世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Nuclear Small Modular Reactors (SMRs) 2023-2043


原子力小型モジュール原子炉(SMR)2023-2043年

この調査レポートは、SMR原子炉に関する詳細情報が含まれており、2023年から2043年までの地域別市場予測を提供しています。   主な掲載内容(目次より抜粋) 予測 smrテクノロ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2023年4月17日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
192 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。


 

Summary

この調査レポートは、SMR原子炉に関する詳細情報が含まれており、2023年から2043年までの地域別市場予測を提供しています。
 
主な掲載内容(目次より抜粋)
  • 予測
  • smrテクノロジーアセスメント
  • スマートフォン向けアプリケーション
 
Report Summary
Small modular reactors (SMRs) promise to offer cheaper nuclear energy, supplying zero-carbon grid baseload and enabling new use-cases for nuclear reactors. IDTechEx's new report explores this emerging alternative to conventional nuclear reactors, analyzing the current and future SMR market, competing technological approaches, and key players. It includes detailed information on SMR reactors that have already entered or are close to entering service, and provides regional market forecasts from 2023-2043. The report also includes data-driven benchmarking of 10 reactor technologies. With the potential for rapid growth fueled by lower capital requirements and zero-carbon provision of baseload and demand-following power that is cost-competitive with renewables + storage, SMRs are predicted to supply 2% of the world's electricity in 2043.
 
SMRs aim to significantly reduce the capital expenses (CAPEX) associated with nuclear energy. Despite increasing operational expenses (OPEX), the overall levelized cost of energy is expected to be vastly lower.
 
Image: IDTechEx
 
SMRs are small nuclear fission reactors which are partially factory-built and transported to site as modules. They aim to make nuclear projects cheaper, enhance their safety and open pathways to new business models. Economies of scale are transferred from the size of the individual installation (i.e. a conventional large nuclear project), to manufacturing higher volumes of individual SMRs. This transition should help in avoiding the budget and time overrun issues that plague the nuclear industry today. In 2023, renewed energy security concerns and the ongoing climate crisis are causing governments and businesses to re-evaluate these sources of carbon-free energy. Intermittent renewables promise to supply a substantial proportion of global energy, yet when paired with energy storage for baseload and demand-following applications, the costs skyrocket. SMRs promise to fill this important niche in future energy networks.
 
This report analyzes the SMR market in depth, covering market trends, technologies, and key players. It explores the various SMR technologies, with distinction made between "evolutionary" Generation III+ reactor technologies including pressurized water reactors (PWRs) and boiling water reactors (BWRs), and "revolutionary" Generation IV reactors including molten salt reactors (MSR), and high-temperature gas-cooled reactors (HTGR), among others. A key question answered is whether the potential operational and safety benefits of Generation IV designs outweigh the thousands of years of reactor time experience for Generation III reactors.
 
Drivers and constraints affecting the market, including licensing issues, supply chain immaturity and safety considerations, are carefully explored. The report also provides an overview of the competitive landscape, with profiles of leading companies in the SMR industry. In addition to forecasting the number, electrical and thermal capacity, and revenue of SMRs from 2023-2043, broken down by reactor type and region, IDTechEx carried out a comprehensive benchmarking study of the SMR industry. Data was gathered on all 83 SMR projects known to IDTechEx, with key performance indicators for factors including safety, efficiency and power density formulated and plotted. This allows comparison of the technical merits and overall level of advancement of different reactor designs via quantitative metrics gathered from industry, cutting through the fog when understanding these technologies.
 
Unique position and experience behind the report
IDTechEx is afforded a unique position in covering this topic. The analyst team builds on decades of experience covering emerging technology markets, including in the wider energy and decarbonization field and related industries including the hydrogen economy and renewable energy. IDTechEx analysts attended nuclear industry events, including the 2022 World Nuclear Symposium, in the process of research for this uniquely comprehensive report.
This report provides critical market intelligence about the product sector and each of the 10 major reactor technologies involved. This includes:
  • A review of the context and technology behind SMRs.
  • History and context for the sector within the wider nuclear industry and individual technologies.
  • General overview of important SMR technologies.
  • Overall look at SMR trends and themes.
  • Full data-driven benchmarking of SMR technologies from information on 83 projects.
  • Overview and analysis of potential SMR use-cases beyond grid power supply, including process heat, hydrogen production and desalination. Data-driven technology suitability analysis included.
  • Reviews of major SMR players across technologies, from universities to nuclear industry insiders to early-stage companies.
  • Market forecasts from 2023-2043 for four overarching technology types broken down into global regions.
 
Report Metrics
Details
Historic Data
2020 - 2023
CAGR
The global market for SMRs is expected to reach $72.4 billion by 2033 and $295 billion by 2043, representing a CAGR of 30% in this period.
Forecast Period
2023 - 2043
Forecast Units
Volume (number of reactors), electricity generated (TWh), electrical/thermal capacity (GWe/GWt)
Regions Covered
Worldwide, Asia-Pacific, East Asia, Europe, North America (USA + Canada)
Segments Covered
Nuclear SMRs (Small Modular Reactors), LWRs (Light Water Reactors), PWRs (Pressurized Water Reactors), BWRs (Boiling Water Reactors), PHWRs (Pressurized Heavy Water Reactors), MSRs (Molten Salt Reactors), LMFRs (Liquid Metal Fast Reactors), HTGRs (High Temperature Gas cooled Reactors), PBRs (Pebble Bed Reactors), nuclear decarbonization, nuclear process heat.

 



ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Small modular reactors (SMRs): what and why?
1.2. Why is interest growing nuclear energy?
1.3. SMRs are expected to reduce the cost of nuclear energy
1.4. SMRs could work alongside renewable energy systems towards decarbonization
1.5. The cost of energy from SMRs could compete with renewables and fossil fuels
1.6. Where are the SMR projects?
1.7. Countries around the world are announcing interest in SMR projects
1.8. SMRs enable new use-cases for nuclear energy
1.9. What reactor technologies will SMRs use?
1.10. SMRs in existence today
1.11. Selected players in SMR design
1.12. What is holding back SMRs?
1.13. What factors are important when comparing SMR technologies?
1.14. Insights from SMR benchmarking
1.15. Forecasting the SMR market
1.16. Forecasting growth in number of SMRs
1.17. Growth in installed SMR electrical capacity: regions
1.18. SMR technology breakdown by region: 2043 predictions
1.19. Key takeaways on SMRs from IDTechEx
2. INTRODUCTION
2.1. Introduction: the nuclear industry, SMRs and technical background
2.2. Nuclear industry overview
2.2.1. Nuclear energy: the story so far
2.2.2. Nuclear energy has struggled in recent years
2.2.3. Nuclear power in the global energy mix
2.2.4. The last decade was tough for nuclear. Why should this one be different?
2.2.5. Nuclear new builds: why or why not?
2.2.6. Nuclear for net zero: how much is needed?
2.2.7. Why do hopes for nuclear installation rate vary so wildly?
2.2.8. How realistic is rapid nuclear expansion?
2.2.9. Segmenting nuclear technologies: generations
2.2.10. How have commercial nuclear power plants been constructed?
2.2.11. The economics of nuclear plant construction confound expectations
2.2.12. Conclusions: the nuclear industry needs an overhaul
2.3. Introduction to small modular reactors
2.3.1. Small modular reactors (SMRs): what and why?
2.3.2. Defining small modular reactors
2.3.3. SMR drivers: transferring the economy of scale
2.3.4. SMR construction economics: the evidence
2.3.5. Motivation for adopting SMRs
2.3.6. Modularization as a cost saving
2.3.7. Cost of capital for SMRs vs. traditional NPP projects
2.3.8. The cost of energy from SMRs could compete with renewables and fossil fuels
2.3.9. SMRs as an answer to energy security
2.3.10. Where are the SMR projects?
2.3.11. Production bottlenecks for SMRs: reactor pressure vessels
2.3.12. SMR developers face slow licensing processes, but progress is being made
2.3.13. Are SMRs safer than large nuclear power plants?
2.3.14. Conclusions: SMRs aim to make nuclear power economically viable
3. FORECASTS
3.1. Introduction to forecasting
3.2. Forecasting overall electricity demand
3.3. Nuclear energy by region today
3.4. Nuclear energy by region: forecasting growth
3.5. Where in the world is growth in nuclear energy expected?
3.6. Constructing the forecast: SMRs in operation today
3.7. Constructing the forecast: establishing when SMRs enter operation
3.8. Forecasting methodology: projecting growth, technology focus
3.9. Forecasting growth in number of SMRs
3.10. Forecast: number of SMRs with table
3.11. Reactor technology forecasts
3.12. Forecasting reactor types: overall breakdown
3.13. Forecast: SMR reactor types with table
3.14. SMR technology breakdown by region: 2043 predictions
3.15. Growth in installed SMR electrical capacity: regions
3.16. Forecast: SMR electricity generated by region with tables
3.17. Installed energy capacity of SMRs: electrical
3.18. Installed energy capacity of SMRs: thermal
3.19. How much will SMRs cost to build?
3.20. Forecasting revenue from SMR construction: reactor types
3.21. Forecast: SMR construction revenue by type with data table
3.22. Forecasting revenue from SMR construction: regions
3.23. Forecast: regional revenue from SMR construction with data table
3.24. Forecasting: Conclusions
4. SMR TECHNOLOGY ASSESSMENT
4.1. Structure of this chapter
4.2. Technical primer
4.2.1. Nuclear fission: subatomic components
4.2.2. Fission processes: releasing energy
4.2.3. Segmenting SMRs: active vs. passive vs. inherent safety
4.2.4. Controlling and maintaining chain reactions
4.2.5. Fuel types in nuclear reactors: enrichment
4.2.6. Fuel costs as a fraction of levelized cost
4.2.7. Void coefficient as an indicator of safety
4.2.8. Temperature coefficient also affects safety
4.2.9. Explaining how nuclear reactors work through the context of light water reactors
4.2.10. Ultimate heat sinks and reactor siting
4.3. Segmenting SMRs by type
4.3.1. Reactor technology coverage in this report
4.3.2. Reactor designs: dividing by technology parameters
4.3.3. New reactor designs: evolution vs. revolution
4.3.4. Coolant temperature defines efficiency, application fit
4.3.5. Distribution of project types by reactor class
4.3.6. Project stage by reactor class (I)
4.3.7. Project stage by reactor class (II) - frontrunner technologies
4.3.8. Project stage by reactor class (III) - "middle of the pack"
4.3.9. Project stage by reactor class (IV) - speculative technologies
4.3.10. Which technologies are likely to see wide use in a future SMR fleet?
4.3.11. Comparing promising technologies
4.3.12. Conclusions: A wide range of reactor types are competing for use in SMRs
4.4. SMR technology benchmarking
4.4.1. Introduction to Benchmarking
4.4.2. Benchmarking KPIs
4.4.3. Building the benchmark
4.4.4. Comparing benchmarks
4.4.5. Which variables form each benchmark?
4.4.6. Judging overall reactor performance
4.4.7. The issue of unavailable data
4.4.8. Comparing performance between benchmarking metrics
4.4.9. Unweighted benchmarking

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/21 10:26

156.13 円

165.08 円

200.38 円

ページTOPに戻る