世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

バイオベースポリマー・プラスチック(バイオプラスチック)の世界市場 2025-2035

バイオベースポリマー・プラスチック(バイオプラスチック)の世界市場 2025-2035


The Global Market for Biobased Polymers & Plastics (Bioplastics) 2025-2035

産業界と消費者が、従来の石油由来材料に代わる持続可能な材料をますます求めるようになり、バイオベース・ポリマーとプラスチックの世界市場は急速な成長を遂げている。この急成長している分野は、より循環的... もっと見る

 

 

出版社 出版年月 電子版価格 納期 ページ数 図表数 言語
Future Markets, inc.
フューチャーマーケッツインク
2024年7月31日 GBP1,100
ベーシックライセンス
ライセンス・価格情報
注文方法はこちら
お問合わせください 637 342 英語

 

サマリー

産業界と消費者が、従来の石油由来材料に代わる持続可能な材料をますます求めるようになり、バイオベース・ポリマーとプラスチックの世界市場は急速な成長を遂げている。この急成長している分野は、より循環的で環境に優しい経済への移行において重要な要素となっている。トウモロコシ、サトウキビ、セルロースなどの再生可能なバイオマス資源を原料とするバイオベースポリマーは、二酸化炭素排出量と化石燃料への依存度を大幅に削減する可能性を秘めている。この市場の重要性は、環境面でのメリットだけにとどまらない。包装や消費財から自動車や建築に至るまで、さまざまな産業でイノベーションを推進する上で重要な役割を果たしている。使い捨てプラスチックや炭素排出に関する規制が強化される中、企業が持続可能性目標を達成し、消費者の信頼を維持するためには、バイオベースの代替材料が不可欠となっている。

さらに、バイオベースポリマーの開発は、農業慣行、バイオリファイニング技術、材料科学の進歩にも拍車をかけている。このような分野横断的なイノベーションは、特にバイオマス原料の栽培や加工が行われている農村部において、新たな経済機会を生み出している。市場の成長は研究開発への投資も促進し、バイオプラスチックの性能とコスト競争力の向上につながる。

この600ページを超える総合レポートは、急速に成長するバイオベースポリマーとプラスチックの世界市場を詳細に分析しています。本レポートでは、このダイナミックな分野における最新の技術開発、市場動向、成長機会を検証しています。レポート内容は以下の通りです:

  • PLA、PHA、バイオPE、バイオPET、バイオPAなどの合成および天然バイオベースポリマーの詳細分析
  • 生分解性および堆肥化可能なプラスチック材料の評価
  • 天然繊維およびリグニン系素材の検査
  • 生産量と生産能力に関する2019年から2035年の市場予測
  • バイオプラスチックのバリューチェーンにおける500社以上の企業プロファイル。掲載企業は、Avantium、BASF、Biome Bioplastics、Braskem、Buyo、Danimer Scientific、FabricNano、FlexSea、Floreon、Gevo、MetaCycler BioInnovations、Mi Terro、PlantSwitch、帝人株式会社、Verde Bioresins、Versalis、など。 ザンプラ
  • 市場促進要因、課題、新興アプリケーションの分析

 

本レポートでは、市場をポリマーの種類、用途、地域別に分類し、生産量、消費パターン、成長予測に関する詳細なデータを提供している。また、第一世代の原料から先進的なバイオマス原料へのシフトや、バイオベースプラスチックのリサイクル素材の統合に焦点を当てています。

バイオベースの合成ポリマー:

  • ポリ乳酸(PLA)
  • バイオポリエチレンテレフタレート(バイオPET)
  • バイオポリアミド(バイオPA)
  • バイオポリエチレン(バイオPE)
  • バイオポリプロピレン(バイオPP)
  • ポリエチレンフラノエート(PEF)
  • ポリトリメチレンテレフタレート(PTT)
  • ポリブチレンサクシネート(PBS)
  • ポリブチレンアジペート-コ-テレフタレート(PBAT

 

天然バイオベースポリマー:

  • ポリヒドロキシアルカノエート(PHA)
  • セルロース系素材(ナノセルロースを含む)
  • でんぷん系プラスチック
  • リグニン系材料
  • タンパク質(大豆、カゼインなど)
  • 天然繊維(綿、ジュート、亜麻など)

 

この研究では、製造工程、特性、コスト分析、従来のプラスチックとの比較優位性など、各ポリマーの種類を徹底的に検証している。バクテリアセルロースや菌糸体ベースの複合材料のような新素材についても、将来の市場可能性を評価している。

アプリケーションの分析:

詳細な市場データと成長予測は、主要な応用分野で提供されている:

  • 包装(硬質および軟質)
  • 消費財
  • 自動車
  • 建築・建設
  • テキスタイル
  • エレクトロニクス
  • 農業

 

現在、バイオプラスチックの利用はパッケージング分野が圧倒的に多く、市場の50%以上を占めている。しかし、自動車や建設用途では、バイオプラスチックが従来の材料に取って代わることが増えているため、今後数年間で最も速い成長率が見込まれる。

地域分析:

本レポートは、包括的な地域別内訳を提供している:

  • 北米
  • ヨーロッパ
  • アジア太平洋
  • ラテンアメリカ
  • 中東・アフリカ

 

競争環境:

競争環境の広範な分析には、以下のものが含まれる:

  • 主要バイオポリマーメーカーの市場シェア
  • 500社を超える主要企業の詳細プロフィール
  • 戦略的イニシアティブ、パートナーシップ、M&A活動
  • 生産能力拡大と新技術開発への投資
  • 新興スタートアップ企業とその革新的アプローチ

 

技術評価:

この調査では、バイオベースポリマーの最新の技術開発について、以下のような詳細な情報を提供している:

  • 発酵およびバイオリファイニング・プロセスの進歩
  • ポリマーブレンドとコンパウンドの革新
  • 生分解性と堆肥化の進展
  • バリア性と耐熱性の向上
  • バイオベース・プラスチックスへのリサイクル・コンテンツの統合
  • 新規バイオマス原料の開発

 

規制の状況

バイオプラスチック市場に影響を与える規制環境を徹底検証:

  • 使い捨てプラスチックの禁止と制限
  • 生分解性と堆肥化の基準
  • リサイクル規制とインフラ整備
  • 炭素価格メカニズムとバイオプラスチックへの影響
  • 政府調達におけるバイオベース製品へのインセンティブ

 

また、以下のような成長と革新のための主要な機会も特定されている:

  • 一貫生産のための先進的バイオリファイナリーの開発
  • 高機能エンジニアリング・プラスチックへの進出
  • 特定の最終用途の要求に合わせたバイオプラスチックのカスタマイズ
  • リグニンおよびその他のバイオベース材料の新たな付加価値用途の創出
  • バイオマス原料と炭素回収によるカーボン・マイナス・プラスチックの可能性

 



ページTOPに戻る


目次

1    研究方法論     33

 

2    はじめに      34

  • 2.1   バイオプラスチックの種類 35
  • 2.2   バイオベースまたは再生可能プラスチック     36
    • 2.2.1   ドロップイン・バイオベース・プラスチック  36
    • 2.2.2   新規バイオベースプラスチック      37
  • 2.3   生分解性・堆肥化可能プラスチック 38
  • 2.3.1   生分解性      38
  • 2.3.2   堆肥化可能性   39
  • 2.4   主要市場プレーヤー    40

 

3    バイオベースの合成ポリマーとプラスチック    42

  • 3.1   ポリ乳酸(バイオPLA)   42
    • 3.1.1   市場分析   42
    • 3.1.2   製造      44
    • 3.1.3   生産者と生産能力(現在および計画中      44
      • 3.1.3.1乳酸生産者と生産能力44
      • 3.1.3.2PLA生産者と生産能力44
      • 3.1.3.3ポリ乳酸(バイオPLA)生産量 2019-2035 (1,000トン) 46
  • 3.2   ポリエチレンテレフタレート(バイオPET)   47
  • 3.2.1   市場分析   47
  • 3.2.2   生産者と生産能力       48
  • 3.2.3   ポリエチレンテレフタレート(バイオPET)生産量 2019-2035 (1,000トン)    48
  • 3.3.1   市場分析   49
  • 3.3.2   生産者と生産能力       49
  • 3.3.3   ポリトリメチレンテレフタレート(PTT)生産量 2019-2035 (1,000トン)     50
  • 3.4.1   市場分析   51
  • 3.4.2   PETとの比較特性      52
  • 3.4.3   生産者と生産能力       52
    • 3.4.3.1FDCAおよびPEFの生産者と生産能力     52
    • 3.4.3.2ポリエチレンフラノエート(バイオPEF)生産量 2019-2035 (1,000トン).   53
  • 3.5.1   市場分析   54
  • 3.5.2   生産者と生産能力       55
  • 3.5.3   ポリアミド(バイオPA)生産量 2019-2035 (1,000トン)       55
  • 3.6.1   市場分析   56
  • 3.6.2   生産者と生産能力       56
  • 3.6.3   ポリブチレンアジペート-コ-テレフタレート(バイオPBAT生産量 2019-2035 (1,000トン)   57
  • 3.7.1   市場分析   58
  • 3.7.2   生産者と生産能力       59
  • 3.7.3   ポリブチレンサクシネート(PBS)生産量 2019-2035 (1,000トン)     59
  • 3.8.1   市場分析   60
  • 3.8.2   生産者と生産能力       60
  • 3.8.3   ポリエチレン(バイオPE)生産量 2019-2035 (1,000トン).     61
  • 3.9.1   市場分析   61
  • 3.9.2   生産者と生産能力       62
  • 3.9.3   ポリプロピレン(バイオPP)生産量 2019-2035 (1,000トン)    62
  • 3.3   ポリトリメチレンテレフタレート(バイオPTT)  49
  • 3.4   ポリエチレンフラノエート(バイオPEF)    51
  • 3.5   ポリアミド(バイオPA) 54
  • 3.6   ポリブチレンアジペート-コ-テレフタレート(バイオPBAT       56
  • 3.7   ポリブチレンサクシネート(PBS)およびコポリマー      58
  • 3.8   ポリエチレン(バイオPE)      60
  • 3.9   ポリプロピレン(バイオPP)   61

 

4    天然バイオベースポリマー   63

  • 4.1   ポリヒドロキシアルカノエート(PHA)    63
    • 4.1.1   技術説明       63
    • 4.1.2   種類  64
      • 4.1.2.1フィービー     66
      • 4.1.2.2フィービーV  67
    • 4.1.3   合成と製造工程    68
    • 4.1.4   市場分析   70
    • 4.1.5   市販のPHA   71
    • 4.1.6   PHA向け市場   72
    • 4.1.6.1パッケージング   73
    • 4.1.6.2化粧品      74
      • 4.1.6.2.1       PHAミクロスフェア    74
    • 4.1.6.3メディカル     75
    • 4.1.6.3.1       組織工学     75
    • 4.1.6.3.2       薬物送達 75
    • 4.1.6.4.1       マルチフィルム   75
    • 4.1.6.4.2       栽培袋   75
    • 4.1.6.4農業      75
    • 4.1.7   生産者と生産能力       76
    • 4.1.8   2019~2035年のPHA生産能力(1,000トン)     77
  • 4.2   セルロース      78
  • 4.2.1   ミクロフィブリル化セルロース(MFC)   78
    • 4.2.1.1市場分析   78
    • 4.2.1.2生産者と生産能力       79
  • 4.2.2   ナノセルロース      79
  • 4.2.2.1セルロースナノ結晶       79
    • 4.2.2.1.1       合成      80
    • 4.2.2.1.2       プロパティ     81
    • 4.2.2.1.3       製造      82
    • 4.2.2.1.4       アプリケーション  82
    • 4.2.2.1.5       市場分析   84
    • 4.2.2.1.6       生産者と生産能力       85
    • 4.2.2.1.7        Global demand for celluloseナノ結晶 by market     85
  • 4.2.2.2セルロースナノファイバー 88
  • 4.2.2.2.1       アプリケーション  88
  • 4.2.2.2.2       市場分析   89
  • 4.2.2.2.3       生産者と生産能力       90
    • 4.2.2.2.3.1     世界の市場別需要量(トン   91
      • 4.2.2.2.3.1.1 複合材料   91
      • 4.2.2.2.3.1.2 自動車     92
      • 4.2.2.2.3.1.3 建築・建設    93
      • 4.2.2.2.3.1.4 紙・板紙・パッケージ     94
      • 4.2.2.2.3.1.5 テキスタイル      95
      • 4.2.2.2.3.1.6 生物医学とヘルスケア   96
      • 4.2.2.2.3.1.7 衛生用品      97
      • 4.2.2.2.3.1.8 塗料とコーティング     98
      • 4.2.2.2.3.1.9 エアロゲル   99
      • 4.2.2.2.3.1.10 石油・ガス     99
      • 4.2.2.2.3.1.11 濾過   100
      • 4.2.2.2.3.1.12 レオロジー改良剤   101
  • 4.2.2.3.1       製造      101
  • 4.2.2.3.2       アプリケーション  104
  • 4.2.2.3 Bacterialナノセルロース (BNC)      101
  • 4.2.3.1種類用途と生産者 105
  • 4.2.4.1藻類    107
    • 4.2.4.1.1       メリット    107
    • 4.2.4.1.2       製造      108
    • 4.2.4.1.3       プロデューサー     108
  • 4.2.4.2菌糸体      109
  • 4.2.4.2.1       プロパティ     109
  • 4.2.4.2.2       アプリケーション  110
  • 4.2.4.2.3       商業化   111
  • 4.2.5.1技術説明       111
  • 4.2.3   タンパク質ベースのバイオプラスチック    105
  • 4.2.4   藻類および真菌       106
  • 4.2.5   キトサン       111

 

5    バイオベースポリマー・プラスチックの生産:地域別 113

  • 5.1   北米     114
  • 5.2   ヨーロッパ   114
  • 5.3   アジア太平洋   115
    • 5.3.1   中国 115
    • 5.3.2   日本 115
    • 5.3.3   タイ   115
    • 5.3.4   インドネシア     115
  • 5.4   ラテンアメリカ 116

 

6    バイオプラスチックの市場区分     117

  • 6.1   パッケージング   118
    • 6.1.1   包装用バイオプラスチックのプロセス   118
    • 6.1.2   アプリケーション  119
    • 6.1.3   フレキシブル包装    119
      • 6.1.3.1製造2019年~2035年      121
    • 6.1.4   硬質包装   122
    • 6.1.4.1製造2019年~2035年      123
  • 6.2   消費者製品 124
  • 6.2.1   アプリケーション  124
  • 6.2.2   製造2019年~2035年      124
  • 6.3.1   アプリケーション  126
  • 6.3.2   製造2019年~2035年      127
  • 6.4.1   アプリケーション  128
  • 6.4.2   製造2019年~2035年      128
  • 6.5.1   アパレル     129
  • 6.5.2   フットウェア       130
  • 6.5.3   メディカル反物   131
  • 6.5.4   製造2019年~2035年      131
  • 6.5.5   エレクトロニクス     132
    • 6.5.5.1アプリケーション  132
    • 6.5.5.2製造2019年~2035年      133
  • 6.5.6   農業園芸133
  • 6.5.6.1製造2019年~2035年      134
  • 6.3   自動車     126
  • 6.4   建築・建設      128
  • 6.5   テキスタイル      129

 

7    天然繊維   136

  • 7.1   天然繊維の製造方法、マトリックス材料および用途      139
  • 7.2   メリット天然繊維 140
  • 7.3   市販の次世代天然繊維 製品 140
  • 7.4   次世代天然繊維の市場促進要因   143
  • 7.5   課題     144
  • 7.6   植物(セルロース、リグノセルロース)     145
    • 7.6.1   種子繊維     145
      • 7.6.1.1コットン145
        • 7.6.1.1.1       製造数量 2018-2035      146
      • 7.6.1.2カポック147
      • 7.6.1.2.1       製造数量 2018-2035      147
      • 7.6.1.3ヘチマ   148
    • 7.6.2   バスト繊維   149
    • 7.6.2.1ジュート      149
    • 7.6.2.2製造数量 2018-2035      150
      • 7.6.2.2.1       ヘンプ 151
      • 7.6.2.2.2       製造数量 2018-2035      151
    • 7.6.2.3亜麻      152
    • 7.6.2.3.1       製造数量 2018-2035      153
    • 7.6.2.4.1       製造数量 2018-2035      154
    • 7.6.2.5.1       製造数量 2018-2035      156
    • 7.6.2.4ラミー154
    • 7.6.2.5ケナフ  155
    • 7.6.3.1サイザル麻    157
      • 7.6.3.1.1       製造数量 2018-2035      157
    • 7.6.3.2アバカ159
    • 7.6.3.2.1       製造数量 2018-2035      159
    • 7.6.4.1コアー     160
      • 7.6.4.1.1       製造数量 2018-2035      161
    • 7.6.4.2バナナ     162
    • 7.6.4.2.1       製造数量 2018-2035      162
    • 7.6.4.3パイナップル     163
    • 7.6.5.1米繊維      165
    • 7.6.5.2トウモロコシ    165
    • 7.6.6.1スイッチグラス  166
    • 7.6.6.2サトウキビ(農業残渣)   166
    • 7.6.6.3バンブー   167
      • 7.6.6.3.1       製造数量 2018-2035      168
    • 7.6.6.4新鮮な牧草(グリーン・バイオリファイナリー)       169
    • 7.6.3   葉の繊維   157
    • 7.6.4   フルーツ繊維      160
    • 7.6.5   農業残渣からの茎繊維      165
    • 7.6.6   杖、草、葦       166
  • 7.7   動物性(繊維状タンパク質)      169
  • 7.7.1   ウール   169
    • 7.7.1.1代替ウール素材   170
    • 7.7.1.2プロデューサー     170
  • 7.7.2   シルク繊維   170
  • 7.7.2.1代替シルク素材   171
    • 7.7.2.1.1       プロデューサー     171
  • 7.7.3.1代替レザー素材      172
    • 7.7.3.1.1       プロデューサー     172
  • 7.7.4.1プロデューサー     173
  • 7.7.5.1代替ダウン素材  174
    • 7.7.5.1.1       プロデューサー     174
  • 7.7.3   レザー      171
  • 7.7.4   毛皮     173
  • 7.7.5   ダウン 174
  • 7.8.1   複合材料   174
  • 7.8.2   アプリケーション  175
  • 7.8.3   天然繊維射出成形コンパウンド       176
    • 7.8.3.1プロパティ     176
    • 7.8.3.2アプリケーション  176
  • 7.8.4   不織布天然繊維マット複合材料 177
  • 7.8.4.1自動車     177
  • 7.8.4.2アプリケーション  177
  • 7.8.5   整列した天然繊維強化複合材料   177
  • 7.8.6   天然繊維バイオベースポリマーコンパウンド   178
  • 7.8.7.1亜麻      179
  • 7.8.7.2ケナフ  179
  • 7.8.7   天然繊維バイオベースポリマー不織布マット 179
  • 7.8.9.1市場概要       180
  • 7.8.10.1   市場概要       180
  • 7.8.10.2   アプリケーション天然繊維の     184
  • 7.8.11.1   市場概要       185
  • 7.8.11.2   アプリケーション天然繊維の     185
  • 7.8.12.1   市場概要       186
  • 7.8.13.1   市場概要       187
  • 7.8.13.2   消費者アパレル    188
  • 7.8.13.3   ジオテキスタイル     188
  • 7.8.14.1   市場概要       189
  • 7.8.8   天然繊維熱硬化性バイオレジン複合材料      179
  • 7.8.9   航空宇宙   180
  • 7.8.10自動車     180
  • 7.8.11建築/建設     184
  • 7.8.12スポーツとレジャー      186
  • 7.8.13テキスタイル      187
  • 7.8.14パッケージング   189
  • 7.9.1   世界の繊維市場全体 191
  • 7.9.2   素材の種類別     193
  • 7.9.3   市場別     193
  • 7.8   天然繊維の市場      174
  • 7.9    Global production天然繊維の 191

 

8    リグニン   194

  • 8.1   はじめに   195
    • 8.1.1   リグニンとは何か?     195
      • 8.1.1.1リグニンの構造    195
    • 8.1.2   種類リグニンの      196
    • 8.1.2.1硫黄含有リグニン       198
    • 8.1.2.2バイオリファイナリー・プロセスからの硫黄フリー・リグニン 199
    • 8.1.3   プロパティ     199
    • 8.1.4   リグノセルロース・バイオリファイナリー    201
    • 8.1.5   市場と用途     202
    • 8.1.6   課題リグニン使用   203
  • 8.2   リグニン製造プロセス      203
  • 8.2.1   原料の前処理     205
  • 8.2.2   変換プロセス    206
    • 8.2.2.1熱化学変換     206
    • 8.2.2.2化学変換     206
    • 8.2.2.3生物学的変換     206
    • 8.2.2.4電気化学変換      206
  • 8.2.3   リグノスルホン酸塩      207
  • 8.2.4   リグニン強度     207
  • 8.2.4.1リグノブースト・プロセス  207
  • 8.2.4.2リグノフォース方式   208
  • 8.2.4.3液体リグニンの連続回収と精製     209
  • 8.2.4.4A-リカバリー・プラス  209
  • 8.2.4.5SWOT分析      210
  • 8.2.5.1説明    211
  • 8.2.5.2SWOT分析     212
  • 8.2.6.1製品抽出・精製  213
  • 8.2.6.2リグノセルロース・バイオリファイナリーの経済性      213
  • 8.2.6.3商業用および前商業用のバイオリファイナリー用リグニン製造設備と プロセス      213
  • 8.2.6.4SWOT分析     215
  • 8.2.5   ソーダリグニン     211
  • 8.2.6   バイオリファイナリー・リグニン     213
  • 8.2.7   オルガノソルブ・リグニン    216
  • 8.2.8   加水分解リグニン       217
  • 8.3   リグニンナノ粒子217
  • 8.4   リグニン系炭素材料      218
  • 8.5   解重合リグニン製品      218
  • 8.6   リグニン系バイオプラスチック   219
  • 8.7.1   リグニンの市場促進要因と動向 220
  • 8.7.2   製造キャパシティ     221
  • 8.7.2.1技術的リグニン利用可能量(乾燥トン/年)       221
  • 8.7.2.2バイオマス転換(バイオリファイナリー)   222
  • 8.7.3   消費リグニンの    222
    • 8.7.3.1タイプ別   222
    • 8.7.3.2市場別     224
  • 8.7.4   価格 227
  • 8.7.5   市場と用途     227
  • 8.7.5.1熱と電力エネルギー   227
  • 8.7.5.2バイオオイル     227
  • 8.7.5.3合成ガス      228
  • 8.7.5.4芳香族化合物     229
    • 8.7.5.4.1       ベンゼン、トルエン、キシレン      230
    • 8.7.5.4.2       フェノールおよびフェノール樹脂 231
    • 8.7.5.4.3        Vanillin      232
  • 8.7.5.5ポリマー       232
  • 8.7.5.6ハイドロゲル     234
  • 8.7.5.6.1       接着剤     235
  • 8.7.5.7.1       カーボンブラック235
  • 8.7.5.7.2       活性炭     236
  • 8.7.5.7.3       カーボンファイバー  237
  • 8.7.5.7炭素材料   235
  • 8.7.5.8建設資材       238
  • 8.7.5.9ゴム      238
  • 8.7.5.10   ビチューメンとアスファルト   239
  • 8.7.5.12.1   スーパーキャパシタ      242
  • 8.7.5.12.2   リチウムイオン電池用負極   243
  • 8.7.5.12.3   リチウムイオン電池用ゲル電解質    244
  • 8.7.5.12.4   リチウムイオン電池用バインダー   244
  • 8.7.5.12.5   リチウムイオン電池正極  244
  • 8.7.5.12.6   ナトリウムイオン電池   244
  • 8.7.5.11   燃料   240
  • 8.7.5.12   エネルギー貯蔵     241
  • 8.7.5.13   結合剤、乳化剤、分散剤   245
  • 8.7.5.14   キレート剤     247
  • 8.7.5.15   コーティング   248
  • 8.7.5.16   セラミックス      249
  • 8.7.5.17   自動車     250
  • 8.7.5.18   難燃剤     250
  • 8.7.5.19   抗酸化物質  251
  • 8.7.5.20   潤滑油      252
  • 8.7.5.21   ダストコントロール   252
  • 8.7   リグニンの市場   220

 

9    会社概要   253 (553社のプロファイル)

 

10       REFERENCES637

 

ページTOPに戻る



図表リスト

List of Tables

  • Table 1. Types of Bio-based and/or Biodegradable Plastics, applications. 35
  • Table 2. Type of biodegradation. 39
  • Table 3. Advantages and disadvantages of biobased plastics compared to conventional plastics. 39
  • Table 4. Key market players by Bio-based and/or Biodegradable Plastic types. 40
  • Table 5. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.  42
  • Table 6. Lactic acid producers and production capacities.   44
  • Table 7. PLA producers and production capacities. 44
  • Table 8. Planned PLA capacity expansions in China.   45
  • Table 9. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications. 47
  • Table 10. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 48
  • Table 11. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications. 49
  • Table 12. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   49
  • Table 13. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.  51
  • Table 14. PEF vs. PET. 52
  • Table 15. FDCA and PEF producers. 53
  • Table 16. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.   54
  • Table 17. Leading Bio-PA producers production capacities.   55
  • Table 18. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications. 56
  • Table 19. Leading PBAT producers, production capacities and brands. 56
  • Table 20. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications. 58
  • Table 21. Leading PBS producers and production capacities.   59
  • Table 22. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.   60
  • Table 23. Leading Bio-PE producers.   60
  • Table 24. Bio-PP market analysis- manufacture, advantages, disadvantages and applications. 61
  • Table 25. Leading Bio-PP producers and capacities.   62
  • Table 26.Types of PHAs and properties. 65
  • Table 27. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 67
  • Table 28. Polyhydroxyalkanoate (PHA) extraction methods. 69
  • Table 29. Polyhydroxyalkanoates (PHA) market analysis. 70
  • Table 30. Commercially available PHAs. 71
  • Table 31. Markets and applications for PHAs.   72
  • Table 32. Applications, advantages and disadvantages of PHAs in packaging. 73
  • Table 33. Polyhydroxyalkanoates (PHA) producers.   76
  • Table 34. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.   78
  • Table 35. Leading MFC producers and capacities. 79
  • Table 36. Synthesis methods for cellulose nanocrystals (CNC). 80
  • Table 37. CNC sources, size and yield. 81
  • Table 38. CNC properties. 81
  • Table 39. Mechanical properties of CNC and other reinforcement materials.   82
  • Table 40. Applications of nanocrystalline cellulose (NCC).   83
  • Table 41. Cellulose nanocrystals analysis. 84
  • Table 42: Cellulose nanocrystal production capacities and production process, by producer.   85
  • Table 43. Global demand for cellulose nanocrystals by market, 2018-2035 (metric tons). 85
  • Table 44. Applications of cellulose nanofibers (CNF).   88
  • Table 45. Cellulose nanofibers market analysis. 89
  • Table 46. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.   90
  • Table 47. Applications of bacterial nanocellulose (BNC). 104
  • Table 48. Types of protein based-bioplastics, applications and companies.   105
  • Table 49. Types of algal and fungal based-bioplastics, applications and companies.  106
  • Table 50. Overview of alginate-description, properties, application and market size. 107
  • Table 51. Companies developing algal-based bioplastics. 108
  • Table 52. Overview of mycelium fibers-description, properties, drawbacks and applications. 109
  • Table 53. Companies developing mycelium-based bioplastics.  111
  • Table 54. Overview of chitosan-description, properties, drawbacks and applications.   111
  • Table 55. Global production capacities of biobased and sustainable plastics in 2019-2035, by region, 1,000 tonnes. 113
  • Table 56. Biobased and sustainable plastics producers in North America.   114
  • Table 57. Biobased and sustainable plastics producers in Europe. 114
  • Table 58. Biobased and sustainable plastics producers in Asia-Pacific. 115
  • Table 59. Biobased and sustainable plastics producers in Latin America. 116
  • Table 60. Processes for bioplastics in packaging. 118
  • Table 61. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging. 119
  • Table 62. Typical applications for bioplastics in flexible packaging. 120
  • Table 63. Typical applications for bioplastics in rigid packaging. 122
  • Table 64. Types of next-gen natural fibers.  136
  • Table 65. Application, manufacturing method, and matrix materials of natural fibers. 139
  • Table 66. Typical properties of natural fibers. 140
  • Table 67. Commercially available next-gen natural fiber products. 140
  • Table 68. Market drivers for natural fibers.  143
  • Table 69. Overview of cotton fibers-description, properties, drawbacks and applications.   145
  • Table 70. Overview of kapok fibers-description, properties, drawbacks and applications. 147
  • Table 71. Overview of luffa fibers-description, properties, drawbacks and applications. 148
  • Table 72. Overview of jute fibers-description, properties, drawbacks and applications. 149
  • Table 73. Overview of hemp fibers-description, properties, drawbacks and applications.   151
  • Table 74. Overview of flax fibers-description, properties, drawbacks and applications. 152
  • Table 75. Overview of ramie fibers- description, properties, drawbacks and applications. 154
  • Table 76. Overview of kenaf fibers-description, properties, drawbacks and applications. 155
  • Table 77. Overview of sisal leaf fibers-description, properties, drawbacks and applications. 157
  • Table 78. Overview of abaca fibers-description, properties, drawbacks and applications. 159
  • Table 79. Overview of coir fibers-description, properties, drawbacks and applications. 160
  • Table 80. Overview of banana fibers-description, properties, drawbacks and applications.   162
  • Table 81. Overview of pineapple fibers-description, properties, drawbacks and applications.   163
  • Table 82. Overview of rice fibers-description, properties, drawbacks and applications. 165
  • Table 83. Overview of corn fibers-description, properties, drawbacks and applications. 165
  • Table 84. Overview of switch grass fibers-description, properties and applications. 166
  • Table 85. Overview of sugarcane fibers-description, properties, drawbacks and application and market size. 166
  • Table 86. Overview of bamboo fibers-description, properties, drawbacks and applications.  167
  • Table 87. Overview of wool fibers-description, properties, drawbacks and applications.   169
  • Table 88. Alternative wool materials producers. 170
  • Table 89. Overview of silk fibers-description, properties, application and market size. 170
  • Table 90. Alternative silk materials producers.   171
  • Table 91. Alternative leather materials producers.   172
  • Table 92. Next-gen fur producers.   173
  • Table 93. Alternative down materials producers. 174
  • Table 94. Applications of natural fiber composites. 175
  • Table 95. Typical properties of short natural fiber-thermoplastic composites.  176
  • Table 96. Properties of non-woven natural fiber mat composites.   177
  • Table 97. Properties of aligned natural fiber composites. 178
  • Table 98. Properties of natural fiber-bio-based polymer compounds. 178
  • Table 99. Properties of natural fiber-bio-based polymer non-woven mats. 179
  • Table 100. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use.   180
  • Table 101. Natural fiber-reinforced polymer composite in the automotive market.   182
  • Table 102. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use.   183
  • Table 103. Applications of natural fibers in the automotive industry. 184
  • Table 104. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use. 185
  • Table 105. Applications of natural fibers in the building/construction sector. 185
  • Table 106. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use.   187
  • Table 107. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use.   187
  • Table 108. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use.   189
  • Table 109. Technical lignin types and applications. 197
  • Table 110. Classification of technical lignins.   199
  • Table 111. Lignin content of selected biomass. 199
  • Table 112. Properties of lignins and their applications. 200
  • Table 113. Example markets and applications for lignin.  202
  • Table 114. Processes for lignin production. 204
  • Table 115. Commercial and pre-commercial biorefinery lignin production facilities and  processes 213
  • Table 116. Market drivers and trends for lignin. 220
  • Table 117. Production capacities of technical lignin producers.  221
  • Table 118. Production capacities of biorefinery lignin producers.   222
  • Table 119. Estimated consumption of lignin, by type, 2019-2035 (000 MT).   222
  • Table 120. Estimated consumption of lignin, by market, 2019-2034 (000 MT).  225
  • Table 121. Lignin aromatic compound products. 230
  • Table 122. Prices of benzene, toluene, xylene and their derivatives. 231
  • Table 123. Lignin products in polymeric materials.   233
  • Table 124. Application of lignin in plastics and composites.   233
  • Table 125. Applications of lignin in construction materials. 238
  • Table 126. Lignin applications in rubber and elastomers. 239
  • Table 127. Lignin products in fuels. 241
  • Table 128. Lignin-derived anodes in lithium batteries.   243
  • Table 129. Application of lignin in binders, emulsifiers and dispersants.   245
  • Table 130. Lactips plastic pellets.   442
  • Table 131. Oji Holdings CNF products. 512

 

List of Figures

  • Figure 1.  Coca-Cola PlantBottle®. 37
  • Figure 2. Interrelationship between conventional, bio-based and biodegradable plastics. 38
  • Figure 3. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes). 46
  • Figure 4. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes) 48
  • Figure 5. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes). 50
  • Figure 6. Production capacities of Polyethylene furanoate (PEF) to 2025.   53
  • Figure 7. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).   53
  • Figure 8. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes). 55
  • Figure 9. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes).   57
  • Figure 10. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes). 59
  • Figure 11. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes). 61
  • Figure 12. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes). 62
  • Figure 13. PHA family.   65
  • Figure 14. PHA production capacities 2019-2035 (1,000 tonnes). 77
  • Figure 15. TEM image of cellulose nanocrystals. 79
  • Figure 16. CNC preparation. 80
  • Figure 17. Extracting CNC from trees.   81
  • Figure 18. CNC slurry.   83
  • Figure 19. Global demand for cellulose nanocrystals by market, 2018-2035 (metric tons).   87
  • Figure 20. CNF gel. 88
  • Figure 21. Global market demand for cellulose nanofibers in composites, 2018-2035 (metric tons). 92
  • Figure 22. Global market demand for cellulose nanofibers in the automotive sector, 2018-2035 (metric tons).  93
  • Figure 23. Demand for cellulose nanofibers in construction, 2018-2035 (tons).   94
  • Figure 24. Global demand for cellulose nanofibers in the paper & board/packaging market, 2018-2035 (tons). 95
  • Figure 25. Demand for cellulose nanofibers in the textiles sector, 2018-2035 (tons). 96
  • Figure 26. Global demand for cellulose nanofibers in biomedical and healthcare, 2018-2035 (tons).   97
  • Figure 27. Global demand for cellulose nanofibers in hygiene and sanitary products, 2018-2035 (tons).   98
  • Figure 28. Global demand for cellulose nanofibers in paint and coatings, 2018-2035 (tons). 99
  • Figure 29: Global demand for nanocellulose in in aerogels, 2018-2035 (tons). 99
  • Figure 30. Global demand for cellulose nanofibers in the oil and gas market, 2018-2035 (tons). 100
  • Figure 31. Global demand for Cellulose nanofibers in the filtration market, 2018-2035 (tons).   101
  • Figure 32. Global demand for cellulose nanofibers in the rheology modifiers market, 2018-2035 (tons).   101
  • Figure 33. Bacterial nanocellulose shapes 103
  • Figure 34. BLOOM masterbatch from Algix. 108
  • Figure 35. Typical structure of mycelium-based foam.   110
  • Figure 36. Commercial mycelium composite construction materials.   111
  • Figure 37. Global production capacities for bioplastics by region  2019-2035, 1,000 tonnes. 113
  • Figure 38. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes.   117
  • Figure 39. PHA bioplastics products. 119
  • Figure 40. The global market for biobased and biodegradable plastics for flexible packaging 2019–2035 (‘000 tonnes). 121
  • Figure 41. Production volumes for bioplastics for rigid packaging, 2019–2035 (‘000 tonnes). 123
  • Figure 42. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes. 125
  • Figure 43. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes. 127
  • Figure 44. Global production volumes for biobased and biodegradable polymers in building and construction 2019-2035, in 1,000 tonnes. 129
  • Figure 45. Global production volumes for biobased and biodegradable polymers in textiles 2019-2035, in 1,000 tonnes. 132
  • Figure 46. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes. 133
  • Figure 47. Biodegradable mulch films. 134
  • Figure 48. Global production volulmes for biobased and biodegradable polymers in agriculture 2019-2035, in 1,000 tonnes. 135
  • Figure 49. Types of natural fibers. 138
  • Figure 50. Absolut natural based fiber bottle cap. 141
  • Figure 51. Adidas algae-ink tees.   141
  • Figure 52. Carlsberg natural fiber beer bottle.   141
  • Figure 53. Miratex watch bands. 141
  • Figure 54. Adidas Made with Nature Ultraboost 22. 142
  • Figure 55. PUMA RE:SUEDE sneaker 142
  • Figure 56. Cotton production volume 2018-2035 (Million MT). 146
  • Figure 57. Kapok production volume 2018-2035 (MT). 147
  • Figure 58.  Luffa cylindrica fiber. 148
  • Figure 59. Jute production volume 2018-2035 (Million MT). 150
  • Figure 60. Hemp fiber production volume 2018-2035 ( MT).   152
  • Figure 61. Flax fiber production volume 2018-2035 (MT). 154
  • Figure 62. Ramie fiber production volume 2018-2035 (MT). 155
  • Figure 63. Kenaf fiber production volume 2018-2035 (MT).   156
  • Figure 64. Sisal fiber production volume 2018-2035 (MT).   158
  • Figure 65. Abaca fiber production volume 2018-2035 (MT). 160
  • Figure 66. Coir fiber production volume 2018-2035 (MILLION MT). 161
  • Figure 67. Banana fiber production volume 2018-2035 (MT).   163
  • Figure 68. Pineapple fiber. 164
  • Figure 69. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019. 164
  • Figure 70. Bamboo fiber production volume 2018-2035 (MILLION MT). 168
  • Figure 71. Conceptual landscape of next-gen leather materials. 172
  • Figure 72. Hemp fibers combined with PP in car door panel. 179
  • Figure 73. Car door produced from Hemp fiber. 181
  • Figure 74. Mercedes-Benz components containing natural fibers.   182
  • Figure 75. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 188
  • Figure 76. Coir mats for erosion control. 189
  • Figure 77. Global fiber production in 2023, by fiber type, million MT and %.   191
  • Figure 78. Global fiber production (million MT), 2018-2035.   192
  • Figure 79. Natural fiber production 2018-2035, by material type, Million MT.   193
  • Figure 80. Natural fiber production 2018-2035, by market, Million MT.   194
  • Figure 81. High purity lignin. 195
  • Figure 82. Lignocellulose architecture. 196
  • Figure 83. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.   197
  • Figure 84. The lignocellulose biorefinery.   202
  • Figure 85. LignoBoost process.   208
  • Figure 86. LignoForce system for lignin recovery from black liquor. 208
  • Figure 87. Sequential liquid-lignin recovery and purification (SLPR) system.   209
  • Figure 88. A-Recovery+ chemical recovery concept. 210
  • Figure 89. Kraft lignin SWOT analysis. 211
  • Figure 90. Soda lignin SWOT analysis.   212
  • Figure 91. Biorefinery lignin SWOT analysis. 216
  • Figure 92. Organosolv lignin. 217
  • Figure 93. Hydrolytic lignin powder. 217
  • Figure 94. Estimated consumption of lignin, by type, 2019-2035 (000 MT). 224
  • Figure 95. Estimated consumption of lignin, by market, 2019-2035 (000 MT). 226
  • Figure 96. Schematic of WISA plywood home.   232
  • Figure 97. Lignin based activated carbon.  237
  • Figure 98. Lignin/celluose precursor. 237
  • Figure 99. Functional rubber filler made from lignin. 239
  • Figure 100. Road repair utilizing lignin. 240
  • Figure 101. Prototype of lignin based supercapacitor.   242
  • Figure 102. Stora Enso lignin battery materials.   245
  • Figure 103. Pluumo.  257
  • Figure 104. ANDRITZ Lignin Recovery process. 266
  • Figure 105. Anpoly cellulose nanofiber hydrogel.  267
  • Figure 106. MEDICELLU™.   268
  • Figure 107. Asahi Kasei CNF fabric sheet.  276
  • Figure 108. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 276
  • Figure 109. CNF nonwoven fabric. 277
  • Figure 110. Roof frame made of natural fiber.   286
  • Figure 111. Beyond Leather Materials product. 289
  • Figure 112. BIOLO e-commerce mailer bag made from PHA.   296
  • Figure 113. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.   297
  • Figure 114. Fiber-based screw cap. 308
  • Figure 115. formicobio™ technology.   327
  • Figure 116. nanoforest-S.   329
  • Figure 117. nanoforest-PDP. 329
  • Figure 118. nanoforest-MB.  330
  • Figure 119. sunliquid® production process.   337
  • Figure 120. CuanSave film. 339
  • Figure 121. Celish. 341
  • Figure 122. Trunk lid incorporating CNF.   342
  • Figure 123. ELLEX products. 344
  • Figure 124. CNF-reinforced PP compounds.   344
  • Figure 125. Kirekira! toilet wipes.   344
  • Figure 126. Color CNF. 345
  • Figure 127. Rheocrysta spray. 350
  • Figure 128. DKS CNF products. 351
  • Figure 129. Domsjö process. 352
  • Figure 130. Mushroom leather. 361
  • Figure 131. CNF based on citrus peel. 362
  • Figure 132. Citrus cellulose nanofiber. 363
  • Figure 133. Filler Bank CNC products.   374
  • Figure 134. Fibers on kapok tree and after processing.   376
  • Figure 135. GREEN CHIP CMF pellets and injection moulded products. 379
  • Figure 136.  TMP-Bio Process. 380
  • Figure 137. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.   381
  • Figure 138. Water-repellent cellulose. 383
  • Figure 139. Cellulose Nanofiber (CNF) composite with polyethylene (PE).   384
  • Figure 140. PHA production process.   385
  • Figure 141. CNF products from Furukawa Electric.   386
  • Figure 142. AVAPTM process.   396
  • Figure 143. GreenPower+™ process. 397
  • Figure 144. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 401
  • Figure 145. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 404
  • Figure 146. CNF gel.  410
  • Figure 147. Block nanocellulose material. 411
  • Figure 148. CNF products developed by Hokuetsu. 411
  • Figure 149. Marine leather products. 414
  • Figure 150. Inner Mettle Milk products.   417
  • Figure 151. Kami Shoji CNF products. 428
  • Figure 152. Dual Graft System.   431
  • Figure 153. Engine cover utilizing Kao CNF composite resins.   432
  • Figure 154. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).   432
  • Figure 155. Kel Labs yarn.   433
  • Figure 156. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).   439
  • Figure 157. Lignin gel. 449
  • Figure 158. BioFlex process. 453
  • Figure 159. Nike Algae Ink graphic tee.   455
  • Figure 160. LX Process. 458
  • Figure 161. Made of Air's HexChar panels. 461
  • Figure 162. TransLeather. 462
  • Figure 163. Chitin nanofiber product.   466
  • Figure 164. Marusumi Paper cellulose nanofiber products. 468
  • Figure 165. FibriMa cellulose nanofiber powder.   468
  • Figure 166. METNIN™ Lignin refining technology.   473
  • Figure 167. IPA synthesis method. 477
  • Figure 168. MOGU-Wave panels.   479
  • Figure 169. CNF slurries.   481
  • Figure 170. Range of CNF products. 481
  • Figure 171. Reishi.   485
  • Figure 172. Compostable water pod. 501
  • Figure 173. Leather made from leaves. 502
  • Figure 174. Nike shoe with beLEAF™.   502
  • Figure 175. CNF clear sheets. 512
  • Figure 176. Oji Holdings CNF polycarbonate product. 513
  • Figure 177. Fluorene cellulose ® powder.   516
  • Figure 178. Enfinity cellulosic ethanol technology process. 527
  • Figure 179. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 532
  • Figure 180. XCNF. 539
  • Figure 181: Plantrose process. 540
  • Figure 182. LOVR hemp leather. 543
  • Figure 183. CNF insulation flat plates.   545
  • Figure 184. Hansa lignin. 551
  • Figure 185. Manufacturing process for STARCEL.  555
  • Figure 186. Manufacturing process for STARCEL.  559
  • Figure 187. 3D printed cellulose shoe.   566
  • Figure 188. Lyocell process. 569
  • Figure 189. North Face Spiber Moon Parka.   574
  • Figure 190. PANGAIA LAB NXT GEN Hoodie. 574
  • Figure 191. Spider silk production.  575
  • Figure 192. Stora Enso lignin battery materials.   579
  • Figure 193. 2 wt.% CNF suspension.   580
  • Figure 194. BiNFi-s Dry Powder. 581
  • Figure 195. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.   581
  • Figure 196. Silk nanofiber (right) and cocoon of raw material. 582
  • Figure 197. Sulapac cosmetics containers.   583
  • Figure 198.  Sulzer equipment for PLA polymerization processing.   584
  • Figure 199. Solid Novolac Type lignin modified phenolic resins. 585
  • Figure 200. Teijin bioplastic film for door handles. 595
  • Figure 201. Corbion FDCA production process. 603
  • Figure 202. Comparison of weight reduction effect using CNF.   604
  • Figure 203. CNF resin products.   608
  • Figure 204. UPM biorefinery process.   609
  • Figure 205. Vegea production process.   614
  • Figure 206. The Proesa® Process. 616
  • Figure 207. Goldilocks process and applications. 617
  • Figure 208. Visolis’ Hybrid Bio-Thermocatalytic Process. 620
  • Figure 209. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.   623
  • Figure 210. Worn Again products.   628
  • Figure 211. Zelfo Technology GmbH CNF production process.   633


 

 

 

ページTOPに戻る


 

Summary

The global market for biobased polymers and plastics is experiencing rapid growth as industries and consumers increasingly seek sustainable alternatives to conventional petroleum-based materials. This burgeoning sector represents a critical component in the transition towards a more circular and environmentally friendly economy. Biobased polymers, derived from renewable biomass sources such as corn, sugarcane, and cellulose, offer the potential to significantly reduce carbon footprints and dependence on fossil fuels. The importance of this market extends beyond environmental benefits. It plays a crucial role in driving innovation across multiple industries, from packaging and consumer goods to automotive and construction. As regulations tighten around single-use plastics and carbon emissions, biobased alternatives are becoming essential for companies to meet sustainability targets and maintain consumer trust.

Furthermore, the development of biobased polymers is spurring advancements in agricultural practices, biorefining technologies, and materials science. This cross-sector innovation is creating new economic opportunities, particularly in rural areas where biomass feedstocks are grown and processed. The market's growth is also catalyzing investments in research and development, leading to improvements in the performance and cost-competitiveness of bioplastics.

This comprehensive 600+ page report provides an in-depth analysis of the rapidly growing global market for biobased polymers and plastics. This report examines the latest technological developments, market trends, and growth opportunities in this dynamic sector. Report contents include:

  • Detailed analysis of synthetic and natural bio-based polymers including PLA, PHA, bio-PE, bio-PET, bio-PA, and more
  • Evaluation of biodegradable and compostable plastic materials
  • Examination of natural fibers and lignin-based materials
  • Market forecasts from 2019-2035 for production volumes and capacities
  • Profiles of over 500 companies across the bioplastics value chain. Companies profiled include Avantium, BASF, Biome Bioplastics, Braskem, Buyo, Danimer Scientific, FabricNano, FlexSea, Floreon, Gevo, MetaCycler BioInnovations, Mi Terro, PlantSwitch, Teijin Limited, Verde Bioresins, Versalis, and  Xampla.
  • Analysis of market drivers, challenges, and emerging applications

 

The report segments the market by polymer type, application, and region, providing granular data on production volumes, consumption patterns, and growth projections. It highlights the shift from first-generation feedstocks to advanced biomass sources and the integration of recycled content in bio-based plastics.

Synthetic Bio-based Polymers:

  • Polylactic acid (PLA)
  • Bio-polyethylene terephthalate (Bio-PET)
  • Bio-polyamides (Bio-PA)
  • Bio-polyethylene (Bio-PE)
  • Bio-polypropylene (Bio-PP)
  • Polyethylene furanoate (PEF)
  • Polytrimethylene terephthalate (PTT)
  • Polybutylene succinate (PBS)
  • Poly(butylene adipate-co-terephthalate) (PBAT)

 

Natural Bio-based Polymers:

  • Polyhydroxyalkanoates (PHA)
  • Cellulose-based materials (including nanocellulose)
  • Starch-based plastics
  • Lignin-based materials
  • Proteins (soy, casein, etc.)
  • Natural fibers (cotton, jute, flax, etc.)

 

The study provides a thorough examination of each polymer type, including production processes, properties, cost analysis, and comparative advantages versus conventional plastics. Emerging materials like bacterial cellulose and mycelium-based composites are also evaluated for their future market potential.

Applications Analysis:

Detailed market data and growth projections are provided for key application areas:

  • Packaging (rigid and flexible)
  • Consumer goods
  • Automotive
  • Building & construction
  • Textiles
  • Electronics
  • Agriculture

 

The packaging sector currently dominates bioplastics usage, accounting for over 50% of the market. However, automotive and construction applications are expected to see the fastest growth rates in the coming years as bioplastics increasingly replace conventional materials in these industries.

Regional Analysis:

The report offers a comprehensive regional breakdown, covering:

  • North America
  • Europe
  • Asia Pacific
  • Latin America
  • Middle East & Africa

 

Competitive Landscape:

An extensive analysis of the competitive environment includes:

  • Market shares of leading biopolymer producers
  • Detailed company profiles of over 500 key players
  • Strategic initiatives, partnerships, and M&A activities
  • Investments in capacity expansion and new technology development
  • Emerging start-ups and their innovative approaches

 

Technology Assessment:

The study provides an in-depth look at the latest technological developments in bio-based polymers, including:

  • Advances in fermentation and biorefining processes
  • Innovations in polymer blending and compounding
  • Progress in biodegradability and compostability
  • Improvements in barrier properties and heat resistance
  • Integration of recycled content in bio-based plastics
  • Development of novel biomass feedstocks

 

Regulatory Landscape:

A thorough examination of the regulatory environment influencing bioplastics markets, including:

  • Single-use plastic bans and restrictions
  • Biodegradability and compostability standards
  • Recycling regulations and infrastructure development
  • Carbon pricing mechanisms and their impact on bioplastics
  • Incentives for bio-based products in government procurement

 

It also identifies key opportunities for growth and innovation, such as:

  • Development of advanced biorefineries for integrated production
  • Expansion into high-performance engineering plastics
  • Customization of bioplastics for specific end-use requirements
  • Creation of new value-added applications for lignin and other bio-based materials
  • Potential for carbon-negative plastics through biomass feedstocks and carbon capture

 



ページTOPに戻る


Table of Contents

1     RESEARCH METHODOLOGY      33

 

2     INTRODUCTION       34

  • 2.1    Types of bioplastics  35
  • 2.2    Bio-based or renewable plastics      36
    • 2.2.1    Drop-in bio-based plastics   36
    • 2.2.2    Novel bio-based plastics       37
  • 2.3    Biodegradable and compostable plastics  38
  • 2.3.1    Biodegradability       38
  • 2.3.2    Compostability    39
  • 2.4    Key market players     40

 

3     SYNTHETIC BIO-BASED POLYMERS AND PLASTICS     42

  • 3.1    Polylactic acid (Bio-PLA)    42
    • 3.1.1    Market analysis    42
    • 3.1.2    Production       44
    • 3.1.3    Producers and production capacities, current and planned       44
      • 3.1.3.1 Lactic acid producers and production capacities 44
      • 3.1.3.2 PLA producers and production capacities 44
      • 3.1.3.3 Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes) 46
  • 3.2    Polyethylene terephthalate (Bio-PET)    47
  • 3.2.1    Market analysis    47
  • 3.2.2    Producers and production capacities        48
  • 3.2.3    Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)     48
  • 3.3.1    Market analysis    49
  • 3.3.2    Producers and production capacities        49
  • 3.3.3    Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)      50
  • 3.4.1    Market analysis    51
  • 3.4.2    Comparative properties to PET       52
  • 3.4.3    Producers and production capacities        52
    • 3.4.3.1 FDCA and PEF producers and production capacities      52
    • 3.4.3.2 Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).    53
  • 3.5.1    Market analysis    54
  • 3.5.2    Producers and production capacities        55
  • 3.5.3    Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)        55
  • 3.6.1    Market analysis    56
  • 3.6.2    Producers and production capacities        56
  • 3.6.3    Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)    57
  • 3.7.1    Market analysis    58
  • 3.7.2    Producers and production capacities        59
  • 3.7.3    Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)      59
  • 3.8.1    Market analysis    60
  • 3.8.2    Producers and production capacities        60
  • 3.8.3    Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).      61
  • 3.9.1    Market analysis    61
  • 3.9.2    Producers and production capacities        62
  • 3.9.3    Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes)     62
  • 3.3    Polytrimethylene terephthalate (Bio-PTT)   49
  • 3.4    Polyethylene furanoate (Bio-PEF)     51
  • 3.5    Polyamides (Bio-PA)  54
  • 3.6    Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        56
  • 3.7    Polybutylene succinate (PBS) and copolymers       58
  • 3.8    Polyethylene (Bio-PE)       60
  • 3.9    Polypropylene (Bio-PP)    61

 

4     NATURAL BIO-BASED POLYMERS    63

  • 4.1    Polyhydroxyalkanoates (PHA)     63
    • 4.1.1    Technology description        63
    • 4.1.2    Types   64
      • 4.1.2.1 PHB      66
      • 4.1.2.2 PHBV   67
    • 4.1.3    Synthesis and production processes     68
    • 4.1.4    Market analysis    70
    • 4.1.5    Commercially available PHAs    71
    • 4.1.6    Markets for PHAs    72
    • 4.1.6.1 Packaging    73
    • 4.1.6.2 Cosmetics       74
      • 4.1.6.2.1        PHA microspheres     74
    • 4.1.6.3 Medical      75
    • 4.1.6.3.1        Tissue engineering      75
    • 4.1.6.3.2        Drug delivery  75
    • 4.1.6.4.1        Mulch film    75
    • 4.1.6.4.2        Grow bags    75
    • 4.1.6.4 Agriculture       75
    • 4.1.7    Producers and production capacities        76
    • 4.1.8    PHA production capacities 2019-2035 (1,000 tonnes)      77
  • 4.2    Cellulose       78
  • 4.2.1    Microfibrillated cellulose (MFC)    78
    • 4.2.1.1 Market analysis    78
    • 4.2.1.2 Producers and production capacities        79
  • 4.2.2    Nanocellulose       79
  • 4.2.2.1 Cellulose nanocrystals        79
    • 4.2.2.1.1        Synthesis       80
    • 4.2.2.1.2        Properties      81
    • 4.2.2.1.3        Production       82
    • 4.2.2.1.4        Applications   82
    • 4.2.2.1.5        Market analysis    84
    • 4.2.2.1.6        Producers and production capacities        85
    • 4.2.2.1.7        Global demand for cellulose nanocrystals by market      85
  • 4.2.2.2 Cellulose nanofibers 88
  • 4.2.2.2.1        Applications   88
  • 4.2.2.2.2        Market analysis    89
  • 4.2.2.2.3        Producers and production capacities        90
    • 4.2.2.2.3.1      Global demand in tons by market    91
      • 4.2.2.2.3.1.1  Composites    91
      • 4.2.2.2.3.1.2  Automotive      92
      • 4.2.2.2.3.1.3  Building and construction     93
      • 4.2.2.2.3.1.4  Paper & board/packaging      94
      • 4.2.2.2.3.1.5  Textiles       95
      • 4.2.2.2.3.1.6  Biomedicine and healthcare    96
      • 4.2.2.2.3.1.7  Hygiene and sanitary products       97
      • 4.2.2.2.3.1.8  Paint and coatings      98
      • 4.2.2.2.3.1.9  Aerogels    99
      • 4.2.2.2.3.1.10 Oil and gas      99
      • 4.2.2.2.3.1.11 Filtration    100
      • 4.2.2.2.3.1.12 Rheology modifiers    101
  • 4.2.2.3.1        Production       101
  • 4.2.2.3.2        Applications   104
  • 4.2.2.3 Bacterial Nanocellulose (BNC)       101
  • 4.2.3.1 Types, applications and producers  105
  • 4.2.4.1 Algal     107
    • 4.2.4.1.1        Advantages     107
    • 4.2.4.1.2        Production       108
    • 4.2.4.1.3        Producers      108
  • 4.2.4.2 Mycelium       109
  • 4.2.4.2.1        Properties      109
  • 4.2.4.2.2        Applications   110
  • 4.2.4.2.3        Commercialization    111
  • 4.2.5.1 Technology description        111
  • 4.2.3    Protein-based bioplastics     105
  • 4.2.4    Algal and fungal        106
  • 4.2.5    Chitosan        111

 

5     PRODUCTION OF BIO-BASED POLYMERS AND PLASTICS, BY REGION  113

  • 5.1    North America      114
  • 5.2    Europe    114
  • 5.3    Asia-Pacific    115
    • 5.3.1    China  115
    • 5.3.2    Japan  115
    • 5.3.3    Thailand    115
    • 5.3.4    Indonesia      115
  • 5.4    Latin America 116

 

6     MARKET SEGMENTATION OF BIOPLASTICS      117

  • 6.1    Packaging    118
    • 6.1.1    Processes for bioplastics in packaging    118
    • 6.1.2    Applications   119
    • 6.1.3    Flexible packaging     119
      • 6.1.3.1 Production volumes 2019-2035       121
    • 6.1.4    Rigid packaging    122
    • 6.1.4.1 Production volumes 2019-2035       123
  • 6.2    Consumer products  124
  • 6.2.1    Applications   124
  • 6.2.2    Production volumes 2019-2035       124
  • 6.3.1    Applications   126
  • 6.3.2    Production volumes 2019-2035       127
  • 6.4.1    Applications   128
  • 6.4.2    Production volumes 2019-2035       128
  • 6.5.1    Apparel      129
  • 6.5.2    Footwear        130
  • 6.5.3    Medical textiles    131
  • 6.5.4    Production volumes 2019-2035       131
  • 6.5.5    Electronics      132
    • 6.5.5.1 Applications   132
    • 6.5.5.2 Production volumes 2019-2035       133
  • 6.5.6    Agriculture and horticulture 133
  • 6.5.6.1 Production volumes 2019-2035       134
  • 6.3    Automotive      126
  • 6.4    Building & construction       128
  • 6.5    Textiles       129

 

7     NATURAL FIBERS    136

  • 7.1    Manufacturing method, matrix materials and applications of natural fibers       139
  • 7.2    Advantages of natural fibers 140
  • 7.3    Commercially available next-gen natural fiber  products 140
  • 7.4    Market drivers for next-gen natural fibers    143
  • 7.5    Challenges      144
  • 7.6    Plants (cellulose, lignocellulose)      145
    • 7.6.1    Seed fibers      145
      • 7.6.1.1 Cotton 145
        • 7.6.1.1.1        Production volumes 2018-2035       146
      • 7.6.1.2 Kapok 147
      • 7.6.1.2.1        Production volumes 2018-2035       147
      • 7.6.1.3 Luffa    148
    • 7.6.2    Bast fibers    149
    • 7.6.2.1 Jute       149
    • 7.6.2.2 Production volumes 2018-2035       150
      • 7.6.2.2.1        Hemp  151
      • 7.6.2.2.2        Production volumes 2018-2035       151
    • 7.6.2.3 Flax       152
    • 7.6.2.3.1        Production volumes 2018-2035       153
    • 7.6.2.4.1        Production volumes 2018-2035       154
    • 7.6.2.5.1        Production volumes 2018-2035       156
    • 7.6.2.4 Ramie 154
    • 7.6.2.5 Kenaf   155
    • 7.6.3.1 Sisal     157
      • 7.6.3.1.1        Production volumes 2018-2035       157
    • 7.6.3.2 Abaca 159
    • 7.6.3.2.1        Production volumes 2018-2035       159
    • 7.6.4.1 Coir      160
      • 7.6.4.1.1        Production volumes 2018-2035       161
    • 7.6.4.2 Banana      162
    • 7.6.4.2.1        Production volumes 2018-2035       162
    • 7.6.4.3 Pineapple      163
    • 7.6.5.1 Rice fiber       165
    • 7.6.5.2 Corn     165
    • 7.6.6.1 Switch grass   166
    • 7.6.6.2 Sugarcane (agricultural residues)    166
    • 7.6.6.3 Bamboo    167
      • 7.6.6.3.1        Production volumes 2018-2035       168
    • 7.6.6.4 Fresh grass (green biorefinery)        169
    • 7.6.3    Leaf fibers    157
    • 7.6.4    Fruit fibers       160
    • 7.6.5    Stalk fibers from agricultural residues       165
    • 7.6.6    Cane, grasses and reed        166
  • 7.7    Animal (fibrous protein)       169
  • 7.7.1    Wool    169
    • 7.7.1.1 Alternative wool materials    170
    • 7.7.1.2 Producers      170
  • 7.7.2    Silk fiber    170
  • 7.7.2.1 Alternative silk materials    171
    • 7.7.2.1.1        Producers      171
  • 7.7.3.1 Alternative leather materials       172
    • 7.7.3.1.1        Producers      172
  • 7.7.4.1 Producers      173
  • 7.7.5.1 Alternative down materials   174
    • 7.7.5.1.1        Producers      174
  • 7.7.3    Leather       171
  • 7.7.4    Fur      173
  • 7.7.5    Down  174
  • 7.8.1    Composites    174
  • 7.8.2    Applications   175
  • 7.8.3    Natural fiber injection moulding compounds        176
    • 7.8.3.1 Properties      176
    • 7.8.3.2 Applications   176
  • 7.8.4    Non-woven natural fiber mat composites  177
  • 7.8.4.1 Automotive      177
  • 7.8.4.2 Applications   177
  • 7.8.5    Aligned natural fiber-reinforced composites    177
  • 7.8.6    Natural fiber biobased polymer compounds    178
  • 7.8.7.1 Flax       179
  • 7.8.7.2 Kenaf   179
  • 7.8.7    Natural fiber biobased polymer non-woven mats  179
  • 7.8.9.1 Market overview        180
  • 7.8.10.1    Market overview        180
  • 7.8.10.2    Applications of natural fibers      184
  • 7.8.11.1    Market overview        185
  • 7.8.11.2    Applications of natural fibers      185
  • 7.8.12.1    Market overview        186
  • 7.8.13.1    Market overview        187
  • 7.8.13.2    Consumer apparel     188
  • 7.8.13.3    Geotextiles      188
  • 7.8.14.1    Market overview        189
  • 7.8.8    Natural fiber thermoset bioresin composites       179
  • 7.8.9    Aerospace    180
  • 7.8.10 Automotive      180
  • 7.8.11 Building/construction      184
  • 7.8.12 Sports and leisure       186
  • 7.8.13 Textiles       187
  • 7.8.14 Packaging    189
  • 7.9.1    Overall global fibers market 191
  • 7.9.2    By material types      193
  • 7.9.3    By market      193
  • 7.8    Markets for natural fibers       174
  • 7.9    Global production of natural fibers 191

 

8     LIGNIN    194

  • 8.1    Introduction    195
    • 8.1.1    What is lignin?      195
      • 8.1.1.1 Lignin structure     195
    • 8.1.2    Types of lignin       196
    • 8.1.2.1 Sulfur containing lignin        198
    • 8.1.2.2 Sulfur-free lignin from biorefinery process 199
    • 8.1.3    Properties      199
    • 8.1.4    The lignocellulose biorefinery     201
    • 8.1.5    Markets and applications      202
    • 8.1.6    Challenges for using lignin    203
  • 8.2    Lignin production processes       203
  • 8.2.1    Feedstock Preprocessing      205
  • 8.2.2    Conversion Processes     206
    • 8.2.2.1 Thermochemical Conversion      206
    • 8.2.2.2 Chemical Conversion      206
    • 8.2.2.3 Biological Conversion      206
    • 8.2.2.4 Electrochemical Conversion       206
  • 8.2.3    Lignosulphonates       207
  • 8.2.4    Kraft Lignin      207
  • 8.2.4.1 LignoBoost process   207
  • 8.2.4.2 LignoForce method    208
  • 8.2.4.3 Sequential Liquid Lignin Recovery and Purification      209
  • 8.2.4.4 A-Recovery+   209
  • 8.2.4.5 SWOT analysis      210
  • 8.2.5.1 Description     211
  • 8.2.5.2 SWOT analysis      212
  • 8.2.6.1 Products Extraction & Purification   213
  • 8.2.6.2 Lignocellulose Biorefinery Economics       213
  • 8.2.6.3 Commercial and pre-commercial biorefinery lignin production facilities and  processes       213
  • 8.2.6.4 SWOT analysis      215
  • 8.2.5    Soda lignin      211
  • 8.2.6    Biorefinery lignin      213
  • 8.2.7    Organosolv lignins     216
  • 8.2.8    Hydrolytic lignin        217
  • 8.3    Lignin nanoparticles 217
  • 8.4    Lignin-based carbon materials       218
  • 8.5    Depolymerized lignin products       218
  • 8.6    Lignin-based bioplastics    219
  • 8.7.1    Market drivers and trends for lignin 220
  • 8.7.2    Production capacities      221
  • 8.7.2.1 Technical lignin availability (dry ton/y)        221
  • 8.7.2.2 Biomass conversion (Biorefinery)    222
  • 8.7.3    Consumption of lignin     222
    • 8.7.3.1 By type    222
    • 8.7.3.2 By market      224
  • 8.7.4    Prices  227
  • 8.7.5    Markets and applications      227
  • 8.7.5.1 Heat and power energy    227
  • 8.7.5.2 Bio-oils      227
  • 8.7.5.3 Syngas       228
  • 8.7.5.4 Aromatic compounds      229
    • 8.7.5.4.1        Benzene, toluene and xylene       230
    • 8.7.5.4.2        Phenol and phenolic resins  231
    • 8.7.5.4.3        Vanillin       232
  • 8.7.5.5 Polymers        232
  • 8.7.5.6 Hydrogels      234
  • 8.7.5.6.1        Adhesives      235
  • 8.7.5.7.1        Carbon black 235
  • 8.7.5.7.2        Activated carbons      236
  • 8.7.5.7.3        Carbon fiber   237
  • 8.7.5.7 Carbon materials    235
  • 8.7.5.8 Construction materials        238
  • 8.7.5.9 Rubber       238
  • 8.7.5.10    Bitumen and Asphalt    239
  • 8.7.5.12.1    Supercapacitors       242
  • 8.7.5.12.2    Anodes for lithium-ion batteries    243
  • 8.7.5.12.3    Gel electrolytes for lithium-ion batteries     244
  • 8.7.5.12.4    Binders for lithium-ion batteries    244
  • 8.7.5.12.5    Cathodes for lithium-ion batteries   244
  • 8.7.5.12.6    Sodium-ion batteries    244
  • 8.7.5.11    Fuels    240
  • 8.7.5.12    Energy storage      241
  • 8.7.5.13    Binders, emulsifiers and dispersants    245
  • 8.7.5.14    Chelating agents      247
  • 8.7.5.15    Coatings    248
  • 8.7.5.16    Ceramics       249
  • 8.7.5.17    Automotive      250
  • 8.7.5.18    Fire retardants      250
  • 8.7.5.19    Antioxidants   251
  • 8.7.5.20    Lubricants       252
  • 8.7.5.21    Dust control    252
  • 8.7    Markets for lignin    220

 

9     COMPANY PROFILES    253 (553 company profiles)

 

10       REFERENCES 637

 

ページTOPに戻る



List of Tables/Graphs

List of Tables

  • Table 1. Types of Bio-based and/or Biodegradable Plastics, applications. 35
  • Table 2. Type of biodegradation. 39
  • Table 3. Advantages and disadvantages of biobased plastics compared to conventional plastics. 39
  • Table 4. Key market players by Bio-based and/or Biodegradable Plastic types. 40
  • Table 5. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.  42
  • Table 6. Lactic acid producers and production capacities.   44
  • Table 7. PLA producers and production capacities. 44
  • Table 8. Planned PLA capacity expansions in China.   45
  • Table 9. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications. 47
  • Table 10. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 48
  • Table 11. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications. 49
  • Table 12. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   49
  • Table 13. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.  51
  • Table 14. PEF vs. PET. 52
  • Table 15. FDCA and PEF producers. 53
  • Table 16. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.   54
  • Table 17. Leading Bio-PA producers production capacities.   55
  • Table 18. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications. 56
  • Table 19. Leading PBAT producers, production capacities and brands. 56
  • Table 20. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications. 58
  • Table 21. Leading PBS producers and production capacities.   59
  • Table 22. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.   60
  • Table 23. Leading Bio-PE producers.   60
  • Table 24. Bio-PP market analysis- manufacture, advantages, disadvantages and applications. 61
  • Table 25. Leading Bio-PP producers and capacities.   62
  • Table 26.Types of PHAs and properties. 65
  • Table 27. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 67
  • Table 28. Polyhydroxyalkanoate (PHA) extraction methods. 69
  • Table 29. Polyhydroxyalkanoates (PHA) market analysis. 70
  • Table 30. Commercially available PHAs. 71
  • Table 31. Markets and applications for PHAs.   72
  • Table 32. Applications, advantages and disadvantages of PHAs in packaging. 73
  • Table 33. Polyhydroxyalkanoates (PHA) producers.   76
  • Table 34. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.   78
  • Table 35. Leading MFC producers and capacities. 79
  • Table 36. Synthesis methods for cellulose nanocrystals (CNC). 80
  • Table 37. CNC sources, size and yield. 81
  • Table 38. CNC properties. 81
  • Table 39. Mechanical properties of CNC and other reinforcement materials.   82
  • Table 40. Applications of nanocrystalline cellulose (NCC).   83
  • Table 41. Cellulose nanocrystals analysis. 84
  • Table 42: Cellulose nanocrystal production capacities and production process, by producer.   85
  • Table 43. Global demand for cellulose nanocrystals by market, 2018-2035 (metric tons). 85
  • Table 44. Applications of cellulose nanofibers (CNF).   88
  • Table 45. Cellulose nanofibers market analysis. 89
  • Table 46. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.   90
  • Table 47. Applications of bacterial nanocellulose (BNC). 104
  • Table 48. Types of protein based-bioplastics, applications and companies.   105
  • Table 49. Types of algal and fungal based-bioplastics, applications and companies.  106
  • Table 50. Overview of alginate-description, properties, application and market size. 107
  • Table 51. Companies developing algal-based bioplastics. 108
  • Table 52. Overview of mycelium fibers-description, properties, drawbacks and applications. 109
  • Table 53. Companies developing mycelium-based bioplastics.  111
  • Table 54. Overview of chitosan-description, properties, drawbacks and applications.   111
  • Table 55. Global production capacities of biobased and sustainable plastics in 2019-2035, by region, 1,000 tonnes. 113
  • Table 56. Biobased and sustainable plastics producers in North America.   114
  • Table 57. Biobased and sustainable plastics producers in Europe. 114
  • Table 58. Biobased and sustainable plastics producers in Asia-Pacific. 115
  • Table 59. Biobased and sustainable plastics producers in Latin America. 116
  • Table 60. Processes for bioplastics in packaging. 118
  • Table 61. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging. 119
  • Table 62. Typical applications for bioplastics in flexible packaging. 120
  • Table 63. Typical applications for bioplastics in rigid packaging. 122
  • Table 64. Types of next-gen natural fibers.  136
  • Table 65. Application, manufacturing method, and matrix materials of natural fibers. 139
  • Table 66. Typical properties of natural fibers. 140
  • Table 67. Commercially available next-gen natural fiber products. 140
  • Table 68. Market drivers for natural fibers.  143
  • Table 69. Overview of cotton fibers-description, properties, drawbacks and applications.   145
  • Table 70. Overview of kapok fibers-description, properties, drawbacks and applications. 147
  • Table 71. Overview of luffa fibers-description, properties, drawbacks and applications. 148
  • Table 72. Overview of jute fibers-description, properties, drawbacks and applications. 149
  • Table 73. Overview of hemp fibers-description, properties, drawbacks and applications.   151
  • Table 74. Overview of flax fibers-description, properties, drawbacks and applications. 152
  • Table 75. Overview of ramie fibers- description, properties, drawbacks and applications. 154
  • Table 76. Overview of kenaf fibers-description, properties, drawbacks and applications. 155
  • Table 77. Overview of sisal leaf fibers-description, properties, drawbacks and applications. 157
  • Table 78. Overview of abaca fibers-description, properties, drawbacks and applications. 159
  • Table 79. Overview of coir fibers-description, properties, drawbacks and applications. 160
  • Table 80. Overview of banana fibers-description, properties, drawbacks and applications.   162
  • Table 81. Overview of pineapple fibers-description, properties, drawbacks and applications.   163
  • Table 82. Overview of rice fibers-description, properties, drawbacks and applications. 165
  • Table 83. Overview of corn fibers-description, properties, drawbacks and applications. 165
  • Table 84. Overview of switch grass fibers-description, properties and applications. 166
  • Table 85. Overview of sugarcane fibers-description, properties, drawbacks and application and market size. 166
  • Table 86. Overview of bamboo fibers-description, properties, drawbacks and applications.  167
  • Table 87. Overview of wool fibers-description, properties, drawbacks and applications.   169
  • Table 88. Alternative wool materials producers. 170
  • Table 89. Overview of silk fibers-description, properties, application and market size. 170
  • Table 90. Alternative silk materials producers.   171
  • Table 91. Alternative leather materials producers.   172
  • Table 92. Next-gen fur producers.   173
  • Table 93. Alternative down materials producers. 174
  • Table 94. Applications of natural fiber composites. 175
  • Table 95. Typical properties of short natural fiber-thermoplastic composites.  176
  • Table 96. Properties of non-woven natural fiber mat composites.   177
  • Table 97. Properties of aligned natural fiber composites. 178
  • Table 98. Properties of natural fiber-bio-based polymer compounds. 178
  • Table 99. Properties of natural fiber-bio-based polymer non-woven mats. 179
  • Table 100. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use.   180
  • Table 101. Natural fiber-reinforced polymer composite in the automotive market.   182
  • Table 102. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use.   183
  • Table 103. Applications of natural fibers in the automotive industry. 184
  • Table 104. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use. 185
  • Table 105. Applications of natural fibers in the building/construction sector. 185
  • Table 106. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use.   187
  • Table 107. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use.   187
  • Table 108. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use.   189
  • Table 109. Technical lignin types and applications. 197
  • Table 110. Classification of technical lignins.   199
  • Table 111. Lignin content of selected biomass. 199
  • Table 112. Properties of lignins and their applications. 200
  • Table 113. Example markets and applications for lignin.  202
  • Table 114. Processes for lignin production. 204
  • Table 115. Commercial and pre-commercial biorefinery lignin production facilities and  processes 213
  • Table 116. Market drivers and trends for lignin. 220
  • Table 117. Production capacities of technical lignin producers.  221
  • Table 118. Production capacities of biorefinery lignin producers.   222
  • Table 119. Estimated consumption of lignin, by type, 2019-2035 (000 MT).   222
  • Table 120. Estimated consumption of lignin, by market, 2019-2034 (000 MT).  225
  • Table 121. Lignin aromatic compound products. 230
  • Table 122. Prices of benzene, toluene, xylene and their derivatives. 231
  • Table 123. Lignin products in polymeric materials.   233
  • Table 124. Application of lignin in plastics and composites.   233
  • Table 125. Applications of lignin in construction materials. 238
  • Table 126. Lignin applications in rubber and elastomers. 239
  • Table 127. Lignin products in fuels. 241
  • Table 128. Lignin-derived anodes in lithium batteries.   243
  • Table 129. Application of lignin in binders, emulsifiers and dispersants.   245
  • Table 130. Lactips plastic pellets.   442
  • Table 131. Oji Holdings CNF products. 512

 

List of Figures

  • Figure 1.  Coca-Cola PlantBottle®. 37
  • Figure 2. Interrelationship between conventional, bio-based and biodegradable plastics. 38
  • Figure 3. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes). 46
  • Figure 4. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes) 48
  • Figure 5. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes). 50
  • Figure 6. Production capacities of Polyethylene furanoate (PEF) to 2025.   53
  • Figure 7. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).   53
  • Figure 8. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes). 55
  • Figure 9. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes).   57
  • Figure 10. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes). 59
  • Figure 11. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes). 61
  • Figure 12. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes). 62
  • Figure 13. PHA family.   65
  • Figure 14. PHA production capacities 2019-2035 (1,000 tonnes). 77
  • Figure 15. TEM image of cellulose nanocrystals. 79
  • Figure 16. CNC preparation. 80
  • Figure 17. Extracting CNC from trees.   81
  • Figure 18. CNC slurry.   83
  • Figure 19. Global demand for cellulose nanocrystals by market, 2018-2035 (metric tons).   87
  • Figure 20. CNF gel. 88
  • Figure 21. Global market demand for cellulose nanofibers in composites, 2018-2035 (metric tons). 92
  • Figure 22. Global market demand for cellulose nanofibers in the automotive sector, 2018-2035 (metric tons).  93
  • Figure 23. Demand for cellulose nanofibers in construction, 2018-2035 (tons).   94
  • Figure 24. Global demand for cellulose nanofibers in the paper & board/packaging market, 2018-2035 (tons). 95
  • Figure 25. Demand for cellulose nanofibers in the textiles sector, 2018-2035 (tons). 96
  • Figure 26. Global demand for cellulose nanofibers in biomedical and healthcare, 2018-2035 (tons).   97
  • Figure 27. Global demand for cellulose nanofibers in hygiene and sanitary products, 2018-2035 (tons).   98
  • Figure 28. Global demand for cellulose nanofibers in paint and coatings, 2018-2035 (tons). 99
  • Figure 29: Global demand for nanocellulose in in aerogels, 2018-2035 (tons). 99
  • Figure 30. Global demand for cellulose nanofibers in the oil and gas market, 2018-2035 (tons). 100
  • Figure 31. Global demand for Cellulose nanofibers in the filtration market, 2018-2035 (tons).   101
  • Figure 32. Global demand for cellulose nanofibers in the rheology modifiers market, 2018-2035 (tons).   101
  • Figure 33. Bacterial nanocellulose shapes 103
  • Figure 34. BLOOM masterbatch from Algix. 108
  • Figure 35. Typical structure of mycelium-based foam.   110
  • Figure 36. Commercial mycelium composite construction materials.   111
  • Figure 37. Global production capacities for bioplastics by region  2019-2035, 1,000 tonnes. 113
  • Figure 38. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes.   117
  • Figure 39. PHA bioplastics products. 119
  • Figure 40. The global market for biobased and biodegradable plastics for flexible packaging 2019–2035 (‘000 tonnes). 121
  • Figure 41. Production volumes for bioplastics for rigid packaging, 2019–2035 (‘000 tonnes). 123
  • Figure 42. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes. 125
  • Figure 43. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes. 127
  • Figure 44. Global production volumes for biobased and biodegradable polymers in building and construction 2019-2035, in 1,000 tonnes. 129
  • Figure 45. Global production volumes for biobased and biodegradable polymers in textiles 2019-2035, in 1,000 tonnes. 132
  • Figure 46. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes. 133
  • Figure 47. Biodegradable mulch films. 134
  • Figure 48. Global production volulmes for biobased and biodegradable polymers in agriculture 2019-2035, in 1,000 tonnes. 135
  • Figure 49. Types of natural fibers. 138
  • Figure 50. Absolut natural based fiber bottle cap. 141
  • Figure 51. Adidas algae-ink tees.   141
  • Figure 52. Carlsberg natural fiber beer bottle.   141
  • Figure 53. Miratex watch bands. 141
  • Figure 54. Adidas Made with Nature Ultraboost 22. 142
  • Figure 55. PUMA RE:SUEDE sneaker 142
  • Figure 56. Cotton production volume 2018-2035 (Million MT). 146
  • Figure 57. Kapok production volume 2018-2035 (MT). 147
  • Figure 58.  Luffa cylindrica fiber. 148
  • Figure 59. Jute production volume 2018-2035 (Million MT). 150
  • Figure 60. Hemp fiber production volume 2018-2035 ( MT).   152
  • Figure 61. Flax fiber production volume 2018-2035 (MT). 154
  • Figure 62. Ramie fiber production volume 2018-2035 (MT). 155
  • Figure 63. Kenaf fiber production volume 2018-2035 (MT).   156
  • Figure 64. Sisal fiber production volume 2018-2035 (MT).   158
  • Figure 65. Abaca fiber production volume 2018-2035 (MT). 160
  • Figure 66. Coir fiber production volume 2018-2035 (MILLION MT). 161
  • Figure 67. Banana fiber production volume 2018-2035 (MT).   163
  • Figure 68. Pineapple fiber. 164
  • Figure 69. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019. 164
  • Figure 70. Bamboo fiber production volume 2018-2035 (MILLION MT). 168
  • Figure 71. Conceptual landscape of next-gen leather materials. 172
  • Figure 72. Hemp fibers combined with PP in car door panel. 179
  • Figure 73. Car door produced from Hemp fiber. 181
  • Figure 74. Mercedes-Benz components containing natural fibers.   182
  • Figure 75. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 188
  • Figure 76. Coir mats for erosion control. 189
  • Figure 77. Global fiber production in 2023, by fiber type, million MT and %.   191
  • Figure 78. Global fiber production (million MT), 2018-2035.   192
  • Figure 79. Natural fiber production 2018-2035, by material type, Million MT.   193
  • Figure 80. Natural fiber production 2018-2035, by market, Million MT.   194
  • Figure 81. High purity lignin. 195
  • Figure 82. Lignocellulose architecture. 196
  • Figure 83. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.   197
  • Figure 84. The lignocellulose biorefinery.   202
  • Figure 85. LignoBoost process.   208
  • Figure 86. LignoForce system for lignin recovery from black liquor. 208
  • Figure 87. Sequential liquid-lignin recovery and purification (SLPR) system.   209
  • Figure 88. A-Recovery+ chemical recovery concept. 210
  • Figure 89. Kraft lignin SWOT analysis. 211
  • Figure 90. Soda lignin SWOT analysis.   212
  • Figure 91. Biorefinery lignin SWOT analysis. 216
  • Figure 92. Organosolv lignin. 217
  • Figure 93. Hydrolytic lignin powder. 217
  • Figure 94. Estimated consumption of lignin, by type, 2019-2035 (000 MT). 224
  • Figure 95. Estimated consumption of lignin, by market, 2019-2035 (000 MT). 226
  • Figure 96. Schematic of WISA plywood home.   232
  • Figure 97. Lignin based activated carbon.  237
  • Figure 98. Lignin/celluose precursor. 237
  • Figure 99. Functional rubber filler made from lignin. 239
  • Figure 100. Road repair utilizing lignin. 240
  • Figure 101. Prototype of lignin based supercapacitor.   242
  • Figure 102. Stora Enso lignin battery materials.   245
  • Figure 103. Pluumo.  257
  • Figure 104. ANDRITZ Lignin Recovery process. 266
  • Figure 105. Anpoly cellulose nanofiber hydrogel.  267
  • Figure 106. MEDICELLU™.   268
  • Figure 107. Asahi Kasei CNF fabric sheet.  276
  • Figure 108. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 276
  • Figure 109. CNF nonwoven fabric. 277
  • Figure 110. Roof frame made of natural fiber.   286
  • Figure 111. Beyond Leather Materials product. 289
  • Figure 112. BIOLO e-commerce mailer bag made from PHA.   296
  • Figure 113. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.   297
  • Figure 114. Fiber-based screw cap. 308
  • Figure 115. formicobio™ technology.   327
  • Figure 116. nanoforest-S.   329
  • Figure 117. nanoforest-PDP. 329
  • Figure 118. nanoforest-MB.  330
  • Figure 119. sunliquid® production process.   337
  • Figure 120. CuanSave film. 339
  • Figure 121. Celish. 341
  • Figure 122. Trunk lid incorporating CNF.   342
  • Figure 123. ELLEX products. 344
  • Figure 124. CNF-reinforced PP compounds.   344
  • Figure 125. Kirekira! toilet wipes.   344
  • Figure 126. Color CNF. 345
  • Figure 127. Rheocrysta spray. 350
  • Figure 128. DKS CNF products. 351
  • Figure 129. Domsjö process. 352
  • Figure 130. Mushroom leather. 361
  • Figure 131. CNF based on citrus peel. 362
  • Figure 132. Citrus cellulose nanofiber. 363
  • Figure 133. Filler Bank CNC products.   374
  • Figure 134. Fibers on kapok tree and after processing.   376
  • Figure 135. GREEN CHIP CMF pellets and injection moulded products. 379
  • Figure 136.  TMP-Bio Process. 380
  • Figure 137. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.   381
  • Figure 138. Water-repellent cellulose. 383
  • Figure 139. Cellulose Nanofiber (CNF) composite with polyethylene (PE).   384
  • Figure 140. PHA production process.   385
  • Figure 141. CNF products from Furukawa Electric.   386
  • Figure 142. AVAPTM process.   396
  • Figure 143. GreenPower+™ process. 397
  • Figure 144. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 401
  • Figure 145. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 404
  • Figure 146. CNF gel.  410
  • Figure 147. Block nanocellulose material. 411
  • Figure 148. CNF products developed by Hokuetsu. 411
  • Figure 149. Marine leather products. 414
  • Figure 150. Inner Mettle Milk products.   417
  • Figure 151. Kami Shoji CNF products. 428
  • Figure 152. Dual Graft System.   431
  • Figure 153. Engine cover utilizing Kao CNF composite resins.   432
  • Figure 154. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).   432
  • Figure 155. Kel Labs yarn.   433
  • Figure 156. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).   439
  • Figure 157. Lignin gel. 449
  • Figure 158. BioFlex process. 453
  • Figure 159. Nike Algae Ink graphic tee.   455
  • Figure 160. LX Process. 458
  • Figure 161. Made of Air's HexChar panels. 461
  • Figure 162. TransLeather. 462
  • Figure 163. Chitin nanofiber product.   466
  • Figure 164. Marusumi Paper cellulose nanofiber products. 468
  • Figure 165. FibriMa cellulose nanofiber powder.   468
  • Figure 166. METNIN™ Lignin refining technology.   473
  • Figure 167. IPA synthesis method. 477
  • Figure 168. MOGU-Wave panels.   479
  • Figure 169. CNF slurries.   481
  • Figure 170. Range of CNF products. 481
  • Figure 171. Reishi.   485
  • Figure 172. Compostable water pod. 501
  • Figure 173. Leather made from leaves. 502
  • Figure 174. Nike shoe with beLEAF™.   502
  • Figure 175. CNF clear sheets. 512
  • Figure 176. Oji Holdings CNF polycarbonate product. 513
  • Figure 177. Fluorene cellulose ® powder.   516
  • Figure 178. Enfinity cellulosic ethanol technology process. 527
  • Figure 179. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 532
  • Figure 180. XCNF. 539
  • Figure 181: Plantrose process. 540
  • Figure 182. LOVR hemp leather. 543
  • Figure 183. CNF insulation flat plates.   545
  • Figure 184. Hansa lignin. 551
  • Figure 185. Manufacturing process for STARCEL.  555
  • Figure 186. Manufacturing process for STARCEL.  559
  • Figure 187. 3D printed cellulose shoe.   566
  • Figure 188. Lyocell process. 569
  • Figure 189. North Face Spiber Moon Parka.   574
  • Figure 190. PANGAIA LAB NXT GEN Hoodie. 574
  • Figure 191. Spider silk production.  575
  • Figure 192. Stora Enso lignin battery materials.   579
  • Figure 193. 2 wt.% CNF suspension.   580
  • Figure 194. BiNFi-s Dry Powder. 581
  • Figure 195. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.   581
  • Figure 196. Silk nanofiber (right) and cocoon of raw material. 582
  • Figure 197. Sulapac cosmetics containers.   583
  • Figure 198.  Sulzer equipment for PLA polymerization processing.   584
  • Figure 199. Solid Novolac Type lignin modified phenolic resins. 585
  • Figure 200. Teijin bioplastic film for door handles. 595
  • Figure 201. Corbion FDCA production process. 603
  • Figure 202. Comparison of weight reduction effect using CNF.   604
  • Figure 203. CNF resin products.   608
  • Figure 204. UPM biorefinery process.   609
  • Figure 205. Vegea production process.   614
  • Figure 206. The Proesa® Process. 616
  • Figure 207. Goldilocks process and applications. 617
  • Figure 208. Visolis’ Hybrid Bio-Thermocatalytic Process. 620
  • Figure 209. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.   623
  • Figure 210. Worn Again products.   628
  • Figure 211. Zelfo Technology GmbH CNF production process.   633


 

 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


Future Markets, inc.社はどのような調査会社ですか?


Future Markets, inc.は先端技術に焦点をあてたスウェーデンの調査会社です。 2009年設立のFMi社は先端素材、バイオ由来の素材、ナノマテリアルの市場をトラッキングし、企業や学... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/01/21 10:26

157.10 円

163.44 円

195.63 円

ページTOPに戻る