世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Quantum Technology Market 2024-2034: Trends, Players, Forecasts


量子技術市場2024-2034:動向、プレイヤー、予測

この調査レポートでは、量子テクノロジー市場全体の特徴、主要トレンドの特定、主要プレイヤーについて詳細に調査・分析しています。   主な掲載内容(目次より抜粋) 量子コンピュ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2024年4月18日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
242 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。


 

Summary

この調査レポートでは、量子テクノロジー市場全体の特徴、主要トレンドの特定、主要プレイヤーについて詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 量子コンピューティング
  • 量子センシング
  • 量子通信
  • 量子材料
 
Report Summary
This report characterizes the entire quantum technology market, identifies key trends, and provides an overview of the major players. Coverage across three key sectors including quantum computing, quantum sensing, and quantum communications is included, alongside market forecasts from 2024 to 2034 and over 50 company profiles. This comprehensive study provides clarity on the complexities of this rich and fast-moving industry, revealing significant opportunity, with the quantum technology market forecast to grow at a CAGR of 25% in the next ten years. IDTechEx has over 25 years of experience covering emerging technology markets, and is uniquely placed to analyze the interplay of related trends in the automotive, semiconductor, photonics, advanced materials, and sensor technology industries with the quantum technology market.
 
The quantum technology market leverages nano-scale physics to create revolutionary new devices for computing, sensing and communications. Across the industry, quantum technology offers a paradigm shift in performance compared with incumbent solutions.
 
Source: IDTechEx
 
Quantum computing is being developed in a range of hardware platforms including superconducting, trapped-ion, neutral atom, silicon-spin, photonic, diamond and more. Competition is building between start-ups and established computer manufacturers alike to demonstrate a quantum advantage in computational speed up through the use of qubits in place of classical bits. Quantum computing is just beginning to be adopted to solve industry scale optimization and logistics problems - but holds promise of going much further. In particular, future applications within simulation are anticipated to hugely accelerate drug discovery and the search for more sustainable energy alternatives. The quantum space race is underway, with governments worldwide anxious to capture the value and security becoming a world leader in quantum computing would offer.
 
In many ways, the platforms developed for quantum computing have origins in development for quantum sensing. The sensitivity of quantum states to environmental noise - which is such a challenge in computing - can be harnessed in sensing for highly sensitive measurements of time, magnetic field, current, gravity, light and movement. As such, quantum sensors have applications as atomic clocks, magnetometers, photo-detectors, gravimeters, accelerometers gyroscopes and more. However, the market demands in the sensor market vary significantly from high performance computing - leading to a distinct set of opportunities and challenges. To compete with incumbent sensor technology, quantum sensors must not only offer a significant performance advantage but also be commercialized into a small, low power and cost-effective package. The manufacturing challenge has somewhat stalled the quantum sensor market in recent years, leading to a pivot in hype and private investment towards computing. However, as the need for quantum foundries and component manufacture becomes a clearer necessity for quantum computing the opportunities for quantum sensing is seeing something of a revival. Moreover, the quantum sensor market has the long-term potential to have huge impact in high-volume industries such as automotive and consumer electronics.
 
Quantum communications technology seeks to improve data security, which is increasingly compromised in the modern world. The world is generating higher and higher volumes of data, with increasing concerns about its sensitivity. Meanwhile, bad actors are committing more advanced cybercrimes - keen to exploit the value of virtually shared trade secrets, financial data, health records and more. Moreover, the scaling up of quantum computing threatens to undermine existing cryptography methods entirely, leaving a gap in the market for new 'quantum-ready' technology solutions able to meet the next generation of encryption needs.
 
The technology differentials within the entire quantum technology market can be complex to understand, and in many instances, stakeholders are lacking clarity as to the nature and scale of the opportunities on offer in this emerging market. As such, this report provides a clear and simplified breakdown of the technological fundamentals, summarized in multiple SWOT analysis, roadmaps, benchmarking tables and bespoke graphics. A comprehensive summary of key players in the quantum technology eco-system is also provided, with multiple write-ups from primary interviews included. The application specific focused sections of this report also enable specific comparisons to be drawn between the quantum solutions emerging from research, with the classical competition they face in real-world markets.
 
Key aspects
This report provides critical market intelligence covering the entire quantum technology market. This includes detailed coverage of key technologies for quantum computing, quantum sensing, and quantum communications, as well as applications, players, and market trends. The report includes:
 
A review of the context and background of the quantum technology market
  • Overview of the quantum technology market landscape in 2024.
  • Ten-year market forecasts by annual revenue within quantum computing, quantum sensing, and quantum communications hardware markets.
  • Overview of key national quantum strategies, and comparison of government funding commitments.
  • Over 50 company profiles of key players in the quantum technology market.
 
Full market characterization of major technologies and applications within the quantum technology market
  • Summary of material opportunities within the quantum technology market.
  • Breakdown of eight major approaches to commercializing quantum computing including superconducting (gate-based and annealing), trapped-ion, neutral atom, silicon-spin, photonic, diamond, and topological.
  • Details of critical benchmarks for quantum computing and comparison of achievements and roadmaps across key modalities and commercial players.
  • Overview of key markets for quantum sensing including precision navigation and timing, biomedical imaging, and remote current sensing.
  • Coverage of technology approaches to commercializing chip-scale atomic clocks, quantum gyroscopes, quantum magnetic field sensors, quantum gravimeters, and more.
  • Comparison of software and hardware approaches to quantum communications for enhanced data security, including post-quantum cryptography (PQC) and quantum key distribution (QKD)
  • SWOT analysis of each technology area within the market, and roadmaps for each sector.


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Overview of the quantum technology market landscape
1.2. Quantum research breakthroughs have evolved from theoretical to application focused - creating commercialization opportunities
1.3. Segmenting the quantum technology ecosystem by function and value proposition: computing, sensing and communications
1.4. Quantum Technology Market Forecasts (Annual Revenue, USD Million)
1.5. Why now for quantum technologies?
1.6. Government funding in the US, China, and Europe is driving the commercializing of quantum technologies
1.7. Shortage of quantum talent is a challenge for the industry
1.8. Quantum and AI - ally or competitor?
1.9. Summary of Material Opportunities in Quantum Technology
1.10. The quantum computer market 'at a glance'
1.11. The race for quantum computing is an ultra-marathon not a sprint
1.12. Quantum Computing Market: Analyst Opinion
1.13. Quantum Computing: Main conclusions (I)
1.14. Quantum Computing: Main conclusions (II)
1.15. The quantum sensor market 'at a glance'
1.16. Quantum sensors: Analyst viewpoint
1.17. The quantum communication market 'at a glance'
1.18. The quantum threat to data security
1.19. Quantum communications: analyst viewpoint (1)
1.20. Quantum communications: analyst viewpoint (2)
2. INTRODUCTION
2.1. Overview of the quantum technology market landscape
2.2. Quantum research breakthroughs have evolved from theoretical to application focused - creating commercialization opportunities
2.3. Segmenting the quantum technology ecosystem by function and value proposition: computing, sensing and communications
2.4. Government funding is largely driving the commercialization of quantum technologies
2.5. USA National Quantum Initiative aims to accelerate research and economic development
2.6. The UK National Quantum Technologies Program
2.7. Eleven quantum technology innovation hubs now established in Japan
2.8. Quantum in South Korea: ambitions to become a global leader in the 2030s
2.9. Quantum in Australia: creating clear benchmarks of national quantum eco-system success
2.10. Collaboration versus quantum nationalism
2.11. Shortage of quantum talent is a challenge for the industry
2.12. Classical vs. Quantum
2.13. Superposition, entanglement, and observation
2.14. Quantum phenomena enable highly-sensitive quantum sensing
3. QUANTUM COMPUTING
3.1. Quantum Computing: Introduction
3.1.1. Quantum computing glossary
3.1.2. Introduction to quantum computers
3.2. Quantum Computing: Technologies
3.2.1. The number of companies commercializing quantum computers is growing
3.2.2. Blueprint for a quantum computer: qubits, initialization, readout, manipulation
3.2.3. Summarizing the promises and challenges of leading quantum hardware
3.2.4. Summarizing the promises and challenges of leading quantum hardware
3.2.5. Competing quantum computer architectures: Summary table
3.2.6. Hardware agnostic platforms for quantum computing represent a new market for established technologies
3.2.7. Four major challenges for quantum hardware
3.2.8. Comparing progress in logical qubit number scalability between key players/qubit modalities
3.2.9. Infrastructure Trends: Modular vs. Single Core
3.2.10. Introduction to superconducting qubits (I)
3.2.11. Comparing key players in superconducting quantum computing (hardware)
3.2.12. SWOT analysis: superconducting quantum computers
3.2.13. Key conclusions: superconducting quantum computers
3.2.14. Introduction to trapped-ion quantum computing
3.2.15. Comparing key players in trapped ion quantum computing (hardware)
3.2.16. SWOT analysis: trapped-ion quantum computers
3.2.17. Key conclusions: trapped ion quantum computers
3.2.18. Introduction to light-based qubits
3.2.19. Comparing key players in photonic quantum computing
3.2.20. SWOT analysis: photonic quantum computers
3.2.21. Key conclusions: photonic quantum computers
3.2.22. Introduction to silicon-spin qubits
3.2.23. Comparing key players in silicon spin quantum computing
3.2.24. SWOT analysis: silicon spin quantum computers
3.2.25. Key conclusions: silicon spin quantum computers
3.2.26. Introduction to neutral atom quantum computing
3.2.27. Comparing key players in neutral atom quantum computing (hardware)
3.2.28. SWOT analysis: neutral-atom quantum computers
3.2.29. Key conclusions: neutral atom quantum computers
3.2.30. Introduction to diamond-defect spin-based computing
3.2.31. Comparing key players in diamond defect quantum computing
3.2.32. SWOT analysis: diamond-defect quantum computers
3.2.33. Key conclusions: diamond-defect quantum computers
3.2.34. Confidence in the potential of topological quantum computing is rising
3.2.35. Introduction to quantum annealers
3.2.36. Comparing key players in quantum annealing
3.2.37. SWOT analysis: quantum annealers
3.2.38. Key conclusions: quantum annealers
3.2.39. Benchmarking Quantum Computers
3.2.40. Noise effects on qubits
3.2.41. Comparing coherence times
3.2.42. Qubit fidelity and error rate
3.2.43. Quantum supremacy and qubit number
3.2.44. Logical qubits and error correction
3.2.45. Introduction to quantum volume
3.2.46. Error rate and quantum volume
3.2.47. Square circuit tests for quantum volume
3.2.48. Critical appraisal of the importance of quantum volume
3.2.49. Algorithmic qubits: A new benchmarking metric?
3.2.50. Companies defining their own benchmarks
3.2.51. Operational speed and CLOPS (circuit layer operations per second)
3.2.52. Conclusions: determining what makes a good computer is hard, and a quantum computer even harder
3.2.53. The DiVincenzo criteria
3.2.54. IDTechEx - Quantum commercial readiness level (QCRL)
3.2.55. QCRL scale (1-5, commercial application focused)
3.2.56. QCRL scale (6-10, user-volume focused)
3.3. Quantum Computing: Applications
3.3.1. Summary of applications for quantum computing
3.3.2. Applications of quantum algorithms
3.3.3. Commercial examples of use-cases for quantum annealing
3.3.4. Value capture in quantum computing
3.3.5. Business Model Trends: Vertically Integrated vs. The Quantum 'Stack'
3.3.6. Overviewing early adopters of on-premises quantum computers
3.3.7. Partnerships forming now will shape the future of quantum computing for the financial sector
3.3.8. Most automotive players are pursuing quantum computing for battery chemistry
3.3.9.

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(センサ・MEMS)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/12/03 10:26

150.96 円

158.85 円

193.76 円

ページTOPに戻る