世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

定置用エネルギー貯蔵用電池2025-2035年:市場、予測、プレーヤー、技術

定置用エネルギー貯蔵用電池2025-2035年:市場、予測、プレーヤー、技術


Batteries for Stationary Energy Storage 2025-2035: Markets, Forecasts, Players, and Technologies

再生可能エネルギー(RES)の電力網への普及が進むにつれ、定置用エネルギー貯蔵(ES)用電池の需要は増加する傾向にある。政府や州も、蓄電池の成長を促進するためのインセンティブやスキームを発表し、目標... もっと見る

 

 

出版社 出版年月 価格 納期 ページ数 言語
IDTechEx
アイディーテックエックス
2024年7月26日 お問い合わせください
ライセンス・価格情報
注文方法はこちら
お問合わせください 544 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。

日本語のページは自動翻訳を利用し作成しています。


 

サマリー

再生可能エネルギー(RES)の電力網への普及が進むにつれ、定置用エネルギー貯蔵(ES)用電池の需要は増加する傾向にある。政府や州も、蓄電池の成長を促進するためのインセンティブやスキームを発表し、目標を実施している。IDTechExは、2035年までにリチウムイオン電池エネルギー貯蔵システム(BESS)市場は金額にして1,090億米ドルに達し、2035年までに世界で累積4.4 TWh以上のリチウムイオンBESSが設置されると予測している。
 
リチウムイオン電池(LIB)は、現在の市場において支配的なBESS技術であり、電気化学的ESの世界設置量の90%以上を占めている。過去10年間におけるその高い性能と比較的速いコスト削減が、BESSの成功成長の鍵であった。これは、電気自動車(EV)セクターにおけるLIBの需要増加によって促進された。このことを示すために、EV、エネルギー貯蔵システム(ESS)、家電の各セクターにおけるリチウムイオン電池の需要は、2023年には~960GWhに達し、2021年の~400GWhから大幅に増加している。実際、EVセクターは依然として総需要の大半を占めているが、ESS向けのリチウムイオン需要は引き続き数量が増加しており、セクター別の需要に占める割合も2023年には10%まで増加した。
 
出典 IDTechEx.
 
将来的には、他の BESS 技術がリチウムイオン BESS から市場シェアを奪う可能性がある。将来、リチウムイオン電池の材料に制約が生じる可能性があるため、より豊富な材料を使用する他の BESS 技術のコスト競争力が高まる可能性がある。これには、Naイオン電池、レドックスフロー電池(RFB)、金属空気電池、熱電池などが含まれる。さらに、これらの技術の中には、エネルギーと電力を切り離すことで利益を得ることができるものもある。つまり、貯蔵期間が長くなれば、$/kWhベースでは、リチウムイオンよりも低コストが約束されることになる。しかし、最終的には、IDTechEx は、中期的には LIB が定置 BESS 市場を支配し続けると予想している。これらの代替BESS技術のその他の潜在的な利点としては、よりリサイクルしやすい材料や、可燃性電解質を使用しないことによる安全性の向上などが考えられる。
 
リチウムイオンBESSの安全性は、市場において依然として重要な分野である。BESS故障の根本原因は、設置、設計、製造の不備、あるいはBESSの仕様外の性能にある。LFP は NMC よりも安全な化学物質と見なされているが、これは必ずしも明確ではない。LFPセルは一般に熱安定性が高いため、熱暴走のリスクは低いが、いったん熱暴走に陥ると、より大きな危険リスクをもたらす。熱暴走のリスクや、危険な事象が発生した場合の延焼リスクを低減するために、さまざまな材料やサブシステムを導入することができる。しかし、BESSの安全性は依然として技術革新の余地がある。本レポートは、BESS 故障の根本原因、熱暴走とセル化学とフォームファクターの影響、プレーヤーの安全設計、熱管理技術(強制空冷と液冷など)とプレーヤー、電池の火災試験と規制に関する議論と分析を提供する。
 
LFPセルは、より安全なシステムを促進する可能性があるだけでなく、低コストでサイクル寿命の長いリチウムイオンBESSを促進する。こうした理由から、LFPは現在リチウムイオンBESS市場の主流化学となっている。しかし、LFP セルを使用する BESS は、NMC セルを使用する BESS よりもシステムレベルのエネルギー密度が低い。この効果に対抗するため、多くの中国企業がより大きなセル形式を使用するBESS技術を立ち上げ、5 MWh以上の容量を持つ「コンテナ型」BESSを生み出した。より大きなセルは通常、より高いエネルギー密度を示し、BESSコンテナ内のスペースをより多く利用し、システムレベルの体積エネルギー密度を増加させる。そのため、一定のプロジェクト容量に必要なBESSの数が少なくなり、より小さな空間フットプリント(kWh/m2)で、設置時間とプロジェクトコストを削減しながらプロジェクトを設置できることになる。グリッドスケールBESS分野では、エネルギー密度はEV分野ほど重要ではありませんが、LFPへのシフトとLFPの優位性の高まりは、より高いエネルギー密度を持つLFP BESSを提供することが、BESSインテグレーターが差別化を図るための重要な方法の一つになることを意味します。IDTechExの本レポートは、リチウムイオンBESS技術動向に関する詳細な分析を提供し、主要BESSメーカーのリチウムイオン技術をベンチマークしている。
 
中国のBESSメーカーがエネルギー密度を高めたBESSを発売するのに加え、いくつかのメーカーが海外市場への参入の兆しを見せている。中国におけるリチウムイオンBESSの価格競争は、これらのプレーヤーが競争力を維持しつつ利益を上げるのに十分な低コストでBESSを提供することをますます困難にしている。そのため、他市場のインテグレーターは、中国勢との競争が激化すると予想される。しかし、米国の一部のプレーヤーは、米国インフレ削減法に基づいて導入された税額控除を利用するため、米国内にセル製造施設とBESS製造施設を建設する計画を発表し始めている。最終的には、現地化されたサプライチェーンの構築は、米国のBESSメーカーが生産コストを削減するのに役立ち、より安価で競争力のあるコストでシステムを提供できるようになるはずである。このIDTechExレポートは、リチウムイオンBESSインテグレーターのプロジェクト、BESS設置量、プロジェクトパイプライン、供給と戦略的契約、グリッドスケールと住宅用BESS市場の推進力と原動力に関する洞察を深く掘り下げて提供している。
 
中国と米国は、2023年の世界リチウムイオンBESS導入量92.3GWhの合計71%を占め、依然として世界のリーダーであり、2021年の世界導入量と比較して4倍増の主な要因となっている。しかし、英国、イタリア、ドイツ、オーストラリア、イタリア、チリなど、今後10年間で力強い成長が見込まれる国もある。オーストラリアにおける容量投資スキームや、インドにおける最大 4 GWh の BESS 導入に対して提供されるバイアビリティ・ギャップ・ファウンディングのようなインセンティブやスキームが、これらの国々における成長を促進する鍵となるだろう。このIDTechExレポートは、主要国の政府が発表している様々なインセンティブ、スキーム、再生可能エネルギーと蓄電池の目標に関する詳細な分析と考察を提供している。
 
出典 IDTechEx
 
IDTechExの本レポートは、2016年から2035年までのリチウムイオンBESS市場に関する10年間の市場予測も提供している。容量予測は、国別とセクター別(グリッド規模、C&I、住宅)の両方で提供されている。国別には、中国、米国、英国、ドイツ、イタリア、オーストラリア、インド、チリを含む。
 
本レポートでは以下の情報を提供しています:
  • リチウムイオン電池、ナトリウムイオン電池(Naイオン電池)、レドックスフロー電池(RFB)、金属空気電池、鉛蓄電池、熱電池などの蓄電池技術、動向、比較。各技術の長所と短所。BESS(LFP、NMC)、CAM価格動向、長時間エネルギー貯蔵(LDES)のためのリチウムイオン化学の動向についてのさらなる分析と議論。
  • ゼロ劣化」BESS、例えばCATL TENER 6.25 MWh BESSに関する主要な議論と分析。
  • BESSの火災事故のケーススタディ、電池の故障と熱暴走の根本原因の説明、BESSの安全性に対する化学とフォームファクターの影響、Naイオンの安全性、主要なBESSインテグレーターの例を含む電池の火災、爆発、危険な出来事を軽減するシステムと材料など、LiイオンBESSの安全性を深く掘り下げる。電池の火災試験と規制、電池の安全性試験に対する潜在的な改革の必要性についての特別な議論。
  • BESSの熱管理に関する更なる分析と議論:強制空冷と液冷、この分野の技術とプレーヤー、長所と短所-コスト、エネルギー密度、騒音、運転と保守、設置時間など。
  • メーター前とメーター裏のアプリケーションで使用されるBESSについての説明と議論、裁定取引変動とマイナスの電力価格についての解説。
  • 電池の製造、プロジェクト開発、運用に至るバリューチェーン全体を通して、蓄電池のビジネスモデルと収益の流れを包括的にカバー。価格裁定、アンシラリーサービスの提供、容量市場契約の獲得を通じて得られる収益についての説明。電力購入契約(PPA)、柔軟性最適化PPA、収益スタッキング、仮想発電所(VPP)など、その他の収益創出メカニズムについても説明。
  • 世界の住宅用蓄電池市場に関する詳細な分析と考察。主要企業の活動、主要市場促進要因、国別の2016年から2035年までの住宅用蓄電池市場予測に関する最新情報を掲載。2023年および2022年に設置された住宅用蓄電池に関する地域別の詳細なデータ分析、売上高およびGWhの住宅用BESS展開によるプレイヤーの市場シェア、住宅用蓄電池の化学的動向。電池容量、設計のモジュール性、エネルギー密度、サイクル寿命、保証に関する〜50のプレーヤーの技術を照合したデータ分析。
  • ユーティリティスケール(FTM)およびC&IスケールのリチウムイオンBESSを展開するプレーヤー、すなわちリチウムイオンBESSインテグレーター、BESSメーカー、リチウムイオン電池サプライヤーに関する包括的かつ詳細な分析。リチウムイオンBESSのコスト、インテグレーターの2021-2023年のBESS設置量(GWh)、主要BESSインテグレーターのGWh別、年別、地域別の将来プロジェクトパイプライン、プレーヤー活動の動向と市場ダイナミクスに関する主要分析。
  • 主要リチウムイオンBESSメーカーのグリッドスケール技術ベンチマーク、事業展開、BESSプロジェクト、製造開発、セルサプライヤー、顧客、パートナーシップ、戦略的決定を含む主要プレイヤーの活動。
  • 中国、米国、英国、イタリア、ドイツ、オーストラリア、インド、チリ、韓国、日本、アフリカなど、世界のBESS市場の主要国に関する地域分析。エネルギー供給ミックス、長時間エネルギー貯蔵(LDES)用リチウムイオン電池の出現、定置型蓄電池の地域政策展開とインセンティブ(インフレ削減法など)、入札発表、スキーム、再生可能エネルギー源(RES)および電池・蓄電目標、エンドユーザー電力コスト、容量市場およびディレーティング係数、注目すべきGWh規模のBESSプロジェクトに関する詳細な取材、考察、分析を含みます。
  • 2016年から2035年までの10年間のリチウムイオンBESS市場予測を、国別(GWh)、分野別(グリッド規模、C&I、住宅)、FTM対BTM、金額別(US$B)に詳細に掲載。2016年から2035年までのリチウムイオンBESS化学の展望も提供。
  • リチウムイオンBESSインテグレーターやメーカー、リチウムイオン電池サプライヤーを含む20社のプロファイル。

 



 

ページTOPに戻る


 

Summary

この調査レポートは、2025-2035年の定置用エネルギー貯蔵用電池市場について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 蓄電池技術
  • リチウムイオンベスの安全性と熱管理
  • 定置型エネルギー貯蔵 ドライバー、ビジネスモデル、収益源
  • 住宅用蓄電池市場と技術
  • フロント・オブ・メーターとC&Iベス市場
  • 地域分析
  • リチウムイオン電池市場予測
 
Report Summary
Battery demand for stationary energy storage (ES) is set to grow as the volume of renewable energy sources (RES) penetrating electricity grids increases. Governments and states are also announcing incentives and schemes, and implementing targets, to promote the growth of battery storage. IDTechEx forecasts that by 2035, the Li-ion battery energy storage system (BESS) market will reach US$109B in value, and that by 2035, over 4.4 TWh of Li-ion BESS will be installed cumulatively worldwide.
 
Li-ion batteries (LIBs) are the dominant BESS technology in the current market, accounting for over 90% of global installations of electrochemical ES. Their high performance and relatively fast cost reductions over the past decade have been key to their successful growth. This has been facilitated by increasing demand for LIBs in the electric vehicles (EV) sector. To illustrate this, Li-ion battery demand across EV, energy storage system (ESS), and consumer electronics sectors reached ~960 GWh in 2023; a significant increase from ~400 GWh in 2021. Indeed, the EV sector still dominates total demand, but Li-ion demand for ESS has continued to grow in volume, and increased its share of demand by sector, up to 10% in 2023.
 
Source: IDTechEx.
 
Other BESS technologies in future could look to take increasing market share from Li-ion BESS. Potential future material constraints for LIBs could make other BESS technologies, which use more widely abundant materials, more cost competitive. This could include Na-ion batteries, redox flow batteries (RFB), metal-air batteries, thermal batteries, etc. Moreover, some of these technologies can benefit from decoupled energy and power, which means that at longer durations of storage, on a $/kWh basis, they could promise lower costs than Li-ion. However, and ultimately, IDTechEx expect LIBs to continue dominating the stationary BESS market in the medium term. Other potential benefits of these alternative BESS technologies could include more easily recyclable materials, and the omission of flammable electrolytes, bringing safety advantages.
 
Li-ion BESS safety remains a key area of importance in the market. Root causes of BESS failure can be due to poor installations, design, manufacturing, or the BESS performing outside of its specifications. LFP has often also been regarded as a safer chemistry than NMC, though this is not always clear-cut. LFP cells generally have greater thermal stability and thus lower risk of entering thermal runaway, though they pose a greater hazardous risk once they enter thermal runaway. Different materials and sub-systems can be implemented to reduce risk of thermal runaway, or the spreading of fires in the case of a hazardous event occurring. However, BESS safety remains an area for innovation. This report provides discussion and analysis on root causes of BESS failures, thermal runaway and the impact of cell chemistry and form factor, players' safety designs, thermal management technologies (i.e., forced air versus liquid cooling) and players, battery fire tests and regulations.
 
As well as potentially facilitating safer systems, LFP cells also facilitate Li-ion BESS with lower costs and longer cycle life. LFP is now the dominant chemistry in the Li-ion BESS market for these reasons. However, BESS using LFP cells exhibit lower system-level energy densities than those using NMC cells. To counter this effect, many Chinese players have launched BESS technologies using larger cell formats, giving rise to 'containerized' BESS with 5 MWh capacities or greater. Larger cells typically exhibit higher energy densities, and utilize more of the space within BESS containers, increasing the system-level volumetric energy density. This therefore results in fewer BESS being needed for a given project capacity, meaning projects can be installed over smaller spatial footprints (kWh/m2), and with reduced installation times and project costs. While energy density is not as crucial in the grid-scale BESS sector as it is in the EV sector, the shift to and growing dominance of LFP will mean that offering LFP BESS with higher energy densities will be one of the key methods for BESS integrators to differentiate themselves. This IDTechEx report provides granular analysis on Li-ion BESS technology trends and benchmarks key BESS manufacturers' Li-ion technologies.
 
As well as Chinese players launching BESS with greater energy densities, several have also shown increasing signs of participating more in overseas markets. The price war on Li-ion BESS in China has made it increasingly difficult for these players to offer BESS at costs low enough to remain competitive, yet profitable. Therefore, integrators in other markets are likely to expect increasing competition from Chinese players. However, some players in the US are starting to announce plans to construct cell manufacturing and BESS manufacturing facilities in the US to take advantage of tax credits being introduced under the US Inflation Reduction Act. Ultimately, building up of localized supply chains should help US BESS manufacturers to reduce their production costs, allowing them to provide systems at lower and more competitive costs. This IDTechEx report provides a deep dive into Li-ion BESS integrators' projects, BESS installation volumes, project pipelines, supply and strategic agreements, and insights to drivers and dynamics in grid-scale and residential BESS markets.
 
China and the US remain global leaders, responsible for a combined 71% of the 92.3 GWh of global Li-ion BESS deployments made in 2023, acting as a key reason for the 4x growth compared to global deployments made in 2021. However, other countries are expected to show strong growth over the next decade, including the UK, Italy, Germany, Australia, Italy, and Chile. Incentives and schemes such as the Capacity Investment Scheme in Australia, and Viability Gap Funding to be provided for up to 4 GWh of BESS deployment in India will be key in driving growth in these countries. This IDTechEx report provides granular analysis and discussion on various incentives, schemes and renewables and battery storage targets being announced by governments in key countries.
 
Source: IDTechEx.
 
This IDTechEx report also provides 10-year market forecasts on the Li-ion BESS market for the period 2016 - 2035, in both capacity (GWh) and market value (US$B). Capacity forecasts are provided by both country and sector (grid-scale, C&I, and residential). Countries include China, US, the UK, Germany, Italy, Australia, India, and Chile.
 
This report provides the following information:
  • Battery storage technologies, trends and comparisons, including Li-ion batteries, sodium-ion (Na-ion), redox flow batteries (RFB), metal-air batteries, lead-acid batteries, thermal batteries. Advantages and disadvantages of technologies provided. Further analysis and discussion on Li-ion chemistry trends for BESS (LFP, NMC), CAM price trends, and long duration energy storage (LDES).
  • Key discussion and analysis on 'zero-degradation' BESS, e.g., CATL TENER 6.25 MWh BESS.
  • Deep dive into Li-ion BESS safety, including case studies of BESS fire incidents, explanations of root causes of battery failures and thermal runaway, impact of chemistry and form factor on BESS safety, Na-ion safety, systems and materials to mitigate battery fires, explosions, and hazardous events, including examples from key BESS integrators. Extra discussion on battery fire tests and regulations, and potential needs for reform for battery safety testing.
  • Further analysis and discussion on BESS thermal management; forced air cooling versus liquid cooling, technologies and players in this sector, pros and cons - cost, energy density, noise, operation and maintenance, installation times, etc.
  • Explanations and discussion on BESS used in front-of-the-meter and behind-the-meter applications, and commentary on arbitrage volatility and negative electricity prices.
  • Comprehensive coverage on business models and revenue streams for battery storage through entire value chain from manufacturing, project development, and operation of batteries. Explanation of revenues gained through price arbitrage, provision of ancillary services, and winning capacity market contracts. Other revenue generation mechanisms discussed, e.g., Power Purchase Agreements (PPA), flexibility optimization PPAs, revenue stacking, virtual power plants (VPP), etc.
  • Granular analysis and discussion on the global residential battery storage market. Includes updates on key player activity, key market drivers, residential battery storage market forecasts for the 2016-2035 period by country. Granular data analysis on residential battery storage installed in 2023 and 2022 by region, player market share by revenues generated and GWh residential BESS deployed, and residential battery storage chemistry trends. Data analysis collated from ~50 players' technologies on battery capacities, modularity of designs, energy density, cycle life, and warranties.
  • Comprehensive and granular analysis on players deploying utility-scale (FTM) and C&I-scale Li-ion BESS, i.e., Li-ion BESS integrators, BESS manufacturers, and Li-ion cell suppliers. Key analysis on Li-ion BESS costs, integrators' installed volumes of BESS (GWh) for 2021-2023, key BESS integrator future project pipelines by GWh, year, and region, trends in player activity and market dynamics.
  • Leading Li-ion BESS manufacturers' grid-scale technology benchmarking, business developments and key player activity, including BESS projects, manufacturing developments, cell suppliers, customers, partnerships, and strategic decisions.
  • Regional analysis on leading countries in global BESS market including China, US, UK, Italy, Germany, Australia, India, Chile, as well as South Korea, Japan, and Africa. Includes detailed coverage, discussion and analysis on energy supply mixes, the emergence of Li-ion batteries for long duration energy storage (LDES), regional policy developments and incentives for stationary battery storage (e.g., Inflation Reduction Act), tender announcements, schemes, renewable energy source (RES) and battery and energy storage targets, end-user electricity costs, capacity markets and de-rating factors, and notable GWh-scale BESS projects.
  • Granular 10-year Li-ion BESS market forecasts, by country (GWh), by sector (grid-scale, C&I, residential) and FTM vs BTM, and by value (US$B) for the 2016-2035 period. Li-ion BESS chemistry outlook for the 2016 - 2035 period is also provided.
  • 20 company profiles including Li-ion BESS integrators and manufacturers, and Li-ion cell suppliers.
 


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Energy storage: A Li-ion battery led market
1.2. Global Li-ion BESS market headlines and key commentary
1.3. Advantages and disadvantages of battery storage technologies
1.4. Li-ion battery storage deployments by country 2023 vs 2021
1.5. Na-ion batteries for stationary energy storage
1.6. Li-ion BESS players technology benchmarking analysis
1.7. Li-ion BESS players flagship grid-scale technology benchmarking
1.8. Li-ion battery chemistry outlook - % split 2016-2035
1.9. Li-ion battery chemistries for residential storage - LFP vs NMC
1.10. CATL zero degradation BESS and options enabling this claim
1.11. Li-ion battery safety and thermal management summary (1)
1.12. Li-ion battery safety and thermal management summary (2)
1.13. BESS safety systems overview
1.14. Forced air cooling vs liquid cooled BESS summary
1.15. The impact of RES on the electricity grid
1.16. Regional RES and battery storage targets
1.17. Renewable energy targets and energy storage targets by country
1.18. US states storage and targets overview map
1.19. Australia storage policy, funding, and renewables targets
1.20. Business models and revenue streams overview
1.21. Revenue streams description
1.22. Overview of ancillary services
1.23. Li-ion BESS grid-scale / C&I market summary
1.24. Leading FTM and C&I BESS integrators / players
1.25. FTM and C&I BESS integrator / player pipelines by GWh
1.26. Key BESS integrator / player pipelines by region
1.27. Residential battery storage market overview
1.28. Residential battery storage market commentary
1.29. Global residential battery storage market forecasts by country 2016-2035 (GWh)
1.30. Regional analysis summary
1.31. Longer duration Li-ion BESS projects on the rise (1)
1.32. Longer duration Li-ion BESS projects on the rise (2)
1.33. Global Li-ion battery installations forecast by country 2016-2035 (GWh)
1.34. Global Li-ion battery installations forecast by sector [Grid-scale, C&I, residential] 2016-2035 (GWh)
1.35. Global Li-ion BESS market value by sector [Grid-scale, C&I, residential] 2016-2035 (US$B)
1.36. Regional commentary (1)
1.37. Regional commentary (2)
1.38. Regional commentary (3)
1.39. Regional commentary (4)
1.40. Regional commentary (5)
1.41. Access More with an IDTechEx Subscription
2. INTRODUCTION
2.1. Consumption of electricity is changing
2.2. Renewables are leading the power source changes
2.3. The advantage of energy storage in the power grid (1)
2.4. The advantage of energy storage in the power grid (2)
2.5. Stationary storage position in the power grid
2.6. Different battery sizes for different uses
2.7. Where can energy storage fit in?
2.8. Battery storage systems
2.9. Battery storage designed for self-consumption
3. BATTERY STORAGE TECHNOLOGIES
3.1. Li-ion Batteries
3.1.1. Summary: Batteries for stationary energy storage
3.1.2. More than one type of Li-ion battery
3.1.3. A family tree of Li-based batteries
3.1.4. Differences between cell, module, and pack
3.2. Li-ion cathode materials
3.2.1. Cathode materials - NMC, NCA, and LMO
3.2.2. Cathode materials - LCO and LFP
3.2.3. Cathode suitability for stationary Li-ion battery storage
3.2.4. CAM price trend
3.2.5. LFP or NMC for stationary energy storage?
3.3. Li-ion anode materials
3.3.1. Anodes compared (1)
3.3.2. Anodes compared (2)
3.3.3. Where will LTO play a role?
3.3.4. IDTechEx wider reports on batteries for stationary energy storage
3.4. Other batteries for stationary energy storage
3.4.1. Na-ion batteries introduction
3.4.2. Appraisal of Na-ion (1)
3.4.3. Appraisal of Na-ion (2)
3.4.4. Na-ion batteries for stationary energy storage
3.4.5. Na-ion grid-scale battery storage deployments
3.4.6. Redox flow batteries for stationary energy storage
3.4.7. Metal-air batteries introduction
3.4.8. Metal-air battery options for LDES
3.4.9. Lead-acid batteries
3.4.10. Thermal batteries introduction
3.4.11. Thermal batteries working principles
3.4.12. Advantages and disadvantages of battery storage technologies
4. LI-ION BESS SAFETY AND THERMAL MANAGEMENT
4.1. Summary
4.1.1. Executive summary: Li-ion battery safety and thermal management (1)
4.1.2. Executive summary: Li-ion battery safety and thermal management (2)
4.2. Li-ion BESS fire incidents
4.2.1. BESS fire in Arizona, US (2019)
4.2.2. Battery fires in South Korea
4.2.3. Reasons for battery fires in South Korea
4.2.4. Victoria Big Battery fire and new mitigations for fire protection (2021)
4.2.5. Global BESS failure incidents
4.2.6. Root causes of BESS failures 2018-2023 (1)
4.2.7. Root causes of BESS failures 2018-2023 (2)
4.2.8. Root causes of BESS failures 2018-2023 (3)
4.2.9. BESS age at failure
4.3. Causes and stages of thermal runaway and battery fires
4.3.1. Causes of battery failure
4.3.2. Stages of thermal runaway (1)
4.3.3. Stages of thermal runaway (2)
4.3.4. Stages of thermal runaway (3)
4.3.5. LiB cell temperature and likely outcome
4.3.6. Thermal runaway propagation
4.3.7. Summary of LiB failure events at different temperatures
4.3.8. Cell chemistry and stability
4.3.9. Cell chemistry impact on fire protection
4.3.10. Cell form factor and chemistry impact on fire protection
4.3.11. Na-ion battery safety
4.3.12. 0 V capability of Na-ion systems
4.3.13. Summary of Na-ion safety
4.4. Systems and materials for BESS fire protection and thermal runaway mitigation
4.4.1. Methods to prevent battery fires
4.4.2. BESS safety systems overview
4.4.3. Large containerized BESS designs
4.4.4. Examples of fire protection agents
4.4.5. Opportunities to use fire protection materials used in EV batteries
4.4.6. Other product and material opportunities: polymers
4.4.7. Megapack thermal management and thermal runaway mitigation
4.4.8. Fluence BESS Gridstack Pro Safety Features
4.4.9. Fluence Cube Safety Features
4.4.10. Johnson Controls gas detection and fire suppression systems for BESS (1)
4.4.11. Johnson Controls gas detection and fire suppression systems for BESS (2)
4.4.12. Key conclusions for Li-ion battery safety
4.5. BESS thermal management: Air cooled vs liquid cooled BESS, technologies & players
4.5.1. Forced air cooled BESS
4.5.2. Liquid cooled BESS (1)
4.5.3. Liquid cooled BESS (2)
4.5.4. Key comparisons between forced air cooled and liquid cooled BESS
4.5.5. Key BESS cooling solution players
4.5.6. Envicool cooling technologies for BESS
4.5.7. Tongfei BESS cooling technologies
4.5.8. Bergstrom cooling technologies for BESS
4.5.9. Pfannenberg cooling technologies for BESS
4.5.10. Example cooling technologies summary
4.5.11. Forced air cooling vs liquid cooled BESS summary
4.6. Thermal runaway and battery fire tests and regulations
4.6.1. The nail penetration test
4.6.2. UL 9450A thermal runaway testing
4.6.3. UL 9450A - a need for more stringent BESS safety testing? (1)
4.6.4. UL 9450A - a need for more stringent BESS safety testing? (2)
4.6.5. BESS Safety in the EU Battery Regulation
5. STATIONARY ENERGY STORAGE: DRIVERS, BUSINESS MODELS AND REVENUE STREAMS
5.1. Business models and revenue streams
5.1.1. Introduction to energy storage drivers
5.1.2. ESS for every position in the value chain
5.1.3. Power capacity vs discharge duration
5.1.4. Business models and revenue streams overview
5.1.5. Revenue streams overview
5.1.6. Revenue streams description
5.1.7. Capacity Market (CM)
5.1.8. Power Purchase Agreements (PPA)
5.1.9. Battery storage and flexibility optimization PPAs (1)
5.1.10. Battery storage and flexibility optimization PPAs (2)
5.1.11. Battery storage and flexibility optimization PPAs (3)
5.1.12. Battery storage and flexibility optimization PPAs (4)
5.1.13. Battery storage and flexibility optimization PPAs (5)
5.2. Behind-the-Meter Applications
5.2.1. BTM summary: values provided by battery storage - customer side
5.2.2. Virtual power plants
5.2.3. Virtual power plant players
5.3. Front-of-the-Meter Applications
5.3.1. FTM: Values provided by battery storage in ancillary services
5.3.2. Ancillary services provision and revenue stacking
5.3.3. Ancillary service requirements
5.3.4. Frequency regulation
5.3.5. Levels of frequency regulation
5.3.6. Load following
5.3.7. Spinning and non-spinning reserve
5.3.8. Dynamic Containment (DC) (1)
5.3.9. Dynamic Containment (DC) (2)
5.3.10. Stacking revenues for battery storage asset owners (1)
5.3.11. Stacking revenues for battery storage asset owners (2)
5.3.12. FTM: values provided by battery storage in utility services
5.3.13. Arbitrage volatility
5.3.14. Negative electricity prices
5.3.15. Gas peaker plant deferral
5.3.16. Off-grid and remote applications
5.3.17. Other utility applications
6. RESIDENTIAL BATTERY STORAGE MARKET AND TECHNOLOGIES
6.1. Summary
6.1.1. Executive summary: residential battery storage
6.1.2. Residential battery storage regional developments
6.1.3. Global residential battery storage market forecasts by country 2016-2035 (GWh)
6.2. Market drivers and key player activity
6.2.1. Market drivers for residential BESS
6.2.2. Key residential BESS player activity updates
6.2.3. Tesla Powerwall Installations for Residential Applications
6.3. Market overview and data analysis
6.3.1. Residential battery storage market overview
6.3.2. Residential battery storage market - demand in Germany
6.3.3. Residential battery market players
6.3.4. Residential battery player market share by revenues (US$M)
6.3.5. Residential battery player market share by GWh installed
6.3.6. Li-ion battery chemistries for residential storage - LFP vs NMC
6.3.7. Battery chemistries for residential storage - undisclosed chemistries
6.3.8. Residential battery capacities
6.3.9. Modular residential battery designs
6.3.10. Residential battery price/kg and energy density
6.3.11. Outlier explanations
6.3.12. Cycle life of residential batteries
6.3.13. Residential battery warranties
6.3.14. Redox flow batteries for residential battery storage?
7. FRONT-OF-THE-METER AND C&I BESS MARKET
7.1. Front-of-the-Meter and C&I BESS Market Overview
7.1.1. Executive summary: FTM and C&I BESS players and technologies
7.1.2. Front-of-the-meter players in the BESS value chain
7.1.3. Energy storage integrators
7.1.4. Companies in the BESS value chain
7.1.5. Large Li-ion BESS assembly costs
7.1.6. Leading FTM and C&I BESS integrators / players
7.1.7. FTM and C&I BESS integrator / player pipelines by GWh
7.1.8. Key BESS integrator / player pipelines by region
7.1.9. FTM and C&I BESS integrator raw data (BESS deployed 2021 - 2023 and project pipelines (by GWh)
7.1.10. Li-ion BESS players analysis notes
7.1.11. Li-ion BESS grid-scale / C&I market summary
7.1.12. BESS player summary - revenues, deployments, pipelines, etc.
7.1.13. Li-ion BESS players technology benchmarking notes
7.1.14. Li-ion BESS players technology benchmarking analysis
7.1.15. Li-ion BESS players flagship grid-scale technology benchmarking
7.2. Front-of-the-Meter and C&I BESS Players, Technologies, and Market Activity
7.2.1. Tesla BESS installations and revenues overview (2021- 2023)
7.2.2. Tesla BESS products overview
7.2.3. Megapack pricing and delivery factors
7.2.4. Megapack pricing (US$/kWh vs capacity installed)
7.2.5. Megapack pricing (US$/kWh vs number of units)
7.2.6. Tesla grid-scale BESS revenues estimation (1)
7.2.7. Tesla grid-scale BESS revenues estimation (2)
7.2.8. Tesla "Generation and Other Services" revenues
7.2.9. Key trends for Tesla's BESS development
7.2.10. Tesla key BESS developments and projects (1)
7.2.11. Tesla key BESS developments and projects (2)
7.2.12. Tesla key projects summary
7.2.13. Tesla Megapack and cell manufacturing developments
7.2.14. Megapack thermal management and thermal runaway mitigation
7.2.15. Victoria Big Battery fire and new mitigations for fire protection
7.2.16. Key conclusions - Tesla in the BESS Market
7.2.17. Fluence overview
7.2.18. Fluence BESS technologies / products
7.2.19. Fluence Cube
7.2.20. Fluence key BESS projects (1)
7.2.21. Fluence key BESS projects (2)
7.2.22. Storage-as-a-Transmission Asset (SATA)
7.2.23. Fluence key upcoming projects summary
7.2.24. Fluence manufacturing developments
7.2.25. Fluence pack manufacturing developments - IRA ITC and PTCs
7.2.26. Fluence BESS Gridstack Pro Safety Features
7.2.27. Fluence Cube Safety Features
7.2.28. Sungrow overview
7.2.29. Sungrow grid-scale BESS technologies
7.2.30. Sungrow BESS technology advantages and disadvantages
7.2.31. Sungrow key BESS projects (1)
7.2.32. Sungrow key BESS projects (2)
7.2.33. Sungrow key BESS projects (3)
7.2.34. Sungrow key projects summary
7.2.35. Wärtsilä overview
7.2.36. Wärtsilä BESS technology
7.2.37. Wärtsilä BESS safety features
7.2.38. Wärtsilä new BESS technologies: Quantum High Energy and Quantum2
7.2.39. Wärtsilä technology summary
7.2.40. Wärtsilä key installed BESS projects
7.2.41. Wärtsilä key upcoming BESS projects and supply agreement
7.2.42. Wärtsilä key upcoming BESS projects summary
7.2.43. Powin overview
7.2.44. Powin BESS technology and safety features
7.2.45. Powin 5 MWh BESS technology
7.2.46. Powin key upcoming BESS projects summary
7.2.47. Powin battery cell supply agreements summary
7.2.48. Powin commercial activity, partnerships, and supply agreements (1)
7.2.49. Powin commercial activity, partnerships, and supply agreements (2)
7.2.50. Powin commercial activity, partnerships, and supply agreements (3)
7.2.51. HyperStrong overview
7.2.52. HyperStrong BESS technologies
7.2.53. HyperStrong BESS technology technical specifications
7.2.54. HyperStrong commercial activity and key projects (1)
7.2.55. HyperStrong commercial activity and key projects (2)
7.2.56. BYD overview (1)
7.2.57. BYD overview (2)
7.2.58. BYD battery energy storage technologies
7.2.59. BYD grid-scale BESS technical specifications
7.2.60. BYD C&I and residential BESS technologies
7.2.61. BYD technology and commercial strategy
7.2.62. BYD key BESS projects (1)
7.2.63. BYD key BESS projects (2)
7.2.64. Narada Power overview
7.2.65. Narada Power BESS technologies
7.2.66. Narada Power BESS technology technical specifications
7.2.67. Narada Power 305Ah and 690Ah zero-degradation battery cells
7.2.68. Advantages of larger cell formats and capacities
7.2.69. Narada Power commercial activity and key projects (1)
7.2.70. Narada Power commercial activity and key projects (2)
7.2.71. CATL overview
7.2.72. CATL zero-degradation BESS
7.2.73. What underpins CATL's zero degradation ESS battery
7.2.74. Pre-lithiation likely to play key role in 'zero-degradation' claim
7.2.75. Cathode pre-lithiation additives
7.2.76. Data highlights the possibility for claiming zero-degradation
7.2.77. CATL additive related patents
7.2.78. CATL pre-lithiation additive patent example (1)
7.2.79. CATL pre-lithiation additive patent example (2)
7.2.80. CATL pre-lithiation additive patent example (3)
7.2.81. CATL electrolyte additive patent example
7.2.82. "Zero-degradation" battery highlights multiple design levers
7.2.83. Concluding remarks on zero degradation batteries
7.2.84. CATL other BESS technologies
7.2.85. CATL BESS technology benchmarking
7.2.86. CATL 314Ah cells
7.2.87. CATL key BESS projects
7.2.88. LG Energy Solution Vertech overview
7.2.89. LG ES technology benchmarking
7.2.90. LG ES (Vertech) market activity
7.2.91. Samsung SDI overview
7.2.92. Samsung SDI technology benchmarking
7.2.93. Samsung SDI market activity and cell manufacturing updates
7.2.94. Samsung SDI solid-state battery developments
8. REGIONAL ANALYSIS
8.1. Summary
8.1.1. Executive summary: regional analysis
8.1.2. Longer duration Li-ion BESS projects on the rise (1)
8.1.3. Longer duration Li-ion BESS projects on the rise (2)
8.2. Regional Analysis 2022-2024 Key Updates and Regional Summaries
8.2.1. Australia commentary: 2024 and future outlook
8.2.2. Australia 2022-2024 key updates
8.2.3. Australia storage policy, funding, and renewables targets
8.2.4. Key upcoming large-scale BESS in Australia
8.2.5. Japan commentary: 2024 and future outlook
8.2.6. South Korea commentary: 2024 and future outlook
8.2.7. India commentary: 2024 and future outlook
8.2.8. India 2022-2024 key updates
8.2.9. Indian Li-ion battery gigafactory development
8.2.10. China commentary: 2024 and future outlook
8.2.11. China energy storage by technology split
8.2.12. US commentary: 2024 and future outlook
8.2.13. United States 2022-2024 key updates
8.2.14. US States storage and targets overview map
8.2.15. World's largest BESS: Edwards & Sanborn solar-plus-storage project
8.2.16. US electricity costs
8.2.17. Inflation Reduction Act: Section 45X Advanced Manufacturing Production Tax Credit (PTC)
8.2.18. Inflation Reduction Act: Section 48 Investment Tax Credit (ITC)
8.2.19. Germany commentary: 2024 and future outlook
8.2.20. Germany 2022-2024 key updates
8.2.21. Italy commentary: 2024 and future outlook
8.2.22. Italy 2022-2024 key updates
8.2.23. Residential battery storage in Italy
8.2.24. Existing situation of grid-scale battery storage in Italy
8.2.25. New storage tenders and Italian TSO's expected battery storage requirements in Italy
8.2.26. UK commentary: 2024 and future outlook
8.2.27. UK 2022-2024 updates
8.2.28. UK capacity market timeline
8.2.29. Battery storage de-rating factors in recent UK capacity market auctions
8.2.30. How do de-rating factors and capacity market contracts impact the covering of Li-ion BESS project cost? (1)
8.2.31. How do de-rating factors and capacity market contracts impact the covering of Li-ion BESS project cost? (2)
8.2.32. Chile commentary: 2024 and future outlook
8.2.33. Chile ESS developments
8.3. Australia
8.3.1. Australia introduction
8.3.2. Australia 2022-2024 key updates
8.3.3. Australia storage policy, funding, and renewables targets
8.3.4. Key upcoming large-scale BESS in Australia
8.3.5. Other Australian energy storage targets, policies, and rules
8.3.6. Other state policies, schemes, and targets
8.3.7. Victoria's Neighbourhood Battery Initiative (1)
8.3.8. Victoria's Neighbourhood Battery Initiative (2)
8.3.9. Australia's Li-ion gigafactory and supply chain
8.3.10. Victoria Big Battery
8.3.11. Australia commentary: 2024 and future outlook
8.3.12. Australia Li-ion battery storage forecast 2016-2035 (GWh)
8.4. Japan
8.4.1. Japan introduction
8.4.2. Japan electricity supply status
8.4.3. Japan's multiples approached toward energy resiliency
8.4.4. A trend shift in Japan's BESS landscape
8.4.5. Phase out of Feed-in-Tariffs
8.4.6. Private households investing in solar and batteries
8.4.7. Peer-to-peer (P2P) residential energy trading
8.4.8. Tesla entering Japanese home battery market
8.4.9. Other approaches besides home batteries
8.4.10. Vehicle-to-grid (V2G)
8.4.11. Japan's grid-scale battery situation and project examples.
8.4.12. Grid-scale batteries in Hokkaido
8.4.13. The "Basic Hydrogen Roadmap"
8.4.14. 10 MW Fukushima electrolyser
8.4.15. Japan commentary: 2024 and future outlook
8.5. South Korea
8.5.1. South Korea introduction
8.5.2. South Korea energy supply status
8.5.3. Government approach towards ES systems
8.5.4. South Korea market drivers
8.5.5. South Korean Renewable Energy Certificate (REC)
8.5.6. South Korea's state of electricity generation and battery storage
8.5.7. South Korea: ESS developer and market share
8.5.8. Reduced battery installations after 2018
8.5.9. Battery fires in South Korea
8.5.10. Causes of battery fires
8.5.11. Utility scale battery storage projects
8.5.12. South Korea commentary: 2024 and future outlook
8.6. India
8.6.1. India introduction
8.6.2. India 2022-2024 key updates
8.6.3. A lead-acid dominated industry
8.6.4. Battery storage and solar capacity trajectory
8.6.5. Battery storage tenders and government push
8.6.6. Challenges and developments in battery storage in India
8.6.7. Indian Li-ion battery gigafactory development
8.6.8. India's rooftop solar PV market and residential batteries market
8.6.9. India commentary: 2024 and future outlook
8.6.10. India Li-ion battery storage forecast 2022-2035 (GWh)
8.7. China
8.7.1. China introduction
8.7.2. Chinese power grid upgrade
8.7.3. China's historic energy storage deployments
8.7.4. Recent regulation and target developments
8.7.5. China energy storage by technology split
8.7.6. China commentary: 2024 and future outlook
8.7.7. China Li-ion battery storage forecast 2016-2035 (GWh)
8.8. United States
8.8.1. United States introduction
8.8.2. United States 2022-2024 key updates
8.8.3. US States storage and targets overview map
8.8.4. US retail electricity prices
8.8.5. US key developments: Inflation Reduction Act
8.8.6. Inflation Reduction Act: Section 45X Advanced Manufacturing Production Tax Credit (PTC)
8.8.7. Inflation Reduction Act: Section 48 Investment Tax Credit (ITC)
8.8.8. US older developments: American Energy Innovation Act
8.8.9. US older developments: FERC Order 2222
8.8.10. FERC 2222 advantages for ES market
8.8.11. US older developments: FERC Order 841
8.8.12. US older key anecdotes (1)
8.8.13. US older key anecdotes (2)
8.8.14. US older key anecdotes (3)
8.8.15. US commentary: 2024 and future outlook
8.8.16. US Li-ion battery storage forecast 2016-2035 (GWh)
8.8.17. California
8.8.18. California overview
8.8.19. World's largest BESS: Edwards & Sanborn solar-plus-storage project
8.8.20. Moss Landing Project - California, US
8.8.21. Large utility battery projects (2)
8.8.22. Bellefield Solar and Energy Storage Farm
8.8.23. California residential battery policies: SGIP
8.8.24. California residential battery policies: NEM
8.8.25. California residential battery storage players
8.8.26. Texas
8.8.27. Texas overview
8.8.28. Key grid-scale battery and energy storage projects in Texas
8.8.29. Hawaii
8.8.30. Hawaii introduction
8.8.31. Hawaii clean energy initiative
8.8.32. Renewables + storage competitive with fossil fuels
8.8.33. Large utility battery project in O'ahu
8.8.34. Net Energy Metering (NEM) and upgrades
8.8.35. New York
8.8.36. New York state energy storage roadmap
8.8.37. Utility-scale BESS project in New York
8.8.38. New York grid-scale and C&I battery summary
8.8.39. Virginia
8.8.40. Virginia Clean Economy Act (1)
8.8.41. Virginia Clean Economy Act (2)
8.8.42. South Carolina
8.8.43. South Carolina: Energy Freedom Act
8.9. Germany
8.9.1. Germany introduction
8.9.2. Germany 2022-2024 key updates
8.9.3. Structure and targets of the 'Energy Concept'
8.9.4. Germany overview and residential storage subsidies
8.9.5. German electricity generation
8.9.6. Electricity grid upgrade
8.9.7. FTM battery storage in Germany
8.9.8. Innovation auctions
8.9.9. Arbitrage opportunities for utility-scale BESS in Germany
8.9.10. BigBattery Lausitz
8.9.11. RWE large batteries with hydropower
8.9.12. BTM: home batteries as a solution
8.9.13. Solar plus storage costs in Germany
8.9.14. KfW bank subsidy
8.9.15. Further options after the FiT
8.9.16. Sonnen in residential battery VPP market
8.9.17. Residential battery market in Germany
8.9.18. Germany commentary: 2024 and future outlook
8.9.19. Germany Li-ion battery storage forecast 2016-2035 (GWh)
8.10. Italy
8.10.1. Italy introduction
8.10.2. Italy 2022-2024 key updates
8.10.3. Italian Feed-in-Tariff and RES Decree
8.10.4. Italian historical Feed-in-Tariff
8.10.5. VPP development in Italy
8.10.6. Residential battery storage in Italy
8.10.7. Growing solar installations in Italy
8.10.8. Existing situation of grid-scale battery storage in Italy
8.10.9. New storage tenders and Italian TSO's expected battery storage requirements in Italy
8.10.10. Energy Dome: Liquefied CO2 energy storage
8.10.11. Energy Dome commercial activity
8.10.12. Italy commentary: 2024 and future outlook
8.10.13. Italy Li-ion battery storage forecast 2016-2035 (GWh)
8.11. United Kingdom
8.11.1. UK introduction
8.11.2. UK key updates 2022-2024
8.11.3. FTM and BTM overview
8.11.4. A step forward for clean energy sources
8.11.5. Capacity Markets (CM) (1)
8.11.6. Capacity Markets (CM) (2)
8.11.7. UK capacity market timeline
8.11.8. Battery storage de-rating factors in the capacity market
8.11.9. Battery storage de-rating factors in older UK capacity market auctions
8.11.10. Battery storage de-rating factors in recent UK capacity market auctions
8.11.11. How do de-rating factors and capacity market contracts impact the covering of Li-ion BESS project cost? (1)
8.11.12. How do de-rating factors and capacity market contracts impact the covering of Li-ion BESS project cost? (2)
8.11.13. Revenue stacking (1)
8.11.14. Revenue stacking (2)
8.11.15. Revenue stacking (3)
8.11.16. Large UK BESS project developments 2022
8.11.17. UK residential battery market
8.11.18. UK commentary: 2024 and future outlook
8.11.19. UK Li-ion battery storage forecast 2016-2035 (GWh)
8.12. Chile
8.12.1. Chile electricity supply status
8.12.2. Chile ESS developments
8.12.3. Chile commentary: 2024 and future outlook
8.12.4. Chile Li-ion battery storage forecast 2022-2035 (GWh)
8.13. Africa
8.13.1. Africa overview
9. LI-ION BESS MARKET FORECASTS
9.1.1. Global Li-ion BESS market headlines and key commentary
9.1.2. Market forecast assumptions and methodology
9.1.3. Global Li-ion battery installations forecast by country 2016-2035 (GWh)
9.1.4. Global Li-ion battery installations forecast by sector [Grid-scale, C&I, residential] 2016-2035 (GWh)
9.1.5. Global Li-ion battery installations forecast by sector [FTM, BTM] 2016-2035 (GWh)
9.1.6. Global Li-ion BESS market value by sector [Grid-scale, C&I, residential] 2016-2035 (US$B)
9.1.7. Global residential battery storage market forecasts by country 2016-2035 (GWh)
9.1.8. Global Li-ion battery storage market by chemistry split % across sectors 2016-2035
9.1.9. China Li-ion battery storage forecast 2016-2035 (GWh)
9.1.10. US Li-ion battery storage forecast 2016-2035 (GWh)
9.1.11. Australia Li-ion battery storage forecast 2016-2035 (GWh)
9.1.12. India Li-ion battery storage forecast 2022-2035 (GWh)
9.1.13. Italy Li-ion battery storage forecast 2016-2035 (GWh)
9.1.14. Germany Li-ion battery storage forecast 2016-2035 (GWh)
9.1.15. UK Li-ion battery storage forecast 2016-2035 (GWh)
9.1.16. Chile Li-ion battery storage forecast 2022-2035 (GWh)
10. COMPANY PROFILES
10.1. Aggreko (Energy Storage)
10.2. BSL Battery
10.3. BYD Energy Storage
10.4. BYD: Residential Batteries
10.5. CATL - Battery Energy Storage Systems (BESS)
10.6. E3/DC GmbH
10.7. Electric Era
10.8. Engie Storage
10.9. Fluence Energy
10.10. Fluence — Battery Energy Storage Systems (BESS)
10.11. HyperStrong — Battery Energy Storage Systems (BESS)
10.12. Kokam (2020)
10.13. Leclanché (2019)
10.14. LG Energy Solution Vertech
10.15. Narada Power - Battery Energy Storage Systems (BESS)
10.16. Powin — Battery Energy Storage Systems (BESS)
10.17. Samsung SDI - Battery Energy Storage Systems (BESS)
10.18. Schneider Electric (Energy Storage)
10.19. Sungrow
10.20. Tesla — Battery Energy Storage Systems (BESS)
10.21. Wärtsilä — Battery Energy Storage Systems (BESS)

 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(エネルギー貯蔵)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/01/21 10:26

157.10 円

163.44 円

195.63 円

ページTOPに戻る