世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

フォトニックデザインオートメーションの市場規模と予測(2020年~2030年)、世界と地域シェア、動向、成長機会分析レポートカバレッジ:コンポーネント別(ソリューションとサービス)、展開別(オンプレミスとクラウド)、組織規模別(中小企業と大企業)、用途別(学術研究と産業研究&製造)


Photonic Design Automation Market Size and Forecasts (2020 - 2030), Global and Regional Share, Trends, and Growth Opportunity Analysis Report Coverage: By Component (Solution and Service), Deployment (On-Premise and Cloud), Organization Size (SMEs and Large Enterprises), and Application (Academic Research and Industrial Research & Manufacturing)

フォトニックデザインオートメーション市場規模は、2022年に13.9億米ドルと評価され、2030年には39.0億米ドルに達すると予測されている。 フォトニクス設計自動化(EDA)ツールへのフォトニクスの統合は、フォ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
The Insight Partners
ザ・インサイトパートナーズ
2023年12月22日 US$5,190
シングルユーザライセンス
ライセンス・価格情報
注文方法はこちら
162 英語

日本語のページは自動翻訳を利用し作成しています。
実際のレポートは英文のみでご納品いたします。


 

サマリー

フォトニックデザインオートメーション市場規模は、2022年に13.9億米ドルと評価され、2030年には39.0億米ドルに達すると予測されている。

フォトニクス設計自動化(EDA)ツールへのフォトニクスの統合は、フォトニクス設計自動化市場の重要なトレンドである。既存のEDAベンダーは、新興のフォトニクス設計自動化市場の可能性を認識し、既存のツールにフォトニクスに特化した機能や性能を組み込んでいる。この統合により、設計者はフォトニクスコンポーネントをシームレスに設計に取り入れることができ、設計プロセスを効率化し、フォトニクスデバイスの性能と機能を最適化することができます。フォトニクスをEDAツールに統合することで、設計者は使い慣れた設計環境とワークフローを活用することができ、専用のフォトニクス設計ツールに伴う学習曲線が短縮されます。また、フォトニクスをEDAツールに統合することで、エレクトロニクスとフォトニクスの融合が促進され、エレクトロニクスとフォトニクスの融合回路の開発が可能になります。この融合は、シリコンフォトニクスなどの技術の進歩にとって極めて重要であり、フォトニクスとIC設計の間でツール、プロセス、シミュレーションモデルを共有することで、フォトニクス設計自動化市場の発展が加速される。全体として、EDAツールへのフォトニクスの統合は、フォトニクスの重要性の高まりと、フォトニクス分野における効率的な設計プロセスと最適化技術の必要性に対する業界の認識を反映している。これにより、設計者はフォトニクスの潜在能力を活用し、エレクトロニクス設計にシームレスに組み込むことができる。

コンパクトなモデリングおよびシミュレーションツールの進歩は、フォトニクス設計自動化市場に大きな影響を与えると予想される。これらのツールは、エレクトロニクスとフォトニクスの融合において重要な役割を果たし、より迅速で効率的な設計プロセスを可能にする。コンパクトモデリングとは、複雑なフォトニクスデバイスの挙動を正確に示す簡略化された数学モデルの開発を指す。これらのモデルにより、設計者は高価で時間のかかるデバイスレベルのシミュレーションを行うことなく、フォトニックコンポーネントのシミュレーションと性能解析を行うことができます。コンパクトなモデリングを設計自動化ツールに組み込むことで、設計者は設計プロセスを合理化し、統合された電子-光回路の性能を最適化することができます。これらのツールは、電子-光協調設計から完全集積回路の開発への移行を容易にし、設計者が高性能と高効率を達成することを可能にします。このような利点は、より高度なアプリケーションを可能にし、フォトニックデザインオートメーション市場の成長を促進する。

コンパクトなモデリングツールとシミュレーションツールをフォトニック設計自動化のワークフローに統合することで、設計者はさまざまな設計オプションを検討し、さまざまなパラメータの影響を評価し、情報に基づいた意思決定を行うことができる。これにより、設計の繰り返しが迅速化され、市場投入までの時間が短縮され、全体的な設計品質が向上する。フォトニクス設計自動化市場のプレーヤーが提供するコンパクトなモデリングおよびシミュレーションツールの重要性は、産業界と学界の両方によって認識されている。既存の電子設計自動化ベンダーは、自社の既存ツールにフォトニクスに特化した機能や性能を組み込んでおり、設計者はフォトニクスコンポーネントをシームレスに設計に組み込むことができます。

フォトニクス設計自動化市場のソリューション分野には、フォトニクス集積回路(PIC)やその他のフォトニクスデバイスの設計、シミュレーション、検証を容易にするさまざまなソフトウェアやツールが含まれる。これらのソリューションは、フォトニクス業界特有の課題やニーズに対応するために構築されています。フォトニック・デザイン・オートメーション(PDA)ツールは、シミュレーション、モデリング、解析のための高度な機能を設計者に提供することで、フォトニック・デバイスの開発と機能強化を促進するのに役立ちます。これらのツールにより、設計者は複雑なフォトニック回路の効率的な作成と検証、性能の最適化、効率的な製造プロセスの確保が可能になります。設計者がフォトニック回路を作成、レイアウトできるソフトウェアツールには、導波路、変調器、検出器、フィルタなどのコンポーネントがあります。これらのツールは、設計プロセスを合理化するために、ユーザーフレンドリーなインターフェースと高度な設計機能を提供することが多い。フォトニクス設計自動化市場の成長は、通信、データセンター、ヘルスケア、センシング、イメージングなど、さまざまな用途でフォトニクスデバイスの需要が高まっていることが背景にある。フォトニクス産業が進化と拡大を続ける中、効率的で信頼性の高い設計ツールの必要性がますます高まっている。

フォトニクス設計自動化市場の学術研究分野とは、フォトニクス設計や関連サービスに関連した研究開発活動を行う大学、研究機関、学術専門家の関与を指す。このセグメントは、フォトニクス分野を発展させ、設計手法、アルゴリズム、ツールの技術革新を推進する上で重要な役割を果たしている。学術機関や研究機関は、新しいコンセプトやアルゴリズム、技術を探求するために研究開発活動に積極的に取り組んでいる。そのため、フォトニクス設計自動化市場のプレーヤーが提供するさまざまなソリューションを利用している。このようなソリューションを活用することで、フォトニックコンポーネント、システム、集積回路の設計における課題や限界に対処する革新的なソリューションの開発に注力している。この研究は、この分野の発展に貢献し、業界の実務者に貴重な洞察を提供します。学術研究者はしばしば、知識を共有し、アイデアを交換し、共同研究プロジェクトで協力するために、産業界の専門家、他の学術機関、研究コンソーシアムと協力しています。このような共同研究は、学際的なアプローチを促進し、フォトニックデザインオートメーションにおける多様な視点の統合を可能にします。学術研究分野は、フォトニクス業界におけるコラボレーションと知識の共有を促進する上で重要な役割を果たしている。例えば、テキサス大学デザインオートメーション研究所(UTDA)は、オプティクス/フォトニクス、エレクトロニクス、フォトニクスデザインオートメーション市場の新興技術向けのデザインオートメーションアルゴリズム、方法論、ツールの研究開発に注力している。

産業研究および製造企業は、フォトニクス業界に特化した設計自動化ツールを開発し、活用しています。これらのツールにより、設計者はレイアウト生成、シミュレーション、検証、最適化など、設計プロセスのさまざまな段階を自動化できる。これらのツールを活用することで、企業は設計サイクルを加速し、設計品質を向上させ、フォトニクス製品の市場投入までの時間を短縮することができる。産業研究・製造部門では、フォトニックデバイスの製造プロセスの最適化に注力しています。これには、高度な製造技術、プロセス制御手法、歩留まり向上戦略の開発が含まれる。製造効率や歩留まりを改善することで、企業は高品質なフォトニックコンポーネントやシステムをコスト効率よく製造することができる。フォトニックデザインオートメーション市場のプレーヤーは、しばしばフォトニックメーカーと協業し、製品の強化や販売促進を行っている。例えば、2022年3月、Cadence Design Systemsは、ハイパースケールコンピューティング、5G通信、航空宇宙システムなどのシリコンフォトニクスIC開発を加速するためにGlobalFoundriesと協業した。このようなコラボレーションは、このような製品に関する認知度を大いに高め、フォトニックデザインオートメーション市場の成長も促進する。

世界のフォトニックデザインオートメーション市場は、コンポーネント、展開、組織規模、用途に基づいて区分される。コンポーネントに基づいて、フォトニックデザインオートメーション市場はソリューションとサービスに分けられる。展開では、フォトニックデザインオートメーション市場はオンプレミスとクラウドに二分される。組織規模別では、フォトニックデザインオートメーション市場は中小企業と大企業に二分される。用途別では、フォトニックデザインオートメーション市場は学術研究と産業研究&製造に分けられる。地域別では、フォトニックデザインオートメーション市場は北米、欧州、アジア太平洋(APAC)、その他の地域(RoW)に区分される。AIM Photonics Inc社、Ansys Inc社、Cadence Design Systems Inc社、LioniX International BV社、Luceda Photonics社、Optiwave Systems Inc社、Siemens AG社、Synopsys Inc社、SystemLab Inc社、VPlphotonics GmbH社がフォトニックデザインオートメーション市場の著名なプレイヤーである。

ページTOPに戻る


目次

TABLE OF CONTENTS

1. Introduction
1.1 The Insight Partners Research Report Guidance
1.2 Market Segmentation
2. Executive Summary
2.1 Key Insights
2.2 Market Attractiveness
3. Research Methodology
3.1 Coverage
3.2 Secondary Research
3.3 Primary Research
4. Photonic Design Automation Market Landscape
4.1 Overview
4.2 PEST Analysis
4.3 Ecosystem Analysis
4.3.1 List of Vendors in the Value Chain:
5. Photonic Design Automation Market - Key Market Dynamics
5.1 Photonic Design Automation Market - Key Market Dynamics
5.2 Market Drivers
5.2.1 Growing Demand for Automation
5.2.2 Increasing Need for Efficiency and Accuracy
5.3 Market Restraints
5.3.1 Lack of Awareness Regarding Benefits and Capabilities of Photonic Design Automation
5.4 Market Opportunities
5.4.1 Advancements in Photonic Devices
5.4.2 Emphasis on High Performance and Environmentally Sustainable Solutions
5.5 Future Trends
5.5.1 Integration of Photonics in Electronic Design Automation (EDA) Tools
5.5.2 Advancements in Compact Modelling and Simulation Tools
5.6 Impact of Drivers and Restraints:
6. Photonic Design Automation Market - Global Market Analysis
6.1 Photonic Design Automation Market Revenue (US$ Million), 2022 – 2030
6.2 Photonic Design Automation Market Forecast and Analysis
7. Photonic Design Automation Market Analysis - Component
7.1 Solution
7.1.1 Overview
7.1.2 Solution Market, Revenue and Forecast to 2030 (US$ Million)
7.2 Service
7.2.1 Overview
7.2.2 Service Market, Revenue and Forecast to 2030 (US$ Million)
8. Photonic Design Automation Market Analysis - Deployment
8.1 On-Premise
8.1.1 Overview
8.1.2 On-Premise Market, Revenue and Forecast to 2030 (US$ Million)
8.2 Cloud
8.2.1 Overview
8.2.2 Cloud Market, Revenue and Forecast to 2030 (US$ Million)
9. Photonic Design Automation Market Analysis - Organization Size
9.1 SMEs
9.1.1 Overview
9.1.2 SMEs Market, Revenue and Forecast to 2030 (US$ Million)
9.2 Large Enterprises
9.2.1 Overview
9.2.2 Large Enterprises Market, Revenue and Forecast to 2030 (US$ Million)
10. Photonic Design Automation Market Analysis - Application
10.1 Academic Research
10.1.1 Overview
10.1.2 Academic Research Market, Revenue and Forecast to 2030 (US$ Million)
10.2 Industrial Research & Manufacturing
10.2.1 Overview
10.2.2 Industrial Research & Manufacturing Market, Revenue and Forecast to 2030 (US$ Million)
11. Photonic Design Automation Market - Geographical Analysis
11.1 Overview
11.2 North America
11.2.1 North America Photonic Design Automation Market Overview
11.2.2 North America Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.2.3 North America Photonic Design Automation Market Breakdown by Component
11.2.3.1 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Component
11.2.4 North America Photonic Design Automation Market Breakdown by Deployment
11.2.4.1 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Deployment
11.2.5 North America Photonic Design Automation Market Breakdown by Organization Size
11.2.5.1 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Organization Size
11.2.6 North America Photonic Design Automation Market Breakdown by Application
11.2.6.1 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Application
11.2.7 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.2.7.1 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.2.7.2 US Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.2.7.2.1 US Photonic Design Automation Market Breakdown, by Component
11.2.7.2.2 US Photonic Design Automation Market Breakdown, by Deployment
11.2.7.2.3 US Photonic Design Automation Market Breakdown, by Organization Size
11.2.7.2.4 US Photonic Design Automation Market Breakdown, by Application
11.2.7.3 Canada Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.2.7.3.1 Canada Photonic Design Automation Market Breakdown, by Component
11.2.7.3.2 Canada Photonic Design Automation Market Breakdown, by Deployment
11.2.7.3.3 Canada Photonic Design Automation Market Breakdown, by Organization Size
11.2.7.3.4 Canada Photonic Design Automation Market Breakdown, by Application
11.3 Europe
11.3.1 Europe Photonic Design Automation Market Overview
11.3.2 Europe Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.3 Europe Photonic Design Automation Market Breakdown by Component
11.3.3.1 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Component
11.3.4 Europe Photonic Design Automation Market Breakdown by Deployment
11.3.4.1 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Deployment
11.3.5 Europe Photonic Design Automation Market Breakdown by Organization Size
11.3.5.1 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Organization Size
11.3.6 Europe Photonic Design Automation Market Breakdown by Application
11.3.6.1 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Application
11.3.7 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.3.7.1 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.3.7.2 Germany Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.2.1 Germany Photonic Design Automation Market Breakdown, by Component
11.3.7.2.2 Germany Photonic Design Automation Market Breakdown, by Deployment
11.3.7.2.3 Germany Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.2.4 Germany Photonic Design Automation Market Breakdown, by Application
11.3.7.3 France Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.3.1 France Photonic Design Automation Market Breakdown, by Component
11.3.7.3.2 France Photonic Design Automation Market Breakdown, by Deployment
11.3.7.3.3 France Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.3.4 France Photonic Design Automation Market Breakdown, by Application
11.3.7.4 UK Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.4.1 UK Photonic Design Automation Market Breakdown, by Component
11.3.7.4.2 UK Photonic Design Automation Market Breakdown, by Deployment
11.3.7.4.3 UK Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.4.4 UK Photonic Design Automation Market Breakdown, by Application
11.3.7.5 Russia Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.5.1 Russia Photonic Design Automation Market Breakdown, by Component
11.3.7.5.2 Russia Photonic Design Automation Market Breakdown, by Deployment
11.3.7.5.3 Russia Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.5.4 Russia Photonic Design Automation Market Breakdown, by Application
11.3.7.6 Switzerland Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.6.1 Switzerland Photonic Design Automation Market Breakdown, by Component
11.3.7.6.2 Switzerland Photonic Design Automation Market Breakdown, by Deployment
11.3.7.6.3 Switzerland Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.6.4 Switzerland Photonic Design Automation Market Breakdown, by Application
11.3.7.7 Rest of Europe Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.7.1 Rest of Europe Photonic Design Automation Market Breakdown, by Component
11.3.7.7.2 Rest of Europe Photonic Design Automation Market Breakdown, by Deployment
11.3.7.7.3 Rest of Europe Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.7.4 Rest of Europe Photonic Design Automation Market Breakdown, by Application
11.4 APAC
11.4.1 APAC Photonic Design Automation Market Overview
11.4.2 APAC Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.3 APAC Photonic Design Automation Market Breakdown by Component
11.4.3.1 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Component
11.4.4 APAC Photonic Design Automation Market Breakdown by Deployment
11.4.4.1 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Deployment
11.4.5 APAC Photonic Design Automation Market Breakdown by Organization Size
11.4.5.1 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Organization Size
11.4.6 APAC Photonic Design Automation Market Breakdown by Application
11.4.6.1 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Application
11.4.7 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.4.7.1 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.4.7.2 China Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.7.2.1 China Photonic Design Automation Market Breakdown, by Component
11.4.7.2.2 China Photonic Design Automation Market Breakdown, by Deployment
11.4.7.2.3 China Photonic Design Automation Market Breakdown, by Organization Size
11.4.7.2.4 China Photonic Design Automation Market Breakdown, by Application
11.4.7.3 Japan Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.7.3.1 Japan Photonic Design Automation Market Breakdown, by Component
11.4.7.3.2 Japan Photonic Design Automation Market Breakdown, by Deployment
11.4.7.3.3 Japan Photonic Design Automation Market Breakdown, by Organization Size
11.4.7.3.4 Japan Photonic Design Automation Market Breakdown, by Application
11.4.7.4 South Korea Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.7.4.1 South Korea Photonic Design Automation Market Breakdown, by Component
11.4.7.4.2 South Korea Photonic Design Automation Market Breakdown, by Deployment
11.4.7.4.3 South Korea Photonic Design Automation Market Breakdown, by Organization Size
11.4.7.4.4 South Korea Photonic Design Automation Market Breakdown, by Application
11.4.7.5 Taiwan Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.7.5.1 Taiwan Photonic Design Automation Market Breakdown, by Component
11.4.7.5.2 Taiwan Photonic Design Automation Market Breakdown, by Deployment
11.4.7.5.3 Taiwan Photonic Design Automation Market Breakdown, by Organization Size
11.4.7.5.4 Taiwan Photonic Design Automation Market Breakdown, by Application
11.4.7.6 Rest of APAC Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.7.6.1 Rest of APAC Photonic Design Automation Market Breakdown, by Component
11.4.7.6.2 Rest of APAC Photonic Design Automation Market Breakdown, by Deployment
11.4.7.6.3 Rest of APAC Photonic Design Automation Market Breakdown, by Organization Size
11.4.7.6.4 Rest of APAC Photonic Design Automation Market Breakdown, by Application
11.5 Rest of the World (RoW)
11.5.1 RoW Photonic Design Automation Market Overview
11.5.2 RoW Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.5.3 RoW Photonic Design Automation Market Breakdown by Component
11.5.3.1 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Component
11.5.4 RoW Photonic Design Automation Market Breakdown by Deployment
11.5.4.1 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Deployment
11.5.5 RoW Photonic Design Automation Market Breakdown by Organization Size
11.5.5.1 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Organization Size
11.5.6 RoW Photonic Design Automation Market Breakdown by Application
11.5.6.1 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Application
11.5.7 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Region
11.5.7.1 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Region
11.5.7.2 MEA Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.5.7.2.1 MEA Photonic Design Automation Market Breakdown, by Component
11.5.7.2.2 MEA Photonic Design Automation Market Breakdown, by Deployment
11.5.7.2.3 MEA Photonic Design Automation Market Breakdown, by Organization Size
11.5.7.2.4 MEA Photonic Design Automation Market Breakdown, by Application
11.5.7.3 SAM Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.5.7.3.1 SAM Photonic Design Automation Market Breakdown, by Component
11.5.7.3.2 SAM Photonic Design Automation Market Breakdown, by Deployment
11.5.7.3.3 SAM Photonic Design Automation Market Breakdown, by Organization Size
11.5.7.3.4 SAM Photonic Design Automation Market Breakdown, by Application
12. Photonic Design Automation Market – Impact of COVID-19 Pandemic
12.1 Pre & Post Covid-19 Impact
13. Competitive Landscape
13.1 Heat Map Analysis By Key Players
13.2 Company Positioning & Concentration
14. Industry Landscape
14.1 Overview
14.2 Market Initiative
14.2 New Product Development
14.3 Merger and Acquisition
15. Company Profiles
15.1 Ansys Inc
15.1.1 Key Facts
15.1.2 Business Description
15.1.3 Products and Services
15.1.4 Financial Overview
15.1.5 SWOT Analysis
15.1.6 Key Developments
15.2 LioniX International BV
15.2.1 Key Facts
15.2.2 Business Description
15.2.3 Products and Services
15.2.4 Financial Overview
15.2.5 SWOT Analysis
15.2.6 Key Developments
15.3 VPlphotonics GmbH
15.3.1 Key Facts
15.3.2 Business Description
15.3.3 Products and Services
15.3.4 Financial Overview
15.3.5 SWOT Analysis
15.3.6 Key Developments
15.4 Optiwave Systems Inc
15.4.1 Key Facts
15.4.2 Business Description
15.4.3 Products and Services
15.4.4 Financial Overview
15.4.5 SWOT Analysis
15.4.6 Key Developments
15.5 Luceda Photonics
15.5.1 Key Facts
15.5.2 Business Description
15.5.3 Products and Services
15.5.4 Financial Overview
15.5.5 SWOT Analysis
15.5.6 Key Developments
15.6 Cadence Design Systems Inc
15.6.1 Key Facts
15.6.2 Business Description
15.6.3 Products and Services
15.6.4 Financial Overview
15.6.5 SWOT Analysis
15.6.6 Key Developments
15.7 Siemens AG
15.7.1 Key Facts
15.7.2 Business Description
15.7.3 Products and Services
15.7.4 Financial Overview
15.7.5 SWOT Analysis
15.7.6 Key Developments
15.8 Synopsys Inc
15.8.1 Key Facts
15.8.2 Business Description
15.8.3 Products and Services
15.8.4 Financial Overview
15.8.5 SWOT Analysis
15.8.6 Key Developments
15.9 AIM Photonics Inc
15.9.1 Key Facts
15.9.2 Business Description
15.9.3 Products and Services
15.9.4 Financial Overview
15.9.5 SWOT Analysis
15.9.6 Key Developments
15.10 SystemLab Inc
15.10.1 Key Facts
15.10.2 Business Description
15.10.3 Products and Services
15.10.4 Financial Overview
15.10.5 SWOT Analysis
15.10.6 Key Developments
16. Appendix
16.1 Word Index

 

ページTOPに戻る


 

Summary

The Photonic design automation market size was valued at US$ 1.39 billion in 2022 and is expected to reach US$ 3.90 billion by 2030; it is estimated to record a CAGR of 13.8% from 2022 to 2030.

The integration of photonics into electronic design automation (EDA) tools is a significant trend in the photonic design automation market. Established EDA vendors recognize the potential of the emerging photonic design automation market and incorporate photonics-specific features and capabilities into their existing tools. This integration enables designers to seamlessly incorporate photonics components into their designs, streamlining the design process and optimizing the performance and functionality of photonic devices. By integrating photonics into EDA tools, designers can leverage familiar design environments and workflows, reducing the learning curve associated with specialized photonic design tools. The integration of photonics into EDA tools also facilitates the convergence of electronics and photonics, enabling the development of integrated electronic-photonic circuits. This convergence is crucial for the advancement of technologies such as silicon photonics, where the sharing of tools, processes, and simulation models between photonics and IC design accelerates the development of photonic design automation market. Overall, the integration of photonics into EDA tools reflects the industry's recognition of the growing importance of photonics and the need for efficient design processes and optimization techniques in the photonic field. It enables designers to harness the potential of photonics and seamlessly incorporate it into their electronic designs.

Advancements in compact modeling and simulation tools are expected to have a significant impact on the photonic design automation market. These tools play a crucial role in the convergence of electronics and photonics, enabling faster and more efficient design processes. Compact modeling refers to the development of simplified mathematical models that precisely denote the behavior of complex photonic devices. These models allow designers to simulate and analyze the performance of photonic components without the need for expensive and time-consuming device-level simulations. By incorporating compact modeling into design automation tools, designers can streamline the design process and optimize the performance of integrated electronic-photonic circuits. These tools facilitate the transition from electronic-photonic co-design to the development of fully integrated circuits, enabling designers to achieve high performance and efficiency. Such advantages enable higher applications and promote photonic design automation market growth.

The integration of compact modeling and simulation tools into the photonic design automation workflow enables designers to explore different design options, evaluate the impact of various parameters, and make informed decisions. This leads to faster design iterations, reduced time-to-market, and improved overall design quality. The importance of compact modeling and simulation tools offered by photonic design automation market players is recognized by both industry and academia. Established electronic design automation vendors are incorporating photonics-specific features and capabilities into their existing tools, allowing designers to integrate photonics components into their designs seamlessly.

The solution segment of the photonic design automation market encompasses a variety of software and tools that facilitate the design, simulation, and verification of photonic integrated circuits (PICs) and other photonic devices. These solutions are purpose-built to address the distinctive challenges and needs of the photonics industry. Photonic design automation (PDA) tools are instrumental in expediting the development and enhancement of photonic devices by equipping designers with advanced capabilities for simulation, modeling, and analysis. These tools enable designers to effectively create and validate intricate photonic circuits, optimize performance, and ensure efficient production processes. Software tools that enable designers to create and lay out photonic circuits have components such as waveguides, modulators, detectors, and filters. These tools often provide a user-friendly interface and advanced design capabilities to streamline the design process. The photonic design automation market growth is driven by the growing demand for photonic devices in various applications, including telecommunications, data centers, healthcare, sensing, and imaging. As the photonics industry continues to evolve and expand, the need for efficient and reliable design tools becomes increasingly important.

The academic research segment of the photonic design automation market refers to the involvement of universities, research institutions, and academic professionals in conducting research and development activities related to photonic design and associated services. This segment plays a crucial role in advancing the field of photonics and driving innovation in design methodologies, algorithms, and tools. Academic institutions and research organizations actively engage in research and development activities to explore new concepts, algorithms, and techniques. They thus avail the different solutions offered by photonic design automation market players. They focus on developing innovative solutions to address the challenges and limitations in the design of photonic components, systems, and integrated circuits, by utilizing such solutions. This research contributes to the advancement of the field and provides valuable insights for industry practitioners. Academic researchers often collaborate with industry experts, other academic institutions, and research consortia to share knowledge, exchange ideas, and collaborate on joint research projects. These collaborations foster interdisciplinary approaches and enable the integration of diverse perspectives in photonic design automation. The academic research segment plays a vital role in facilitating collaboration and knowledge sharing within the photonics industry. For instance, the University of Texas Design Automation Laboratory (UTDA) focuses on the R&D of design automation algorithms, methodologies, and tools for optics/photonics, electronics, and emerging technologies in the photonic design automation market.

Industrial research and manufacturing companies develop and utilize design automation tools specifically tailored for the photonics industry. These tools enable designers to automate various stages of the design process, such as layout generation, simulation, verification, and optimization. By leveraging these tools, companies can accelerate the design cycle, improve design quality, and reduce time-to-market for photonic products. The industrial research and manufacturing segment focuses on optimizing the manufacturing processes for photonic devices. This includes developing advanced fabrication techniques, process control methodologies, and yield enhancement strategies. By improving manufacturing efficiency and yield rates, companies can achieve cost-effective production of high-quality photonic components and systems. Photonic design automation market players often collaborate with photonic manufacturers to enhance and promote their products. For instance, in March 2022, Cadence Design Systems collaborated with GlobalFoundries for accelerating silicon photonics IC development for hyperscale computing, 5G communications, and aerospace systems among others. Such collaborations greatly enhance the awareness regarding such products, and also promote photonic design automation market growth.

The global photonic design automation market is segmented based on component, deployment, organization size, and application. Based on component, the photonic design automation market is divided into solutions and services. In terms of deployment, the photonic design automation market is bifurcated into on-premise and cloud. By organization size, the photonic design automation market is bifurcated into SMEs and large enterprises. Based on application, the photonic design automation market is divided into academic research and industrial research & manufacturing. By geography, the photonic design automation market is segmented into North America, Europe, Asia Pacific (APAC), and Rest of the World (RoW). AIM Photonics Inc, Ansys Inc, Cadence Design Systems Inc, LioniX International BV, Luceda Photonics, Optiwave Systems Inc, Siemens AG, Synopsys Inc, SystemLab Inc, and VPlphotonics GmbH are among the prominent photonic design automation market players.



ページTOPに戻る


Table of Contents

TABLE OF CONTENTS

1. Introduction
1.1 The Insight Partners Research Report Guidance
1.2 Market Segmentation
2. Executive Summary
2.1 Key Insights
2.2 Market Attractiveness
3. Research Methodology
3.1 Coverage
3.2 Secondary Research
3.3 Primary Research
4. Photonic Design Automation Market Landscape
4.1 Overview
4.2 PEST Analysis
4.3 Ecosystem Analysis
4.3.1 List of Vendors in the Value Chain:
5. Photonic Design Automation Market - Key Market Dynamics
5.1 Photonic Design Automation Market - Key Market Dynamics
5.2 Market Drivers
5.2.1 Growing Demand for Automation
5.2.2 Increasing Need for Efficiency and Accuracy
5.3 Market Restraints
5.3.1 Lack of Awareness Regarding Benefits and Capabilities of Photonic Design Automation
5.4 Market Opportunities
5.4.1 Advancements in Photonic Devices
5.4.2 Emphasis on High Performance and Environmentally Sustainable Solutions
5.5 Future Trends
5.5.1 Integration of Photonics in Electronic Design Automation (EDA) Tools
5.5.2 Advancements in Compact Modelling and Simulation Tools
5.6 Impact of Drivers and Restraints:
6. Photonic Design Automation Market - Global Market Analysis
6.1 Photonic Design Automation Market Revenue (US$ Million), 2022 – 2030
6.2 Photonic Design Automation Market Forecast and Analysis
7. Photonic Design Automation Market Analysis - Component
7.1 Solution
7.1.1 Overview
7.1.2 Solution Market, Revenue and Forecast to 2030 (US$ Million)
7.2 Service
7.2.1 Overview
7.2.2 Service Market, Revenue and Forecast to 2030 (US$ Million)
8. Photonic Design Automation Market Analysis - Deployment
8.1 On-Premise
8.1.1 Overview
8.1.2 On-Premise Market, Revenue and Forecast to 2030 (US$ Million)
8.2 Cloud
8.2.1 Overview
8.2.2 Cloud Market, Revenue and Forecast to 2030 (US$ Million)
9. Photonic Design Automation Market Analysis - Organization Size
9.1 SMEs
9.1.1 Overview
9.1.2 SMEs Market, Revenue and Forecast to 2030 (US$ Million)
9.2 Large Enterprises
9.2.1 Overview
9.2.2 Large Enterprises Market, Revenue and Forecast to 2030 (US$ Million)
10. Photonic Design Automation Market Analysis - Application
10.1 Academic Research
10.1.1 Overview
10.1.2 Academic Research Market, Revenue and Forecast to 2030 (US$ Million)
10.2 Industrial Research & Manufacturing
10.2.1 Overview
10.2.2 Industrial Research & Manufacturing Market, Revenue and Forecast to 2030 (US$ Million)
11. Photonic Design Automation Market - Geographical Analysis
11.1 Overview
11.2 North America
11.2.1 North America Photonic Design Automation Market Overview
11.2.2 North America Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.2.3 North America Photonic Design Automation Market Breakdown by Component
11.2.3.1 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Component
11.2.4 North America Photonic Design Automation Market Breakdown by Deployment
11.2.4.1 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Deployment
11.2.5 North America Photonic Design Automation Market Breakdown by Organization Size
11.2.5.1 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Organization Size
11.2.6 North America Photonic Design Automation Market Breakdown by Application
11.2.6.1 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Application
11.2.7 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.2.7.1 North America Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.2.7.2 US Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.2.7.2.1 US Photonic Design Automation Market Breakdown, by Component
11.2.7.2.2 US Photonic Design Automation Market Breakdown, by Deployment
11.2.7.2.3 US Photonic Design Automation Market Breakdown, by Organization Size
11.2.7.2.4 US Photonic Design Automation Market Breakdown, by Application
11.2.7.3 Canada Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.2.7.3.1 Canada Photonic Design Automation Market Breakdown, by Component
11.2.7.3.2 Canada Photonic Design Automation Market Breakdown, by Deployment
11.2.7.3.3 Canada Photonic Design Automation Market Breakdown, by Organization Size
11.2.7.3.4 Canada Photonic Design Automation Market Breakdown, by Application
11.3 Europe
11.3.1 Europe Photonic Design Automation Market Overview
11.3.2 Europe Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.3 Europe Photonic Design Automation Market Breakdown by Component
11.3.3.1 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Component
11.3.4 Europe Photonic Design Automation Market Breakdown by Deployment
11.3.4.1 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Deployment
11.3.5 Europe Photonic Design Automation Market Breakdown by Organization Size
11.3.5.1 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Organization Size
11.3.6 Europe Photonic Design Automation Market Breakdown by Application
11.3.6.1 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Application
11.3.7 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.3.7.1 Europe Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.3.7.2 Germany Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.2.1 Germany Photonic Design Automation Market Breakdown, by Component
11.3.7.2.2 Germany Photonic Design Automation Market Breakdown, by Deployment
11.3.7.2.3 Germany Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.2.4 Germany Photonic Design Automation Market Breakdown, by Application
11.3.7.3 France Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.3.1 France Photonic Design Automation Market Breakdown, by Component
11.3.7.3.2 France Photonic Design Automation Market Breakdown, by Deployment
11.3.7.3.3 France Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.3.4 France Photonic Design Automation Market Breakdown, by Application
11.3.7.4 UK Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.4.1 UK Photonic Design Automation Market Breakdown, by Component
11.3.7.4.2 UK Photonic Design Automation Market Breakdown, by Deployment
11.3.7.4.3 UK Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.4.4 UK Photonic Design Automation Market Breakdown, by Application
11.3.7.5 Russia Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.5.1 Russia Photonic Design Automation Market Breakdown, by Component
11.3.7.5.2 Russia Photonic Design Automation Market Breakdown, by Deployment
11.3.7.5.3 Russia Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.5.4 Russia Photonic Design Automation Market Breakdown, by Application
11.3.7.6 Switzerland Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.6.1 Switzerland Photonic Design Automation Market Breakdown, by Component
11.3.7.6.2 Switzerland Photonic Design Automation Market Breakdown, by Deployment
11.3.7.6.3 Switzerland Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.6.4 Switzerland Photonic Design Automation Market Breakdown, by Application
11.3.7.7 Rest of Europe Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.3.7.7.1 Rest of Europe Photonic Design Automation Market Breakdown, by Component
11.3.7.7.2 Rest of Europe Photonic Design Automation Market Breakdown, by Deployment
11.3.7.7.3 Rest of Europe Photonic Design Automation Market Breakdown, by Organization Size
11.3.7.7.4 Rest of Europe Photonic Design Automation Market Breakdown, by Application
11.4 APAC
11.4.1 APAC Photonic Design Automation Market Overview
11.4.2 APAC Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.3 APAC Photonic Design Automation Market Breakdown by Component
11.4.3.1 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Component
11.4.4 APAC Photonic Design Automation Market Breakdown by Deployment
11.4.4.1 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Deployment
11.4.5 APAC Photonic Design Automation Market Breakdown by Organization Size
11.4.5.1 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Organization Size
11.4.6 APAC Photonic Design Automation Market Breakdown by Application
11.4.6.1 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Application
11.4.7 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.4.7.1 APAC Photonic Design Automation Market Revenue and Forecasts and Analysis - By Country
11.4.7.2 China Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.7.2.1 China Photonic Design Automation Market Breakdown, by Component
11.4.7.2.2 China Photonic Design Automation Market Breakdown, by Deployment
11.4.7.2.3 China Photonic Design Automation Market Breakdown, by Organization Size
11.4.7.2.4 China Photonic Design Automation Market Breakdown, by Application
11.4.7.3 Japan Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.7.3.1 Japan Photonic Design Automation Market Breakdown, by Component
11.4.7.3.2 Japan Photonic Design Automation Market Breakdown, by Deployment
11.4.7.3.3 Japan Photonic Design Automation Market Breakdown, by Organization Size
11.4.7.3.4 Japan Photonic Design Automation Market Breakdown, by Application
11.4.7.4 South Korea Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.7.4.1 South Korea Photonic Design Automation Market Breakdown, by Component
11.4.7.4.2 South Korea Photonic Design Automation Market Breakdown, by Deployment
11.4.7.4.3 South Korea Photonic Design Automation Market Breakdown, by Organization Size
11.4.7.4.4 South Korea Photonic Design Automation Market Breakdown, by Application
11.4.7.5 Taiwan Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.7.5.1 Taiwan Photonic Design Automation Market Breakdown, by Component
11.4.7.5.2 Taiwan Photonic Design Automation Market Breakdown, by Deployment
11.4.7.5.3 Taiwan Photonic Design Automation Market Breakdown, by Organization Size
11.4.7.5.4 Taiwan Photonic Design Automation Market Breakdown, by Application
11.4.7.6 Rest of APAC Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.4.7.6.1 Rest of APAC Photonic Design Automation Market Breakdown, by Component
11.4.7.6.2 Rest of APAC Photonic Design Automation Market Breakdown, by Deployment
11.4.7.6.3 Rest of APAC Photonic Design Automation Market Breakdown, by Organization Size
11.4.7.6.4 Rest of APAC Photonic Design Automation Market Breakdown, by Application
11.5 Rest of the World (RoW)
11.5.1 RoW Photonic Design Automation Market Overview
11.5.2 RoW Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.5.3 RoW Photonic Design Automation Market Breakdown by Component
11.5.3.1 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Component
11.5.4 RoW Photonic Design Automation Market Breakdown by Deployment
11.5.4.1 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Deployment
11.5.5 RoW Photonic Design Automation Market Breakdown by Organization Size
11.5.5.1 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Organization Size
11.5.6 RoW Photonic Design Automation Market Breakdown by Application
11.5.6.1 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Application
11.5.7 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Region
11.5.7.1 RoW Photonic Design Automation Market Revenue and Forecasts and Analysis - By Region
11.5.7.2 MEA Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.5.7.2.1 MEA Photonic Design Automation Market Breakdown, by Component
11.5.7.2.2 MEA Photonic Design Automation Market Breakdown, by Deployment
11.5.7.2.3 MEA Photonic Design Automation Market Breakdown, by Organization Size
11.5.7.2.4 MEA Photonic Design Automation Market Breakdown, by Application
11.5.7.3 SAM Photonic Design Automation Market Revenue and Forecasts to 2030 (US$ Mn)
11.5.7.3.1 SAM Photonic Design Automation Market Breakdown, by Component
11.5.7.3.2 SAM Photonic Design Automation Market Breakdown, by Deployment
11.5.7.3.3 SAM Photonic Design Automation Market Breakdown, by Organization Size
11.5.7.3.4 SAM Photonic Design Automation Market Breakdown, by Application
12. Photonic Design Automation Market – Impact of COVID-19 Pandemic
12.1 Pre & Post Covid-19 Impact
13. Competitive Landscape
13.1 Heat Map Analysis By Key Players
13.2 Company Positioning & Concentration
14. Industry Landscape
14.1 Overview
14.2 Market Initiative
14.2 New Product Development
14.3 Merger and Acquisition
15. Company Profiles
15.1 Ansys Inc
15.1.1 Key Facts
15.1.2 Business Description
15.1.3 Products and Services
15.1.4 Financial Overview
15.1.5 SWOT Analysis
15.1.6 Key Developments
15.2 LioniX International BV
15.2.1 Key Facts
15.2.2 Business Description
15.2.3 Products and Services
15.2.4 Financial Overview
15.2.5 SWOT Analysis
15.2.6 Key Developments
15.3 VPlphotonics GmbH
15.3.1 Key Facts
15.3.2 Business Description
15.3.3 Products and Services
15.3.4 Financial Overview
15.3.5 SWOT Analysis
15.3.6 Key Developments
15.4 Optiwave Systems Inc
15.4.1 Key Facts
15.4.2 Business Description
15.4.3 Products and Services
15.4.4 Financial Overview
15.4.5 SWOT Analysis
15.4.6 Key Developments
15.5 Luceda Photonics
15.5.1 Key Facts
15.5.2 Business Description
15.5.3 Products and Services
15.5.4 Financial Overview
15.5.5 SWOT Analysis
15.5.6 Key Developments
15.6 Cadence Design Systems Inc
15.6.1 Key Facts
15.6.2 Business Description
15.6.3 Products and Services
15.6.4 Financial Overview
15.6.5 SWOT Analysis
15.6.6 Key Developments
15.7 Siemens AG
15.7.1 Key Facts
15.7.2 Business Description
15.7.3 Products and Services
15.7.4 Financial Overview
15.7.5 SWOT Analysis
15.7.6 Key Developments
15.8 Synopsys Inc
15.8.1 Key Facts
15.8.2 Business Description
15.8.3 Products and Services
15.8.4 Financial Overview
15.8.5 SWOT Analysis
15.8.6 Key Developments
15.9 AIM Photonics Inc
15.9.1 Key Facts
15.9.2 Business Description
15.9.3 Products and Services
15.9.4 Financial Overview
15.9.5 SWOT Analysis
15.9.6 Key Developments
15.10 SystemLab Inc
15.10.1 Key Facts
15.10.2 Business Description
15.10.3 Products and Services
15.10.4 Financial Overview
15.10.5 SWOT Analysis
15.10.6 Key Developments
16. Appendix
16.1 Word Index

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(通信・IT)の最新刊レポート

The Insight Partners社の技術・情報・通信分野での最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


The Insight Partners社はどのような調査会社ですか?


The Insight Partnersはインドに本社を置く調査会社です。経験豊富な専門家チームを通じて、お客様に最適な調査と分析を提供することに専念しています。幅広い分野をカバーしていますがヘルスケ... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/15 10:26

157.84 円

166.62 円

202.61 円

ページTOPに戻る