORAGE
8.1. Introduction
8.1.1. The case for carbon dioxide storage or sequestration
8.1.2. Storing supercritical CO₂ underground
8.1.3. Mechanisms of subsurface CO₂ trapping
8.1.4. CO₂ leakage is a small risk
8.1.5. Earthquakes and CO₂ leakage
8.1.6. Storage type for geologic CO₂ storage: saline aquifers
8.1.7. Storage type for geologic CO₂ storage: depleted oil and gas fields
8.1.8. Unconventional storage resources: coal seams and shale
8.1.9. Unconventional storage resources: basalts and ultra-mafic rocks
8.1.10. Estimates of global CO₂ storage space
8.1.11. CO₂ storage potential by country
8.1.12. Permitting and authorization of CO₂ storage
8.1.13. Monitoring, reporting, and verification (MRV) in CO₂ storage
8.1.14. MRV Technologies and Costs in CO₂ Storage
8.1.15. Carbon storage: Technical challenges
8.2. Status of CO₂ Storage Projects
8.2.1. Technology status of CO₂ storage
8.2.2. World map of operational and under construction large-scale dedicated CO₂ storage sites
8.2.3. Available CO₂ storage will soon outstrip CO₂ captured
8.2.4. Dedicated geological storage will soon outpace CO₂ -EOR
8.2.5. Can CO₂ storage be monetized?
8.2.6. Part-chain storage project in the North Sea: The Longship Project
8.2.7. Part-chain storage project in the North Sea: The Porthos Project
8.2.8. The cost of carbon sequestration (1/2)
8.2.9. The cost of carbon sequestration (2/2)
8.2.10. Storage-type TRL and operator landscape
8.2.11. Key takeaways
8.3. CO₂ -EOR
8.3.1. What is CO₂ -EOR?
8.3.2. What happens to the injected CO₂ ?
8.3.3. Types of CO₂ -EOR designs
8.3.4. Global status of CO₂ -EOR: U.S. dominates but other regions arise
8.3.5. World's large-scale CO₂ capture with CO₂ -EOR facilities
8.3.6. CO₂ -EOR potential
8.3.7. Most CO₂ in the U.S. is still naturally sourced
8.3.8. CO₂ -EOR main players in the U.S.
8.3.9. CO₂ -EOR main players in North America
8.3.10. CO₂ -EOR in China
8.3.11. The economics of promoting CO₂ storage through CO₂ -EOR
8.3.12. The impact of oil prices on CO₂ -EOR feasibility
8.3.13. Climate considerations in CO₂ -EOR
8.3.14. The climate impact of CO₂ -EOR varies over time
8.3.15. CO₂ -EOR: an on-ramp for CCS and DACCS?
8.3.16. CO₂ -EOR: Progressive or "Greenwashing"
8.3.17. Future advancements in CO₂ -EOR
8.3.18. CO₂ -EOR SWOT analysis
8.3.19. Key takeaways: market
8.3.20. Key takeaways: environmental
9. CARBON DIOXIDE TRANSPORTATION
9.1. Introduction to CO₂ transportation
9.2. Phases of CO₂ for transportation
9.3. Overview of CO₂ transportation methods and conditions
9.4. Status of CO₂ transportation methods in CCS projects
9.5. CO₂ transportation by pipeline
9.6. CO₂ pipeline infrastructure development in the US
9.7. CO₂ pipelines: Technical challenges
9.8. CO₂ transportation by ship
9.9. CO₂ transportation by ship: innovations in ship design
9.10. CO₂ transportation by rail and truck
9.11. Purity requirements of CO₂ transportation
9.12. General cost comparison of CO₂ transportation methods
9.13. CAPEX and OPEX contributions
9.14. Cost considerations in CO₂ transport
9.15. Transboundary networks for CO₂ transport: Europe
9.16. Available CO₂ transportation will soon outstrip CO₂ captured
9.17. Potential for cost reduction in transport and storage
9.18. CO₂ transport operators
9.19. CO₂ transport and/or storage as a service business model
9.20. Key takeaways
10. MARKET FORECASTS
10.1.1. CCUS forecast methodology
10.1.2. CCUS forecast breakdown
10.1.3. CCUS market forecast - Overall discussion
10.1.4. CCUS capture capacity forecast by CO₂ endpoint, Mtpa of CO₂
10.1.5. CCUS forecast by CO₂ endpoint - Discussion
10.1.6. CCUS forecast by CO₂ endpoint - CO₂ storage
10.1.7. CCUS forecast by CO₂ endpoint - CO₂ enhanced oil recovery (EOR)
10.1.8. Emerging CO₂ utilization capacity forecast by CO₂ end-use, Mtpa of CO₂
10.1.9. CCUS forecast by CO₂ endpoint - Emerging CO₂ utilization
10.1.10. CCUS revenue potential for captured CO₂ offtaker, billion US $
10.1.11. CCUS revenue for captured CO₂ offtaker
10.1.12. CCUS capacity forecast by capture type, Mtpa of CO₂
10.1.13. CCUS forecast by capture type - Direct Air Capture (DAC) capacity forecast
10.1.14. Point-source CCUS capture capacity forecast by CO₂ source sector, Mtpa of CO₂
10.1.15. Point-source carbon capture forecast by CO₂ source - Industry
10.1.16. Point-source carbon capture forecast by CO₂ source - blue hydrogen and blue ammonia
10.1.17. Point-source carbon capture forecast by CO₂ source - Gas and power
10.1.18. Point-source carbon capture forecast by CO₂ source - BECCUS
11. COMPANY PROFILES
11.1. 3R-BioPhosphate
11.2. Adaptavate
11.3. Aether Diamonds
11.4. Airco Process Technology
11.5. Airex Energy
11.6. Airhive
11.7. Aker Carbon Capture
11.8. Arborea
11.9. Ardent
11.10. AspiraDAC: MOF-Based DAC Technology Using Solar Power
11.11. Atoco (MOF-Based AWH and Carbon Capture)
11.12. Avantium: Volta Technology
11.13. BC Biocarbon
11.14. Bright Renewables: Carbon Capture
11.15. C-Capture
11.16. CapChar
11.17. CarbiCrete
11.18. Carbo Culture
11.19. Carboclave
11.20. Carbofex
11.21. Carbogenics
11.22. Carboclave
11.23. Carbon Engineering
11.24. Carbon Neutral Fuels
11.25. Carbon Recycling International
11.26. Carbonaide
11.27. CarbonBlue
11.28. CarbonBuilt
11.29. CarbonCapture Inc.
11.30. CarbonCure
11.31. CarbonFree
11.32. Carbyon
11.33. CERT Systems
11.34. Chiyoda: CCUS
11.35. Climeworks
11.36. CO2 GRO Inc.
11.37. CO₂ Capsol
11.38. CSIRO: MOF-Based DAC Technology (Airthena)
11.39. Deep Branch
11.40. Dimensional Energy
11.41. Econic Technologies
11.42. Equatic
11.43. Fluor: Carbon Capture
11.44. Fortera Corporation
11.45. FuelCell Energy
11.46. Future Biogas
11.47. Giammarco Vetrocoke
11.48. Global Thermostat
11.49. Graphyte
11.50. GreenCap Solutions
11.51. Greenore
11.52. Heirloom
11.53. LanzaTech
11.54. Liquid Wind
11.55. Mission Zero Technologies
11.56. Mosaic Materials: MOF-Based DAC Technology
11.57. Myno Carbon
11.58. NeoCarbon
11.59. neustark
11.60. NovoMOF
11.61. Noya
11.62. Nuada: MOF-Based Carbon Capture
11.63. O.C.O Technology
11.64. Orchestra Scientific: MOF-Based Carbon Separation
11.65. OXCCU
11.66. Paebbl
11.67. Pentair: Carbon Capture
11.68. Prometheus Fuels
11.69. PyroCCS
11.70. Seaweed Generation
11.71. Seratech
11.72. Skytree
11.73. Solar Foods
11.74. Soletair Power
11.75. Solidia Technologies
11.76. Svante: MOF-Based Carbon Capture
11.77. Synhelion
11.78. Takachar
11.79. UNDO
11.80. UniSieve: MOF-Based Membrane Technology
11.81. UP Catalyst
11.82. Verdox
11.83. Vycarb
11.84. WasteX

 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野の最新刊レポート

  • 本レポートと同分野の最新刊レポートはありません。

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/21 10:26

156.13 円

165.08 円

200.38 円

ページTOPに戻る