世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

電気自動車の熱管理システムの世界市場 - 2023-2030


Global Electric Vehicle Thermal Management Systems Market - 2023-2030

市場概要 世界の電気自動車熱管理システム市場は、2022年に32億米ドルに達し、2023-2030年の予測期間中にCAGR 20.6%で成長し、2030年には144億米ドルに達すると予測されている。 技術の進歩は、電気自動車熱管... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
DataM Intelligence
データMインテリジェンス
2023年8月22日 US$4,350
シングルユーザライセンス
ライセンス・価格情報・注文方法はこちら
181 英語

 

サマリー

市場概要
世界の電気自動車熱管理システム市場は、2022年に32億米ドルに達し、2023-2030年の予測期間中にCAGR 20.6%で成長し、2030年には144億米ドルに達すると予測されている。
技術の進歩は、電気自動車熱管理システム市場の成長と発展を促進する上で重要な役割を果たしている。電気自動車産業が進化を続ける中、熱管理システムの新技術やイノベーションは、性能、効率、安全性の向上に寄与している。熱管理技術の進歩は、電気自動車内の温度のより効果的な制御と調整を可能にする。
乗用車セグメントは市場の2/3以上のシェアを占めており、乗用車セグメントにおける電気自動車とハイブリッド車への需要の増加が、電気自動車熱管理システム市場の主要な促進要因となっている。乗用車用EVはどこでも簡単に入手できるからだ。さらに、複数の政府がEVの利用を促進するプログラムを立ち上げており、これがこの市場の拡大をさらに促進している。
市場ダイナミクス
電気自動車の普及拡大
電気自動車の熱管理システムは、主にEVの人気上昇によって牽引されている。従来の内燃エンジン車から電気自動車に乗り換える顧客や組織が増えるにつれて、効果的な熱管理システムの必要性が高まっている。電気自動車には、バッテリー、パワーエレクトロニクス、車内空調など、多数の部品の温度を制御するための高度な熱管理が必要です。
環境問題、政府の法律、バッテリーや充電インフラの進歩、その他の考慮事項のすべてが、電気自動車の採用に影響を与えている。電気自動車の市場が拡大するにつれ、電気自動車の運転に関連する特有の困難に対処するための強力な熱管理システムの需要が高まっています。
さらに、快適な運転体験のためには、バッテリーの熱管理に加えて、効果的な車内空調制御が欠かせません。熱管理システムは、暖房、換気、空調(HVAC)機能を提供することで、ドライバーと同乗者が好みの車内温度を維持できるようにします。
EV熱管理システムのバッテリー技術の進歩
電気自動車用熱管理システムの市場は、バッテリー技術の進歩により拡大している。バッテリー技術の進歩により、よりパワフルで効率的な電気自動車が製造できるようになりました。バッテリー技術の進歩により、このような最新のバッテリーの温度を効率的に制御できる最新の熱管理システムが必要とされています。
さらに、高度なバッテリー技術は、電気自動車に使用されるバッテリーの全体的な強靭性と耐久性を向上させ、より長持ちするように作られています。バッテリーの温度を安定させ、容量を維持し、寿命を延ばすためには、適切な熱管理が不可欠です。
さらに、電気自動車の設計において重要な要素はバッテリーの安全性である。熱安定性の向上や熱暴走の危険性の低減といった安全機能は、バッテリー技術に追加された安全要素のひとつである。しかし、安全な作動温度を保証し、あらゆる安全リスクから守るためには、信頼性の高い熱管理システムが依然として必要である。
高い資本コストと研究開発コスト
自動車産業の平均的な車両は、組立ラインで製造される5年前に構想が練られる。車両に必要な機能システムが装備されていることを保証するために、自動車用バッテリーの熱管理システムは、構想段階かその1~2年後に組み込まれなければなりません。さらに、自動車システムの生産開発サイクルは2年近くかそれ以上続く。
さらに、自動車システムには自動車の安全性やセキュリティの側面も多く含まれるため、製品開発の複雑さと期間がさらに長くなります。しかし、家電製品の製品開発サイクルは1年未満であり、これらのバッテリー熱管理技術もよく似ているため、両事業の間にはミスマッチがある。
加えて、彼らは自動車にも同じ特性を求めており、自動車OEMがそれを実現するのは非常に困難だと考えている。毎年、より多くの最先端技術システムが市場に投入されるため、これらのOEMは常に障害に直面している。
COVID-19の影響分析
COVID-19は、特に製造業にパンデミックをもたらした。旅行や輸送に規制が設けられたことで、市場は打撃を受けた。サプライ・チェーンの物流、貯蔵、倉庫の部分がさらに変化した。世界中のいくつかの企業で製造活動が停止された結果、硫酸の需要が大幅に減少した。
電気自動車の熱管理システムは、COVID-19が必需品を製造する工場を除くすべての工場の閉鎖を広範に決定した結果、需要が大幅に減少した。政府はCOVID-19の蔓延を食い止めるため、必需品以外の生産と販売の停止、国際商取引の制限など、さまざまな厳しい措置を実施している。
セグメント分析
世界の電気自動車熱管理システム市場は、システム、部品、技術、推進力、バッテリー容量、バッテリー、車両、地域によって区分される。
バッテリー価格下落によるバッテリー電気自動車(BEV)の需要増加
バッテリー電気自動車(BEV)セグメントは、世界の電気自動車サーマルマネジメントシステム市場で25.9%以上のシェアを占めている。2016年に最も人気があり成功を収めたBEV車は、日産リーフとテスラモデルSであった。バッテリー価格の下落、環境に対する顧客の関心の高まり、充電時間の短縮により、BEVカテゴリーは予測期間を通じて上昇を続けると予想される。
電気自動車は、超急速充電器の開発により、理論的には1時間以内にフル充電できる可能性がある。HEV、FCV、PHEVに加えて、ゼロ・エミッション車(BEV)は、政府のインセンティブや支援が利用できるため、電気自動車クラスで最大の市場シェアを占めると予想される。例えば、中国のような国では、排出ガスを出さないBEVは、PHEVやHEVよりも多くの補助金を受けている。
地理的分析
インフラ施設の迅速な開発が進む北米
北米の成長国では、市場参加者が多く、インフラ設備が迅速に整備されるため、予測期間中、世界全体で35.4%以上増加すると予測される。また、発展途上国や低開発国における一人当たり所得の増加や、化学分野のインフラへの民間および政府投資が、北米市場の成長率を押し上げると予想される。
市場拡大に影響を与えるもう一つの重要な要因は、効率性の向上やバッテリー寿命の延長といったこれらの商品の利点と、この業界における著名メーカーの存在感の拡大である。北米における電気自動車用熱管理システム市場の拡大は、政府の支援やインセンティブによって大きく後押しされている。
例えば、米国連邦政府は、対象となる電気自動車の購入に対して最大7,500米ドルの税額控除を提供している。さらに、いくつかの州では、補助金、還付金、消費税や登録費用の免除といったさらなる優遇措置を提供している。こうした優遇措置により、人々はよりクリーンで環境に優しい交通手段を選択するようになり、同時に電気自動車の初期コストも引き下げられる。
競争状況
世界の主要企業には、BorgWarner Inc.、Mahle GmbH、Valeo SA、Hanon Systems、Denso Corporation、Gentherm Incorporated、LG Electronics Inc.、Continental AG、Dana Incorporated、Modine Manufacturing Companyなどが含まれる。
レポートを購入する理由
- システム、コンポーネント、技術、推進力、バッテリー容量、バッテリー、車両、地域に基づく世界の電気自動車熱管理システム市場のセグメンテーションを可視化し、主要な商業資産とプレーヤーを理解するため。
- トレンドと共同開発を分析することで、商機を特定します。
- 電気自動車の熱管理システム市場レベルの全セグメントを網羅した多数のデータを収録したExcelデータシート。
- PDFレポートは、徹底的な定性的インタビューと綿密な調査後の包括的な分析で構成されています。
- 主要企業の主要製品からなる製品マッピングをエクセルで提供。
世界の電気自動車サーマルマネジメントシステム市場レポートは、約94の表、100の図、181ページを提供します。
対象読者
- メーカー/バイヤー
- 業界投資家/投資銀行家
- 調査専門家
- 新興企業

ページTOPに戻る


目次

1. Methodology and Scope
1.1. Research Methodology
1.2. Research Objective and Scope of the Report
2. Definition and Overview
3. Executive Summary
3.1. Snippet by System
3.2. Snippet by Components
3.3. Snippet by Technology
3.4. Snippet by Propulsion
3.5. Snippet by Battery Capacity
3.6. Snippet by Battery
3.7. Snippet by Vehicle
3.8. Snippet by Region
4. Dynamics
4.1. Impacting Factors
4.1.1. Drivers
4.1.1.1. Increasing Demand for Electric and Alternative Fuel Vehicles
4.1.1.2. New Lithium-Ion Batteries Feature Innovative Technology
4.1.1.3. Increasing Electric Vehicle Adoption
4.1.1.4. Advancements In Battery Technology Of EV Thermal Management Systems
4.1.2. Restraints
4.1.2.1. Difficulty in Maintaining Thermal Efficiency
4.1.2.2. High Capital and Research and Development Costs
4.1.3. Opportunity
4.1.4. Impact Analysis
5. Industry Analysis
5.1. Porter's Five Force Analysis
5.2. Supply Chain Analysis
5.3. Pricing Analysis
5.4. Regulatory Analysis
6. COVID-19 Analysis
6.1. Analysis of COVID-19
6.1.1. Scenario Before COVID
6.1.2. Scenario During COVID
6.1.3. Scenario Post COVID
6.2. Pricing Dynamics Amid COVID-19
6.3. Demand-Supply Spectrum
6.4. Government Initiatives Related to the Market During Pandemic
6.5. Manufacturers Strategic Initiatives
6.6. Conclusion
7. By System
7.1. Introduction
7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
7.1.2. Market Attractiveness Index, By System
7.2. Heating*
7.2.1. Introduction
7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
7.3. Ventilation
7.4. Air Conditioning (HVAC)
7.5. Powertrain Cooling
7.6. Fluid Transport
7.7. Others
8. By Components
8.1. Introduction
8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
8.1.2. Market Attractiveness Index, By Components
8.2. Battery*
8.2.1. Introduction
8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
8.3. Power Generation
8.4. Cabin
8.5. Motor
9. By Technology
9.1. Introduction
9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
9.1.2. Market Attractiveness Index, By Technology
9.2. Active*
9.2.1. Introduction
9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
9.3. Passive
10. By Propulsion
10.1. Introduction
10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
10.1.2. Market Attractiveness Index, By Propulsion
10.2. Battery Electric Vehicle (BEV) *
10.2.1. Introduction
10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
10.3. Hybrid Electric Vehicle (HEV)
10.4. Plug-in Hybrid Electric Vehicle (PHEV)
10.5. Fuel Cell Electric Vehicle (FCEV)
11. By Battery Capacity
11.1. Introduction
11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
11.1.2. Market Attractiveness Index, By Battery Capacity
11.2. Below 30 kWh*
11.2.1. Introduction
11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
11.3. 30 – 60 kWh
11.4. 60 – 100 kWh
11.5. Above 100 kWh
12. By Battery
12.1. Introduction
12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
12.1.2. Market Attractiveness Index, By Battery
12.2. Conventional*
12.2.1. Introduction
12.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
12.3. Solid- State
13. By Vehicle
13.1. Introduction
13.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
13.1.2. Market Attractiveness Index, By Vehicle
13.2. Passenger Vehicles *
13.2.1. Introduction
13.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
13.3. Commercial Vehicles
14. By Region
14.1. Introduction
14.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
14.1.2. Market Attractiveness Index, By Region
14.2. North America
14.2.1. Introduction
14.2.2. Key Region-Specific Dynamics
14.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
14.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
14.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
14.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
14.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
14.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
14.2.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
14.2.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
14.2.10.1. U.S.
14.2.10.2. Canada
14.2.10.3. Mexico
14.3. Europe
14.3.1. Introduction
14.3.2. Key Region-Specific Dynamics
14.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
14.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
14.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
14.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
14.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
14.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
14.3.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
14.3.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
14.3.10.1. Germany
14.3.10.2. UK
14.3.10.3. France
14.3.10.4. Italy
14.3.10.5. Russia
14.3.10.6. Rest of Europe
14.4. South America
14.4.1. Introduction
14.4.2. Key Region-Specific Dynamics
14.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
14.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
14.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
14.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
14.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
14.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
14.4.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
14.4.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
14.4.10.1. Brazil
14.4.10.2. Argentina
14.4.10.3. Rest of South America
14.5. Asia-Pacific
14.5.1. Introduction
14.5.2. Key Region-Specific Dynamics
14.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
14.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
14.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
14.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
14.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
14.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
14.5.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
14.5.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
14.5.10.1. China
14.5.10.2. India
14.5.10.3. Japan
14.5.10.4. Australia
14.5.10.5. Rest of Asia-Pacific
14.6. Middle East and Africa
14.6.1. Introduction
14.6.2. Key Region-Specific Dynamics
14.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
14.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
14.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
14.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
14.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
14.6.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
14.6.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
15. Competitive Landscape
15.1. Competitive Scenario
15.2. Market Positioning/Share Analysis
15.3. Mergers and Acquisitions Analysis
16. Company Profiles
16.1. BorgWarner Inc.*
16.1.1. Company Overview
16.1.2. Product Portfolio and Description
16.1.3. Financial Overview
16.1.4. Key Developments
16.2. Mahle GmbH
16.3. Valeo SA
16.4. Hanon Systems
16.5. Denso Corporation
16.6. Gentherm Incorporated
16.7. LG Electronics Inc.
16.8. Continental AG
16.9. Dana Incorporated
16.10. Modine Manufacturing Company
LIST NOT EXHAUSTIVE
17.Appendix
17.1 About Us and Services
17.2 Contact Us

 

ページTOPに戻る


 

Summary

Market Overview
Global Electric Vehicle Thermal Management Systems Market reached US$ 3.2 billion in 2022 and is expected to reach US$ 14.4 billion by 2030, growing with a CAGR of 20.6% during the forecast period 2023-2030.
Technological advancements play a significant role in driving the growth and development of the electric vehicle thermal management systems market. As the electric vehicle industry continues to evolve, new technologies and innovations in thermal management systems contribute to improved performance, efficiency and safety. Advancements in thermal management technologies enable more effective control and regulation of temperature within electric vehicles.
The passenger vehicles segment holds more than 2/3rd share in the market and the increasing demand for electric and hybrid vehicles in the passenger vehicle segment is a major driver for the electric vehicle thermal management systems market. Because passenger EVs are readily available everywhere. Additionally, several governments are launching programs to promote the use of EVs, which is further promoting the expansion of this market.
Market Dynamics
Increasing Electric Vehicle Adoption
Electric vehicle thermal management systems are primarily driven by the rising popularity of EVs. The need for effective thermal management systems grows as more customers and organizations switch from conventional internal combustion engine vehicles to electric vehicles. Electric cars need sophisticated thermal management to control the temperature of numerous parts, including the battery, power electronics and cabin climate control.
Environmental concerns, governmental laws, advances in the battery and charging infrastructure, as well as other considerations, have all influenced the adoption of electric cars. As the market for electric vehicles grows, there is an increasing demand for powerful thermal management systems to handle the particular difficulties associated with operating an electric vehicle.
Additionally, Effective cabin climate control, in addition to battery thermal management, is crucial for a comfortable driving experience. By offering heating, ventilation and air conditioning (HVAC) capabilities, thermal management systems enable drivers and passengers to maintain preferred cabin temperatures.
Advancements In Battery Technology of EV Thermal Management Systems
The market for electric vehicle thermal management systems is expanding as a result of advancements in battery technology. Electric cars may now be made that are more powerful and efficient thanks to advancements in battery technology. Modern thermal management systems that can efficiently control the temperature of these modern batteries are needed as a result of the advancement of battery technology.
Furthermore, advanced battery technologies are made to last longer, improving the overall toughness and endurance of the batteries used in electric vehicles. In order to keep the battery's temperature stable, which helps maintain its capacity and lengthen its operating life, proper thermal management is essential.
Additionally, the significant factor in the design of electric vehicles is battery safety. Safety features like improved thermal stability and a lower danger of thermal runaway are among the safety elements that have been added to battery technology. However, to guarantee safe operating temperatures and guard against any safety risks, reliable thermal management systems are still required.
High Capital and Research and Development Costs
The average vehicle in the automobile industry is conceptualized five years before it is built on an assembly line. To guarantee that the vehicle is outfitted with the necessary functionality systems, the automotive battery thermal management system must be included either during the conception phase or 1-2 years afterward. Furthermore, the automobile system's production development cycle lasts for close to or longer than two years.
In the addition of many safety and security aspects of the vehicle are included in automotive systems, which adds to the complexity and length of time required for product development. However, because consumer electronics have a product development cycle of less than a year and these battery thermal management technologies are quite similar, there is a mismatch between the two businesses.
Additionally, they want the same characteristics in a car, which an automobile OEM finds extremely challenging to deliver. As more cutting-edge technical systems are released onto the market each year, these OEMs are constantly faced with obstacles.
COVID-19 Impact Analysis
A pandemic was brought on by COVID-19, especially for the manufacturing sector. The market was harmed by all of the restrictions placed on travel and transportation. further alterations to the logistics, storage and warehousing portions of the supply chain. The demand for sulfuric acid has significantly decreased as a result of the suspension of manufacturing activities in several businesses throughout the world
Electric vehicle thermal management systems saw a large decline in demand as a result of COVID-19's widespread decision to close all factories save from those that manufacture necessities. The government has implemented a variety of stringent measures, such as stopping the production and sale of non-essential goods and restricting international commerce, to stop the spread of COVID-19.
Segment Analysis
The global electric vehicle thermal management systems market is segmented based on system, components, technology, propulsion, battery capacity, battery, vehicle and region.
Rising Demand for Battery Electric Vehicles (BEVs) Because of falling Battery Prices
The Battery Electric Vehicles (BEVs) segment holds more than 25.9% share of the global electric vehicle thermal management systems market. The most popular and successful BEV vehicles in 2016 were the Nissan Leaf and Tesla Model S. Because of falling battery prices, rising customer concern for the environment and slashed charge times, the BEV category is expected to continue to rise throughout the projection period.
Electric vehicles may theoretically be fully charged in under an hour thanks to the development of ultra-rapid chargers. In addition to HEVs, FCVs and PHEVs, zero-emission vehicles, or BEVs, are expected to have the biggest market share in the electric vehicle class due to the availability of government incentives and assistance. For instance, in nations like China, BEVs, which emit no emissions, receive more subsidies than PHEVs and HEVs.
Geographical Analysis
North America Growing Quick Development of Infrastructure Facilities
The availability of significant market participants and the quick development of infrastructure facilities in growing economies in North America is predicted to increase throughout the projected period covering more than 35.4% gloally. In addition, rising per-capita income and private and governmental investment in the infrastructure of the chemicals sector in developing and underdeveloped nations are anticipated to drive the market's growth rate in North America.
Another crucial factor influencing market expansion is the advantages of these goods, such as increased efficiency and extended battery life, as well as the expanding presence of prominent manufacturers in this industry. The expansion of the market for Electric Vehicle Thermal Management Systems in North America has been significantly fueled by government assistance and incentives.
For instance, the federal government of U.S. provides tax credits of up to US$ 7,500 for the purchase of eligible electric cars. In addition, several states offer further incentives like grants, refunds and exemptions from sales tax or registration costs. These incentives encourage people to choose cleaner, more environmentally friendly modes of transportation while also lowering the initial cost of electric automobiles.
Competitive Landscape
The major global players include BorgWarner Inc., Mahle GmbH, Valeo SA, Hanon Systems, Denso Corporation, Gentherm Incorporated, LG Electronics Inc., Continental AG, Dana Incorporated and Modine Manufacturing Company.
Why Purchase the Report?
• To visualize the global electric vehicle thermal management systems market segmentation based on system, components, technology, propulsion, battery capacity, battery, vehicle and region, as well as understand key commercial assets and players.
• Identify commercial opportunities by analyzing trends and co-development.
• Excel data sheet with numerous data points of electric vehicle thermal management systems market-level with all segments.
• PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
• Product mapping available as excel consisting of key products of all the major players.
The global electric vehicle thermal management systems market report would provide approximately 94 tables, 100 figures and 181 pages.
Target Audience 2023
• Manufacturers/ Buyers
• Industry Investors/Investment Bankers
• Research Professionals
• Emerging Companies



ページTOPに戻る


Table of Contents

1. Methodology and Scope
1.1. Research Methodology
1.2. Research Objective and Scope of the Report
2. Definition and Overview
3. Executive Summary
3.1. Snippet by System
3.2. Snippet by Components
3.3. Snippet by Technology
3.4. Snippet by Propulsion
3.5. Snippet by Battery Capacity
3.6. Snippet by Battery
3.7. Snippet by Vehicle
3.8. Snippet by Region
4. Dynamics
4.1. Impacting Factors
4.1.1. Drivers
4.1.1.1. Increasing Demand for Electric and Alternative Fuel Vehicles
4.1.1.2. New Lithium-Ion Batteries Feature Innovative Technology
4.1.1.3. Increasing Electric Vehicle Adoption
4.1.1.4. Advancements In Battery Technology Of EV Thermal Management Systems
4.1.2. Restraints
4.1.2.1. Difficulty in Maintaining Thermal Efficiency
4.1.2.2. High Capital and Research and Development Costs
4.1.3. Opportunity
4.1.4. Impact Analysis
5. Industry Analysis
5.1. Porter's Five Force Analysis
5.2. Supply Chain Analysis
5.3. Pricing Analysis
5.4. Regulatory Analysis
6. COVID-19 Analysis
6.1. Analysis of COVID-19
6.1.1. Scenario Before COVID
6.1.2. Scenario During COVID
6.1.3. Scenario Post COVID
6.2. Pricing Dynamics Amid COVID-19
6.3. Demand-Supply Spectrum
6.4. Government Initiatives Related to the Market During Pandemic
6.5. Manufacturers Strategic Initiatives
6.6. Conclusion
7. By System
7.1. Introduction
7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
7.1.2. Market Attractiveness Index, By System
7.2. Heating*
7.2.1. Introduction
7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
7.3. Ventilation
7.4. Air Conditioning (HVAC)
7.5. Powertrain Cooling
7.6. Fluid Transport
7.7. Others
8. By Components
8.1. Introduction
8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
8.1.2. Market Attractiveness Index, By Components
8.2. Battery*
8.2.1. Introduction
8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
8.3. Power Generation
8.4. Cabin
8.5. Motor
9. By Technology
9.1. Introduction
9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
9.1.2. Market Attractiveness Index, By Technology
9.2. Active*
9.2.1. Introduction
9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
9.3. Passive
10. By Propulsion
10.1. Introduction
10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
10.1.2. Market Attractiveness Index, By Propulsion
10.2. Battery Electric Vehicle (BEV) *
10.2.1. Introduction
10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
10.3. Hybrid Electric Vehicle (HEV)
10.4. Plug-in Hybrid Electric Vehicle (PHEV)
10.5. Fuel Cell Electric Vehicle (FCEV)
11. By Battery Capacity
11.1. Introduction
11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
11.1.2. Market Attractiveness Index, By Battery Capacity
11.2. Below 30 kWh*
11.2.1. Introduction
11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
11.3. 30 – 60 kWh
11.4. 60 – 100 kWh
11.5. Above 100 kWh
12. By Battery
12.1. Introduction
12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
12.1.2. Market Attractiveness Index, By Battery
12.2. Conventional*
12.2.1. Introduction
12.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
12.3. Solid- State
13. By Vehicle
13.1. Introduction
13.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
13.1.2. Market Attractiveness Index, By Vehicle
13.2. Passenger Vehicles *
13.2.1. Introduction
13.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
13.3. Commercial Vehicles
14. By Region
14.1. Introduction
14.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
14.1.2. Market Attractiveness Index, By Region
14.2. North America
14.2.1. Introduction
14.2.2. Key Region-Specific Dynamics
14.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
14.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
14.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
14.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
14.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
14.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
14.2.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
14.2.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
14.2.10.1. U.S.
14.2.10.2. Canada
14.2.10.3. Mexico
14.3. Europe
14.3.1. Introduction
14.3.2. Key Region-Specific Dynamics
14.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
14.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
14.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
14.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
14.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
14.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
14.3.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
14.3.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
14.3.10.1. Germany
14.3.10.2. UK
14.3.10.3. France
14.3.10.4. Italy
14.3.10.5. Russia
14.3.10.6. Rest of Europe
14.4. South America
14.4.1. Introduction
14.4.2. Key Region-Specific Dynamics
14.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
14.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
14.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
14.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
14.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
14.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
14.4.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
14.4.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
14.4.10.1. Brazil
14.4.10.2. Argentina
14.4.10.3. Rest of South America
14.5. Asia-Pacific
14.5.1. Introduction
14.5.2. Key Region-Specific Dynamics
14.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
14.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
14.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
14.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
14.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
14.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
14.5.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
14.5.10. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
14.5.10.1. China
14.5.10.2. India
14.5.10.3. Japan
14.5.10.4. Australia
14.5.10.5. Rest of Asia-Pacific
14.6. Middle East and Africa
14.6.1. Introduction
14.6.2. Key Region-Specific Dynamics
14.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System
14.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
14.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
14.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
14.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
14.6.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery
14.6.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
15. Competitive Landscape
15.1. Competitive Scenario
15.2. Market Positioning/Share Analysis
15.3. Mergers and Acquisitions Analysis
16. Company Profiles
16.1. BorgWarner Inc.*
16.1.1. Company Overview
16.1.2. Product Portfolio and Description
16.1.3. Financial Overview
16.1.4. Key Developments
16.2. Mahle GmbH
16.3. Valeo SA
16.4. Hanon Systems
16.5. Denso Corporation
16.6. Gentherm Incorporated
16.7. LG Electronics Inc.
16.8. Continental AG
16.9. Dana Incorporated
16.10. Modine Manufacturing Company
LIST NOT EXHAUSTIVE
17.Appendix
17.1 About Us and Services
17.2 Contact Us

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野の最新刊レポート

  • 本レポートと同分野の最新刊レポートはありません。

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


DataM Intelligence社はどのような調査会社ですか?


DataM Intelligenceは世界および主要地域の広範な市場に関する調査レポートを出版しています。 もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/10/04 10:27

147.72 円

163.39 円

196.69 円

ページTOPに戻る