世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

メタマテリアルとメタサーフェスの市場 電磁波 2022-2042年


Metamaterial and Metasurface Markets Electromagnetic 2022-2042

このレポートは、新しい化合物、メタマテリアル、メタサーフェス、再プログラム可能なインテリジェントサーフェスの製造、統合、使用を希望する人のためのものです。   主な掲載内容(目次よ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2021年8月9日 US$6,500
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報・注文方法はこちら
307 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。

日本語のページは自動翻訳を利用し作成しています。


 

サマリー

このレポートは、新しい化合物、メタマテリアル、メタサーフェス、再プログラム可能なインテリジェントサーフェスの製造、統合、使用を希望する人のためのものです。
 
主な掲載内容(目次より抜粋)
  1. 全体概要と結論
  2. はじめに
  3. メタマテリアルアンテナ、メタラドーム、シールド、センサー
  4. 可視、近赤外線、および熱デバイス用のメタマテリアルとメタサーフェス
  5. 6G通信のための再構成可能なインテリジェントな表面
 
Uniquely, this 307-page report gives the essential 20 year forecasts, roadmaps, latest strategy, market, company, technology appraisals presented in clear new infograms, tables, graphs and pictures. It is for those wishing to make, integrate or use new compounds, metamaterials, metasurfaces, reprogrammable intelligent surfaces. See best practice and gaps in the market - formulations, printing, laminating, city deployment etc. without blinding mathematics. Identify partners and acquisitions to create a billion-dollar activity.
 
Welcome to the new frontier of advanced materials and printed and flexible electronics. Metamaterials are structures involving repetitive patterning, usually of metals, and usually controlling electromagnetic radiation in a previously-impossible fashion. For example, the planned 6G communications at far-infrared (terahertz) cannot reliably get such signals to you without metamaterial-based metasurfaces on buildings, even on indoor walls. A large market awaits.
 
The nascent businesses involving metamaterials-based parts and equipment can now progress to billion-dollar enterprises. That includes vertically-oriented businesses making and using them for their communications, defence or other activity. It also includes the newly-emerging need for horizontal marketing of optimised metasurfaces across all sectors as volumes make this worthwhile. For product quality, performance and affordability, the applicational sector specialists must enter the very different world of optimised formulations, reel-to-reel manufacture, mass production themselves or in partnership with those installing such capability.
 
Aspiring and actual participants need to learn the emerging materials and processing challenges, gaps in the market, competitor assessments, twenty-year roadmaps and forecasts in clear English. Sadly, for the latest situation, they face little more than a blizzard of mathematics and jargon in current literature. The antidote is the unique report, "Metamaterial and Metasurface Markets Electromagnetic 2022-2042" because it is entirely commercially oriented, not academic or historical. Grasp the optimal materials and manufacturing processes now needed, pros and cons, applications and potential uses of metamaterials whether alone, enhanced or product-integrated, best practice, best participants and benchmarking other industries. See blunt assessment of which volume applications and which specialist applications are really likely to happen.
 
After the Glossary, the Executive Summary and Conclusions takes 23 pages to give the current and future situation including market forecasts and roadmap 2022-2042. The patterning and metasurface technologies and functions are clearly explained in new infograms, graphs and many pictures. 12 primary conclusions are given by the PhD level analysts worldwide, many multi-lingual.
 
Example of a terahertz metamaterial.
 
The introduction clarifies the basics of metamaterials with many examples and the world of 5G and 6G communications because it is one of the largest potential users. The terminology nightmare is navigated with key terms explained such as the important reconfigurable intelligent surfaces and holographic beamforming. Grasp the awesome versatility from energy harvesting to laminar everything. Examples of metamaterial and metasurface research and future prospects are given including radical possibilities. However, this is analysis not evangelism so the introduction ends with the dark side of large power consumption by any wide deployment of active metasurfaces unless improvements arrive.
 
Chapter 3 has 34 pages on "Metamaterial antennas, metaradomes, shielding and sensors" because these are today's successes with much further to go. See the types, technologies, applications, gaps in the market, advantages and disadvantages with many examples such as China's new stealth fighter. Metamaterial relays, routers, lenses and transparent antennas are here with metamaterial radomes, sensors and more, each with many previously-impossible capabilities.
 
Chapter 4 provides seven densely packed pages on "Metamaterials and metasurfaces for visible, near-infrared and thermal devices". For example, a passive layer can cool buildings, vehicles and solar panels (sharply increasing output) by manipulating infrared, with huge commercial implications.
 
Because "Reconfigurable Intelligent Surfaces for 6G Communications" may become the largest application of all, Chapter 5 takes 41 pages to cover it, finishing with 16 IDTechEx conclusions. Chapter 6 scopes the patterning technologies needed. Called "Ultra fine line metal patterning for metamaterials", it gives many examples of what is needed. There follows an appraisal of all candidate additive technologies and three families in depth - "Photopatterning/ photolithography", "Embossing/imprinting and flexo" then "Directly printed fine metal lines", each with many company offerings assessed and an overall SWOT assessment at the end of each.
 
Those interested in the formulations involved in metasurfaces including special transistors and diodes can read Chapter 7 "Semiconductors, liquid crystals, dielectrics and graphene for metamaterials" in 29 pages full of examples and the research pipeline. Chapter 8 then completes the report with, "Capability, strategy, SWOT appraisal for 19 metamaterial companies", each ending with an IDTechEx SWOT assessment, 70 pages in all.
 
 
 


ページTOPに戻る


目次

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Purpose of this report
1.2. Primary conclusions
1.3. Lessons from initial success
1.4. Definition and characteristics
1.5. Choices of metasurface functionality
1.6. Applications and formats of metamaterials
1.7. Next metamaterial manufacturing technologies
1.8. Readiness level: Digital/high resolution printing
1.9. Conductive patterning needs for 6G RIS
1.10. Coping with the terahertz gap
1.11. Metamaterial and RIS roadmap 2022-2042
1.12. Electromagnetic metamaterial and metasurface market $ billion 2022-2042 by application segment
1.13. 6G Communications RIS number, area, price, market value 2022-2042
1.14. 6G RIS number, area, price, market value 2030-2041
1.15. Terahertz equipment and metamaterials market forecasts by others
2. INTRODUCTION
2.1. Overview
2.2. Electromagnetic metamaterial basics
2.3. Split ring resonator widely used in metamaterial antennas
2.4. Forms of electromagnetic metamaterials
2.5. Metasurfaces are now the focus
2.6. Terminology nightmare
2.7. Choices of metasurface tunability
2.7.1. Passive
2.7.2. Active
2.7.3. Self-programmable
2.8. Beam steering by hybrid active metasurface RIS
2.9. Radiotelephony applications
2.10. 5G and 6G Communications
2.11. Metamaterial and metasurface research pipeline
2.11.1. Examples of benefits sought
2.11.2. Far more options ahead
2.11.3. Metamaterial energy harvesting
2.12. Widely-deployed RIS will add to the ICT energy challenge
3. METAMATERIAL ANTENNAS, METARADOMES, SHIELDING AND SENSORS
3.1. Overview of antennas
3.2. Two categories
3.3. Advantages and disadvantages of metamaterial antennas
3.4. Metamaterial antenna design
3.4.1. Types
3.4.2. MESA intended to replace PESA and AESA
3.4.3. New GHz and THz antennas
3.4.4. Plasmonic antenna improvements
3.4.5. Terahertz gap
3.5. Metamaterials in routers
3.6. Metamaterials in 4G and 5G mobile phones
3.7. Advanced antennas
3.7.1. General
3.7.2. Meta Materials Inc transparent antennas
3.8. Metaradomes
3.9. Cloaking and shielding
3.9.1. Overview
3.9.2. Electromagnetic interference shielding
3.9.3. Challenges and key trends for EMI shielding for 5G devices
3.10. Metamaterial sensors
3.10.1. Overview
3.10.2. Metamaterials-enabled sensing for human-machine interfaces
3.10.3. Metamaterial thermal sensors
3.10.4. Examples of other progress with metamaterial sensors
3.10.5. Sensing and imaging at higher frequencies and more locations
4. METAMATERIALS AND METASURFACES FOR VISIBLE, NEAR-INFRARED AND THERMAL DEVICES
4.1. Photonic metamaterials for light
4.2. Optical devices - blocking, filtering, focussing, lightweighting, improved performance
4.3. Example: metamaterial guiding and enhancing light
4.4. Thermal metamaterials
5. RECONFIGURABLE INTELLIGENT SURFACES FOR 6G COMMUNICATIONS
5.1. Overview and RIS SWOT appraisal
5.1.1. Biggest application?
5.1.2. What is made possible
5.1.3. RIS for fine mapping
5.1.4. Challenges ahead
5.1.5. 6G RIS SWOT report
5.2. The big picture of 6G
5.3. Outdoor RIS for 6G
5.3.1. Needs, Wireless information and Energy Transfer WIET and other benefits
5.4. Indoor RIS: Terminology and functionality
5.5. RIS materials toolkit and technical capabilities
5.5.1. Choices of technology and functionality
5.5.2. Functions envisaged
5.5.3. Two phases
5.5.4. Semi-passive RIS uniqueness
5.6. Reconfigurable Intelligent Surface RIS materials and assembly
5.6.1. Design of passive and active RIS metasurface architectures
5.6.2. Multilayer metasurfaces for RIS
5.6.3. Electrically tunable THz metasurface examples
5.6.4. ENZ metamaterials and metasurfaces
5.6.5. RIS configuration challenges
5.7. Achieving 5G then 6G metasurface design and mass production
5.7.1. Overview
5.7.2. Re-programmable metamaterials
5.8. RIS conclusions
6. ULTRA FINE LINE METAL PATTERNING FOR METAMATERIALS
6.1. Metamaterial conductive patterning needs and examples
6.2. The printing toolkit
6.2.1. Value chain and key parameters
6.2.2. Readiness level: Digital/high resolution printing
6.3. Photopatterning/ photolithography for fine metal line patterning
6.3.1. Photolithography followed by etching
6.3.2. Fujifilm's photo-patterned metal mesh TCF
6.3.3. Toppan Printing's copper metal mesh
6.3.4. Dai Nippon Printing's fine metal patterning
6.3.5. Tanaka Metal's metal mesh technology
6.3.6. Metamaterial Technologies novel photo patterning technique
6.3.7.  

ページTOPに戻る


 

Summary

このレポートは、新しい化合物、メタマテリアル、メタサーフェス、再プログラム可能なインテリジェントサーフェスの製造、統合、使用を希望する人のためのものです。
 
主な掲載内容(目次より抜粋)
  1. 全体概要と結論
  2. はじめに
  3. メタマテリアルアンテナ、メタラドーム、シールド、センサー
  4. 可視、近赤外線、および熱デバイス用のメタマテリアルとメタサーフェス
  5. 6G通信のための再構成可能なインテリジェントな表面
 
Uniquely, this 307-page report gives the essential 20 year forecasts, roadmaps, latest strategy, market, company, technology appraisals presented in clear new infograms, tables, graphs and pictures. It is for those wishing to make, integrate or use new compounds, metamaterials, metasurfaces, reprogrammable intelligent surfaces. See best practice and gaps in the market - formulations, printing, laminating, city deployment etc. without blinding mathematics. Identify partners and acquisitions to create a billion-dollar activity.
 
Welcome to the new frontier of advanced materials and printed and flexible electronics. Metamaterials are structures involving repetitive patterning, usually of metals, and usually controlling electromagnetic radiation in a previously-impossible fashion. For example, the planned 6G communications at far-infrared (terahertz) cannot reliably get such signals to you without metamaterial-based metasurfaces on buildings, even on indoor walls. A large market awaits.
 
The nascent businesses involving metamaterials-based parts and equipment can now progress to billion-dollar enterprises. That includes vertically-oriented businesses making and using them for their communications, defence or other activity. It also includes the newly-emerging need for horizontal marketing of optimised metasurfaces across all sectors as volumes make this worthwhile. For product quality, performance and affordability, the applicational sector specialists must enter the very different world of optimised formulations, reel-to-reel manufacture, mass production themselves or in partnership with those installing such capability.
 
Aspiring and actual participants need to learn the emerging materials and processing challenges, gaps in the market, competitor assessments, twenty-year roadmaps and forecasts in clear English. Sadly, for the latest situation, they face little more than a blizzard of mathematics and jargon in current literature. The antidote is the unique report, "Metamaterial and Metasurface Markets Electromagnetic 2022-2042" because it is entirely commercially oriented, not academic or historical. Grasp the optimal materials and manufacturing processes now needed, pros and cons, applications and potential uses of metamaterials whether alone, enhanced or product-integrated, best practice, best participants and benchmarking other industries. See blunt assessment of which volume applications and which specialist applications are really likely to happen.
 
After the Glossary, the Executive Summary and Conclusions takes 23 pages to give the current and future situation including market forecasts and roadmap 2022-2042. The patterning and metasurface technologies and functions are clearly explained in new infograms, graphs and many pictures. 12 primary conclusions are given by the PhD level analysts worldwide, many multi-lingual.
 
Example of a terahertz metamaterial.
 
The introduction clarifies the basics of metamaterials with many examples and the world of 5G and 6G communications because it is one of the largest potential users. The terminology nightmare is navigated with key terms explained such as the important reconfigurable intelligent surfaces and holographic beamforming. Grasp the awesome versatility from energy harvesting to laminar everything. Examples of metamaterial and metasurface research and future prospects are given including radical possibilities. However, this is analysis not evangelism so the introduction ends with the dark side of large power consumption by any wide deployment of active metasurfaces unless improvements arrive.
 
Chapter 3 has 34 pages on "Metamaterial antennas, metaradomes, shielding and sensors" because these are today's successes with much further to go. See the types, technologies, applications, gaps in the market, advantages and disadvantages with many examples such as China's new stealth fighter. Metamaterial relays, routers, lenses and transparent antennas are here with metamaterial radomes, sensors and more, each with many previously-impossible capabilities.
 
Chapter 4 provides seven densely packed pages on "Metamaterials and metasurfaces for visible, near-infrared and thermal devices". For example, a passive layer can cool buildings, vehicles and solar panels (sharply increasing output) by manipulating infrared, with huge commercial implications.
 
Because "Reconfigurable Intelligent Surfaces for 6G Communications" may become the largest application of all, Chapter 5 takes 41 pages to cover it, finishing with 16 IDTechEx conclusions. Chapter 6 scopes the patterning technologies needed. Called "Ultra fine line metal patterning for metamaterials", it gives many examples of what is needed. There follows an appraisal of all candidate additive technologies and three families in depth - "Photopatterning/ photolithography", "Embossing/imprinting and flexo" then "Directly printed fine metal lines", each with many company offerings assessed and an overall SWOT assessment at the end of each.
 
Those interested in the formulations involved in metasurfaces including special transistors and diodes can read Chapter 7 "Semiconductors, liquid crystals, dielectrics and graphene for metamaterials" in 29 pages full of examples and the research pipeline. Chapter 8 then completes the report with, "Capability, strategy, SWOT appraisal for 19 metamaterial companies", each ending with an IDTechEx SWOT assessment, 70 pages in all.
 
 
 


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Purpose of this report
1.2. Primary conclusions
1.3. Lessons from initial success
1.4. Definition and characteristics
1.5. Choices of metasurface functionality
1.6. Applications and formats of metamaterials
1.7. Next metamaterial manufacturing technologies
1.8. Readiness level: Digital/high resolution printing
1.9. Conductive patterning needs for 6G RIS
1.10. Coping with the terahertz gap
1.11. Metamaterial and RIS roadmap 2022-2042
1.12. Electromagnetic metamaterial and metasurface market $ billion 2022-2042 by application segment
1.13. 6G Communications RIS number, area, price, market value 2022-2042
1.14. 6G RIS number, area, price, market value 2030-2041
1.15. Terahertz equipment and metamaterials market forecasts by others
2. INTRODUCTION
2.1. Overview
2.2. Electromagnetic metamaterial basics
2.3. Split ring resonator widely used in metamaterial antennas
2.4. Forms of electromagnetic metamaterials
2.5. Metasurfaces are now the focus
2.6. Terminology nightmare
2.7. Choices of metasurface tunability
2.7.1. Passive
2.7.2. Active
2.7.3. Self-programmable
2.8. Beam steering by hybrid active metasurface RIS
2.9. Radiotelephony applications
2.10. 5G and 6G Communications
2.11. Metamaterial and metasurface research pipeline
2.11.1. Examples of benefits sought
2.11.2. Far more options ahead
2.11.3. Metamaterial energy harvesting
2.12. Widely-deployed RIS will add to the ICT energy challenge
3. METAMATERIAL ANTENNAS, METARADOMES, SHIELDING AND SENSORS
3.1. Overview of antennas
3.2. Two categories
3.3. Advantages and disadvantages of metamaterial antennas
3.4. Metamaterial antenna design
3.4.1. Types
3.4.2. MESA intended to replace PESA and AESA
3.4.3. New GHz and THz antennas
3.4.4. Plasmonic antenna improvements
3.4.5. Terahertz gap
3.5. Metamaterials in routers
3.6. Metamaterials in 4G and 5G mobile phones
3.7. Advanced antennas
3.7.1. General
3.7.2. Meta Materials Inc transparent antennas
3.8. Metaradomes
3.9. Cloaking and shielding
3.9.1. Overview
3.9.2. Electromagnetic interference shielding
3.9.3. Challenges and key trends for EMI shielding for 5G devices
3.10. Metamaterial sensors
3.10.1. Overview
3.10.2. Metamaterials-enabled sensing for human-machine interfaces
3.10.3. Metamaterial thermal sensors
3.10.4. Examples of other progress with metamaterial sensors
3.10.5. Sensing and imaging at higher frequencies and more locations
4. METAMATERIALS AND METASURFACES FOR VISIBLE, NEAR-INFRARED AND THERMAL DEVICES
4.1. Photonic metamaterials for light
4.2. Optical devices - blocking, filtering, focussing, lightweighting, improved performance
4.3. Example: metamaterial guiding and enhancing light
4.4. Thermal metamaterials
5. RECONFIGURABLE INTELLIGENT SURFACES FOR 6G COMMUNICATIONS
5.1. Overview and RIS SWOT appraisal
5.1.1. Biggest application?
5.1.2. What is made possible
5.1.3. RIS for fine mapping
5.1.4. Challenges ahead
5.1.5. 6G RIS SWOT report
5.2. The big picture of 6G
5.3. Outdoor RIS for 6G
5.3.1. Needs, Wireless information and Energy Transfer WIET and other benefits
5.4. Indoor RIS: Terminology and functionality
5.5. RIS materials toolkit and technical capabilities
5.5.1. Choices of technology and functionality
5.5.2. Functions envisaged
5.5.3. Two phases
5.5.4. Semi-passive RIS uniqueness
5.6. Reconfigurable Intelligent Surface RIS materials and assembly
5.6.1. Design of passive and active RIS metasurface architectures
5.6.2. Multilayer metasurfaces for RIS
5.6.3. Electrically tunable THz metasurface examples
5.6.4. ENZ metamaterials and metasurfaces
5.6.5. RIS configuration challenges
5.7. Achieving 5G then 6G metasurface design and mass production
5.7.1. Overview
5.7.2. Re-programmable metamaterials
5.8. RIS conclusions
6. ULTRA FINE LINE METAL PATTERNING FOR METAMATERIALS
6.1. Metamaterial conductive patterning needs and examples
6.2. The printing toolkit
6.2.1. Value chain and key parameters
6.2.2. Readiness level: Digital/high resolution printing
6.3. Photopatterning/ photolithography for fine metal line patterning
6.3.1. Photolithography followed by etching
6.3.2. Fujifilm's photo-patterned metal mesh TCF
6.3.3. Toppan Printing's copper metal mesh
6.3.4. Dai Nippon Printing's fine metal patterning
6.3.5. Tanaka Metal's metal mesh technology
6.3.6. Metamaterial Technologies novel photo patterning technique
6.3.7.  

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD(メタサーフェス)の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/07/01 10:26

162.23 円

174.76 円

207.97 円

ページTOPに戻る