バイオベースポリマー・プラスチック(バイオプラスチック)の世界市場 2025-2035
The Global Market for Biobased Polymers & Plastics (Bioplastics) 2025-2035
産業界と消費者が、従来の石油由来材料に代わる持続可能な材料をますます求めるようになり、バイオベース・ポリマーとプラスチックの世界市場は急速な成長を遂げている。この急成長している分野は、より循環的... もっと見る
サマリー
産業界と消費者が、従来の石油由来材料に代わる持続可能な材料をますます求めるようになり、バイオベース・ポリマーとプラスチックの世界市場は急速な成長を遂げている。この急成長している分野は、より循環的で環境に優しい経済への移行において重要な要素となっている。トウモロコシ、サトウキビ、セルロースなどの再生可能なバイオマス資源を原料とするバイオベースポリマーは、二酸化炭素排出量と化石燃料への依存度を大幅に削減する可能性を秘めている。この市場の重要性は、環境面でのメリットだけにとどまらない。包装や消費財から自動車や建築に至るまで、さまざまな産業でイノベーションを推進する上で重要な役割を果たしている。使い捨てプラスチックや炭素排出に関する規制が強化される中、企業が持続可能性目標を達成し、消費者の信頼を維持するためには、バイオベースの代替材料が不可欠となっている。
さらに、バイオベースポリマーの開発は、農業慣行、バイオリファイニング技術、材料科学の進歩にも拍車をかけている。このような分野横断的なイノベーションは、特にバイオマス原料の栽培や加工が行われている農村部において、新たな経済機会を生み出している。市場の成長は研究開発への投資も促進し、バイオプラスチックの性能とコスト競争力の向上につながる。
この600ページを超える総合レポートは、急速に成長するバイオベースポリマーとプラスチックの世界市場を詳細に分析しています。本レポートでは、このダイナミックな分野における最新の技術開発、市場動向、成長機会を検証しています。レポート内容は以下の通りです:
-
PLA、PHA、バイオPE、バイオPET、バイオPAなどの合成および天然バイオベースポリマーの詳細分析
-
生分解性および堆肥化可能なプラスチック材料の評価
-
天然繊維およびリグニン系素材の検査
-
生産量と生産能力に関する2019年から2035年の市場予測
-
バイオプラスチックのバリューチェーンにおける500社以上の企業プロファイル。掲載企業は、Avantium、BASF、Biome Bioplastics、Braskem、Buyo、Danimer Scientific、FabricNano、FlexSea、Floreon、Gevo、MetaCycler BioInnovations、Mi Terro、PlantSwitch、帝人株式会社、Verde Bioresins、Versalis、など。 ザンプラ
-
市場促進要因、課題、新興アプリケーションの分析
本レポートでは、市場をポリマーの種類、用途、地域別に分類し、生産量、消費パターン、成長予測に関する詳細なデータを提供している。また、第一世代の原料から先進的なバイオマス原料へのシフトや、バイオベースプラスチックのリサイクル素材の統合に焦点を当てています。
バイオベースの合成ポリマー:
-
ポリ乳酸(PLA)
-
バイオポリエチレンテレフタレート(バイオPET)
-
バイオポリアミド(バイオPA)
-
バイオポリエチレン(バイオPE)
-
バイオポリプロピレン(バイオPP)
-
ポリエチレンフラノエート(PEF)
-
ポリトリメチレンテレフタレート(PTT)
-
ポリブチレンサクシネート(PBS)
-
ポリブチレンアジペート-コ-テレフタレート(PBAT
天然バイオベースポリマー:
-
ポリヒドロキシアルカノエート(PHA)
-
セルロース系素材(ナノセルロースを含む)
-
でんぷん系プラスチック
-
リグニン系材料
-
タンパク質(大豆、カゼインなど)
-
天然繊維(綿、ジュート、亜麻など)
この研究では、製造工程、特性、コスト分析、従来のプラスチックとの比較優位性など、各ポリマーの種類を徹底的に検証している。バクテリアセルロースや菌糸体ベースの複合材料のような新素材についても、将来の市場可能性を評価している。
アプリケーションの分析:
詳細な市場データと成長予測は、主要な応用分野で提供されている:
-
包装(硬質および軟質)
-
消費財
-
自動車
-
建築・建設
-
テキスタイル
-
エレクトロニクス
-
農業
現在、バイオプラスチックの利用はパッケージング分野が圧倒的に多く、市場の50%以上を占めている。しかし、自動車や建設用途では、バイオプラスチックが従来の材料に取って代わることが増えているため、今後数年間で最も速い成長率が見込まれる。
地域分析:
本レポートは、包括的な地域別内訳を提供している:
-
北米
-
ヨーロッパ
-
アジア太平洋
-
ラテンアメリカ
-
中東・アフリカ
競争環境:
競争環境の広範な分析には、以下のものが含まれる:
-
主要バイオポリマーメーカーの市場シェア
-
500社を超える主要企業の詳細プロフィール
-
戦略的イニシアティブ、パートナーシップ、M&A活動
-
生産能力拡大と新技術開発への投資
-
新興スタートアップ企業とその革新的アプローチ
技術評価:
この調査では、バイオベースポリマーの最新の技術開発について、以下のような詳細な情報を提供している:
-
発酵およびバイオリファイニング・プロセスの進歩
-
ポリマーブレンドとコンパウンドの革新
-
生分解性と堆肥化の進展
-
バリア性と耐熱性の向上
-
バイオベース・プラスチックスへのリサイクル・コンテンツの統合
-
新規バイオマス原料の開発
規制の状況
バイオプラスチック市場に影響を与える規制環境を徹底検証:
-
使い捨てプラスチックの禁止と制限
-
生分解性と堆肥化の基準
-
リサイクル規制とインフラ整備
-
炭素価格メカニズムとバイオプラスチックへの影響
-
政府調達におけるバイオベース製品へのインセンティブ
また、以下のような成長と革新のための主要な機会も特定されている:
-
一貫生産のための先進的バイオリファイナリーの開発
-
高機能エンジニアリング・プラスチックへの進出
-
特定の最終用途の要求に合わせたバイオプラスチックのカスタマイズ
-
リグニンおよびその他のバイオベース材料の新たな付加価値用途の創出
-
バイオマス原料と炭素回収によるカーボン・マイナス・プラスチックの可能性
ページTOPに戻る
目次
1 研究方法論 33
2 はじめに 34
-
2.1 バイオプラスチックの種類 35
-
2.2 バイオベースまたは再生可能プラスチック 36
-
2.2.1 ドロップイン・バイオベース・プラスチック 36
-
2.2.2 新規バイオベースプラスチック 37
-
2.3 生分解性・堆肥化可能プラスチック 38
-
2.3.1 生分解性 38
-
2.3.2 堆肥化可能性 39
-
2.4 主要市場プレーヤー 40
3 バイオベースの合成ポリマーとプラスチック 42
-
3.1 ポリ乳酸(バイオPLA) 42
-
3.1.1 市場分析 42
-
3.1.2 製造 44
-
3.1.3 生産者と生産能力(現在および計画中 44
-
3.1.3.1乳酸生産者と生産能力44
-
3.1.3.2PLA生産者と生産能力44
-
3.1.3.3ポリ乳酸(バイオPLA)生産量 2019-2035 (1,000トン) 46
-
3.2 ポリエチレンテレフタレート(バイオPET) 47
-
3.2.1 市場分析 47
-
3.2.2 生産者と生産能力 48
-
3.2.3 ポリエチレンテレフタレート(バイオPET)生産量 2019-2035 (1,000トン) 48
-
3.3.1 市場分析 49
-
3.3.2 生産者と生産能力 49
-
3.3.3 ポリトリメチレンテレフタレート(PTT)生産量 2019-2035 (1,000トン) 50
-
3.4.1 市場分析 51
-
3.4.2 PETとの比較特性 52
-
3.4.3 生産者と生産能力 52
-
3.4.3.1FDCAおよびPEFの生産者と生産能力 52
-
3.4.3.2ポリエチレンフラノエート(バイオPEF)生産量 2019-2035 (1,000トン). 53
-
3.5.1 市場分析 54
-
3.5.2 生産者と生産能力 55
-
3.5.3 ポリアミド(バイオPA)生産量 2019-2035 (1,000トン) 55
-
3.6.1 市場分析 56
-
3.6.2 生産者と生産能力 56
-
3.6.3 ポリブチレンアジペート-コ-テレフタレート(バイオPBAT生産量 2019-2035 (1,000トン) 57
-
3.7.1 市場分析 58
-
3.7.2 生産者と生産能力 59
-
3.7.3 ポリブチレンサクシネート(PBS)生産量 2019-2035 (1,000トン) 59
-
3.8.1 市場分析 60
-
3.8.2 生産者と生産能力 60
-
3.8.3 ポリエチレン(バイオPE)生産量 2019-2035 (1,000トン). 61
-
3.9.1 市場分析 61
-
3.9.2 生産者と生産能力 62
-
3.9.3 ポリプロピレン(バイオPP)生産量 2019-2035 (1,000トン) 62
-
3.3 ポリトリメチレンテレフタレート(バイオPTT) 49
-
3.4 ポリエチレンフラノエート(バイオPEF) 51
-
3.5 ポリアミド(バイオPA) 54
-
3.6 ポリブチレンアジペート-コ-テレフタレート(バイオPBAT 56
-
3.7 ポリブチレンサクシネート(PBS)およびコポリマー 58
-
3.8 ポリエチレン(バイオPE) 60
-
3.9 ポリプロピレン(バイオPP) 61
4 天然バイオベースポリマー 63
-
4.1 ポリヒドロキシアルカノエート(PHA) 63
-
4.1.1 技術説明 63
-
4.1.2 種類 64
-
4.1.2.1フィービー 66
-
4.1.2.2フィービーV 67
-
4.1.3 合成と製造工程 68
-
4.1.4 市場分析 70
-
4.1.5 市販のPHA 71
-
4.1.6 PHA向け市場 72
-
4.1.6.1パッケージング 73
-
4.1.6.2化粧品 74
-
4.1.6.3メディカル 75
-
4.1.6.3.1 組織工学 75
-
4.1.6.3.2 薬物送達 75
-
4.1.6.4.1 マルチフィルム 75
-
4.1.6.4.2 栽培袋 75
-
4.1.6.4農業 75
-
4.1.7 生産者と生産能力 76
-
4.1.8 2019~2035年のPHA生産能力(1,000トン) 77
-
4.2 セルロース 78
-
4.2.1 ミクロフィブリル化セルロース(MFC) 78
-
4.2.1.1市場分析 78
-
4.2.1.2生産者と生産能力 79
-
4.2.2 ナノセルロース 79
-
4.2.2.1セルロースナノ結晶 79
-
4.2.2.1.1 合成 80
-
4.2.2.1.2 プロパティ 81
-
4.2.2.1.3 製造 82
-
4.2.2.1.4 アプリケーション 82
-
4.2.2.1.5 市場分析 84
-
4.2.2.1.6 生産者と生産能力 85
-
4.2.2.1.7 Global demand for celluloseナノ結晶 by market 85
-
4.2.2.2セルロースナノファイバー 88
-
4.2.2.2.1 アプリケーション 88
-
4.2.2.2.2 市場分析 89
-
4.2.2.2.3 生産者と生産能力 90
-
4.2.2.2.3.1 世界の市場別需要量(トン 91
-
4.2.2.2.3.1.1 複合材料 91
-
4.2.2.2.3.1.2 自動車 92
-
4.2.2.2.3.1.3 建築・建設 93
-
4.2.2.2.3.1.4 紙・板紙・パッケージ 94
-
4.2.2.2.3.1.5 テキスタイル 95
-
4.2.2.2.3.1.6 生物医学とヘルスケア 96
-
4.2.2.2.3.1.7 衛生用品 97
-
4.2.2.2.3.1.8 塗料とコーティング 98
-
4.2.2.2.3.1.9 エアロゲル 99
-
4.2.2.2.3.1.10 石油・ガス 99
-
4.2.2.2.3.1.11 濾過 100
-
4.2.2.2.3.1.12 レオロジー改良剤 101
-
4.2.2.3.1 製造 101
-
4.2.2.3.2 アプリケーション 104
-
4.2.2.3 Bacterialナノセルロース (BNC) 101
-
4.2.3.1種類用途と生産者 105
-
4.2.4.1藻類 107
-
4.2.4.1.1 メリット 107
-
4.2.4.1.2 製造 108
-
4.2.4.1.3 プロデューサー 108
-
4.2.4.2菌糸体 109
-
4.2.4.2.1 プロパティ 109
-
4.2.4.2.2 アプリケーション 110
-
4.2.4.2.3 商業化 111
-
4.2.5.1技術説明 111
-
4.2.3 タンパク質ベースのバイオプラスチック 105
-
4.2.4 藻類および真菌 106
-
4.2.5 キトサン 111
5 バイオベースポリマー・プラスチックの生産:地域別 113
-
5.1 北米 114
-
5.2 ヨーロッパ 114
-
5.3 アジア太平洋 115
-
5.3.1 中国 115
-
5.3.2 日本 115
-
5.3.3 タイ 115
-
5.3.4 インドネシア 115
-
5.4 ラテンアメリカ 116
6 バイオプラスチックの市場区分 117
-
6.1 パッケージング 118
-
6.1.1 包装用バイオプラスチックのプロセス 118
-
6.1.2 アプリケーション 119
-
6.1.3 フレキシブル包装 119
-
6.1.4 硬質包装 122
-
6.1.4.1製造2019年~2035年 123
-
6.2 消費者製品 124
-
6.2.1 アプリケーション 124
-
6.2.2 製造2019年~2035年 124
-
6.3.1 アプリケーション 126
-
6.3.2 製造2019年~2035年 127
-
6.4.1 アプリケーション 128
-
6.4.2 製造2019年~2035年 128
-
6.5.1 アパレル 129
-
6.5.2 フットウェア 130
-
6.5.3 メディカル反物 131
-
6.5.4 製造2019年~2035年 131
-
6.5.5 エレクトロニクス 132
-
6.5.5.1アプリケーション 132
-
6.5.5.2製造2019年~2035年 133
-
6.5.6 農業園芸133
-
6.5.6.1製造2019年~2035年 134
-
6.3 自動車 126
-
6.4 建築・建設 128
-
6.5 テキスタイル 129
7 天然繊維 136
-
7.1 天然繊維の製造方法、マトリックス材料および用途 139
-
7.2 メリット天然繊維 140
-
7.3 市販の次世代天然繊維 製品 140
-
7.4 次世代天然繊維の市場促進要因 143
-
7.5 課題 144
-
7.6 植物(セルロース、リグノセルロース) 145
-
7.6.1 種子繊維 145
-
7.6.1.1コットン145
-
7.6.1.1.1 製造数量 2018-2035 146
-
7.6.1.2カポック147
-
7.6.1.2.1 製造数量 2018-2035 147
-
7.6.1.3ヘチマ 148
-
7.6.2 バスト繊維 149
-
7.6.2.1ジュート 149
-
7.6.2.2製造数量 2018-2035 150
-
7.6.2.2.1 ヘンプ 151
-
7.6.2.2.2 製造数量 2018-2035 151
-
7.6.2.3亜麻 152
-
7.6.2.3.1 製造数量 2018-2035 153
-
7.6.2.4.1 製造数量 2018-2035 154
-
7.6.2.5.1 製造数量 2018-2035 156
-
7.6.2.4ラミー154
-
7.6.2.5ケナフ 155
-
7.6.3.1サイザル麻 157
-
7.6.3.1.1 製造数量 2018-2035 157
-
7.6.3.2アバカ159
-
7.6.3.2.1 製造数量 2018-2035 159
-
7.6.4.1コアー 160
-
7.6.4.1.1 製造数量 2018-2035 161
-
7.6.4.2バナナ 162
-
7.6.4.2.1 製造数量 2018-2035 162
-
7.6.4.3パイナップル 163
-
7.6.5.1米繊維 165
-
7.6.5.2トウモロコシ 165
-
7.6.6.1スイッチグラス 166
-
7.6.6.2サトウキビ(農業残渣) 166
-
7.6.6.3バンブー 167
-
7.6.6.3.1 製造数量 2018-2035 168
-
7.6.6.4新鮮な牧草(グリーン・バイオリファイナリー) 169
-
7.6.3 葉の繊維 157
-
7.6.4 フルーツ繊維 160
-
7.6.5 農業残渣からの茎繊維 165
-
7.6.6 杖、草、葦 166
-
7.7 動物性(繊維状タンパク質) 169
-
7.7.1 ウール 169
-
7.7.1.1代替ウール素材 170
-
7.7.1.2プロデューサー 170
-
7.7.2 シルク繊維 170
-
7.7.2.1代替シルク素材 171
-
7.7.3.1代替レザー素材 172
-
7.7.4.1プロデューサー 173
-
7.7.5.1代替ダウン素材 174
-
7.7.3 レザー 171
-
7.7.4 毛皮 173
-
7.7.5 ダウン 174
-
7.8.1 複合材料 174
-
7.8.2 アプリケーション 175
-
7.8.3 天然繊維射出成形コンパウンド 176
-
7.8.3.1プロパティ 176
-
7.8.3.2アプリケーション 176
-
7.8.4 不織布天然繊維マット複合材料 177
-
7.8.4.1自動車 177
-
7.8.4.2アプリケーション 177
-
7.8.5 整列した天然繊維強化複合材料 177
-
7.8.6 天然繊維バイオベースポリマーコンパウンド 178
-
7.8.7.1亜麻 179
-
7.8.7.2ケナフ 179
-
7.8.7 天然繊維バイオベースポリマー不織布マット 179
-
7.8.9.1市場概要 180
-
7.8.10.1 市場概要 180
-
7.8.10.2 アプリケーション天然繊維の 184
-
7.8.11.1 市場概要 185
-
7.8.11.2 アプリケーション天然繊維の 185
-
7.8.12.1 市場概要 186
-
7.8.13.1 市場概要 187
-
7.8.13.2 消費者アパレル 188
-
7.8.13.3 ジオテキスタイル 188
-
7.8.14.1 市場概要 189
-
7.8.8 天然繊維熱硬化性バイオレジン複合材料 179
-
7.8.9 航空宇宙 180
-
7.8.10自動車 180
-
7.8.11建築/建設 184
-
7.8.12スポーツとレジャー 186
-
7.8.13テキスタイル 187
-
7.8.14パッケージング 189
-
7.9.1 世界の繊維市場全体 191
-
7.9.2 素材の種類別 193
-
7.9.3 市場別 193
-
7.8 天然繊維の市場 174
-
7.9 Global production天然繊維の 191
8 リグニン 194
-
8.1 はじめに 195
-
8.1.1 リグニンとは何か? 195
-
8.1.2 種類リグニンの 196
-
8.1.2.1硫黄含有リグニン 198
-
8.1.2.2バイオリファイナリー・プロセスからの硫黄フリー・リグニン 199
-
8.1.3 プロパティ 199
-
8.1.4 リグノセルロース・バイオリファイナリー 201
-
8.1.5 市場と用途 202
-
8.1.6 課題リグニン使用 203
-
8.2 リグニン製造プロセス 203
-
8.2.1 原料の前処理 205
-
8.2.2 変換プロセス 206
-
8.2.2.1熱化学変換 206
-
8.2.2.2化学変換 206
-
8.2.2.3生物学的変換 206
-
8.2.2.4電気化学変換 206
-
8.2.3 リグノスルホン酸塩 207
-
8.2.4 リグニン強度 207
-
8.2.4.1リグノブースト・プロセス 207
-
8.2.4.2リグノフォース方式 208
-
8.2.4.3液体リグニンの連続回収と精製 209
-
8.2.4.4A-リカバリー・プラス 209
-
8.2.4.5SWOT分析 210
-
8.2.5.1説明 211
-
8.2.5.2SWOT分析 212
-
8.2.6.1製品抽出・精製 213
-
8.2.6.2リグノセルロース・バイオリファイナリーの経済性 213
-
8.2.6.3商業用および前商業用のバイオリファイナリー用リグニン製造設備と プロセス 213
-
8.2.6.4SWOT分析 215
-
8.2.5 ソーダリグニン 211
-
8.2.6 バイオリファイナリー・リグニン 213
-
8.2.7 オルガノソルブ・リグニン 216
-
8.2.8 加水分解リグニン 217
-
8.3 リグニンナノ粒子217
-
8.4 リグニン系炭素材料 218
-
8.5 解重合リグニン製品 218
-
8.6 リグニン系バイオプラスチック 219
-
8.7.1 リグニンの市場促進要因と動向 220
-
8.7.2 製造キャパシティ 221
-
8.7.2.1技術的リグニン利用可能量(乾燥トン/年) 221
-
8.7.2.2バイオマス転換(バイオリファイナリー) 222
-
8.7.3 消費リグニンの 222
-
8.7.3.1タイプ別 222
-
8.7.3.2市場別 224
-
8.7.4 価格 227
-
8.7.5 市場と用途 227
-
8.7.5.1熱と電力エネルギー 227
-
8.7.5.2バイオオイル 227
-
8.7.5.3合成ガス 228
-
8.7.5.4芳香族化合物 229
-
8.7.5.4.1 ベンゼン、トルエン、キシレン 230
-
8.7.5.4.2 フェノールおよびフェノール樹脂 231
-
8.7.5.4.3 Vanillin 232
-
8.7.5.5ポリマー 232
-
8.7.5.6ハイドロゲル 234
-
8.7.5.6.1 接着剤 235
-
8.7.5.7.1 カーボンブラック235
-
8.7.5.7.2 活性炭 236
-
8.7.5.7.3 カーボンファイバー 237
-
8.7.5.7炭素材料 235
-
8.7.5.8建設資材 238
-
8.7.5.9ゴム 238
-
8.7.5.10 ビチューメンとアスファルト 239
-
8.7.5.12.1 スーパーキャパシタ 242
-
8.7.5.12.2 リチウムイオン電池用負極 243
-
8.7.5.12.3 リチウムイオン電池用ゲル電解質 244
-
8.7.5.12.4 リチウムイオン電池用バインダー 244
-
8.7.5.12.5 リチウムイオン電池正極 244
-
8.7.5.12.6 ナトリウムイオン電池 244
-
8.7.5.11 燃料 240
-
8.7.5.12 エネルギー貯蔵 241
-
8.7.5.13 結合剤、乳化剤、分散剤 245
-
8.7.5.14 キレート剤 247
-
8.7.5.15 コーティング 248
-
8.7.5.16 セラミックス 249
-
8.7.5.17 自動車 250
-
8.7.5.18 難燃剤 250
-
8.7.5.19 抗酸化物質 251
-
8.7.5.20 潤滑油 252
-
8.7.5.21 ダストコントロール 252
-
8.7 リグニンの市場 220
9 会社概要 253 (553社のプロファイル)
10 REFERENCES637
ページTOPに戻る
図表リスト
List of Tables
-
Table 1. Types of Bio-based and/or Biodegradable Plastics, applications. 35
-
Table 2. Type of biodegradation. 39
-
Table 3. Advantages and disadvantages of biobased plastics compared to conventional plastics. 39
-
Table 4. Key market players by Bio-based and/or Biodegradable Plastic types. 40
-
Table 5. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 42
-
Table 6. Lactic acid producers and production capacities. 44
-
Table 7. PLA producers and production capacities. 44
-
Table 8. Planned PLA capacity expansions in China. 45
-
Table 9. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications. 47
-
Table 10. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 48
-
Table 11. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications. 49
-
Table 12. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers. 49
-
Table 13. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications. 51
-
Table 14. PEF vs. PET. 52
-
Table 15. FDCA and PEF producers. 53
-
Table 16. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications. 54
-
Table 17. Leading Bio-PA producers production capacities. 55
-
Table 18. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications. 56
-
Table 19. Leading PBAT producers, production capacities and brands. 56
-
Table 20. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications. 58
-
Table 21. Leading PBS producers and production capacities. 59
-
Table 22. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications. 60
-
Table 23. Leading Bio-PE producers. 60
-
Table 24. Bio-PP market analysis- manufacture, advantages, disadvantages and applications. 61
-
Table 25. Leading Bio-PP producers and capacities. 62
-
Table 26.Types of PHAs and properties. 65
-
Table 27. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 67
-
Table 28. Polyhydroxyalkanoate (PHA) extraction methods. 69
-
Table 29. Polyhydroxyalkanoates (PHA) market analysis. 70
-
Table 30. Commercially available PHAs. 71
-
Table 31. Markets and applications for PHAs. 72
-
Table 32. Applications, advantages and disadvantages of PHAs in packaging. 73
-
Table 33. Polyhydroxyalkanoates (PHA) producers. 76
-
Table 34. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications. 78
-
Table 35. Leading MFC producers and capacities. 79
-
Table 36. Synthesis methods for cellulose nanocrystals (CNC). 80
-
Table 37. CNC sources, size and yield. 81
-
Table 38. CNC properties. 81
-
Table 39. Mechanical properties of CNC and other reinforcement materials. 82
-
Table 40. Applications of nanocrystalline cellulose (NCC). 83
-
Table 41. Cellulose nanocrystals analysis. 84
-
Table 42: Cellulose nanocrystal production capacities and production process, by producer. 85
-
Table 43. Global demand for cellulose nanocrystals by market, 2018-2035 (metric tons). 85
-
Table 44. Applications of cellulose nanofibers (CNF). 88
-
Table 45. Cellulose nanofibers market analysis. 89
-
Table 46. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 90
-
Table 47. Applications of bacterial nanocellulose (BNC). 104
-
Table 48. Types of protein based-bioplastics, applications and companies. 105
-
Table 49. Types of algal and fungal based-bioplastics, applications and companies. 106
-
Table 50. Overview of alginate-description, properties, application and market size. 107
-
Table 51. Companies developing algal-based bioplastics. 108
-
Table 52. Overview of mycelium fibers-description, properties, drawbacks and applications. 109
-
Table 53. Companies developing mycelium-based bioplastics. 111
-
Table 54. Overview of chitosan-description, properties, drawbacks and applications. 111
-
Table 55. Global production capacities of biobased and sustainable plastics in 2019-2035, by region, 1,000 tonnes. 113
-
Table 56. Biobased and sustainable plastics producers in North America. 114
-
Table 57. Biobased and sustainable plastics producers in Europe. 114
-
Table 58. Biobased and sustainable plastics producers in Asia-Pacific. 115
-
Table 59. Biobased and sustainable plastics producers in Latin America. 116
-
Table 60. Processes for bioplastics in packaging. 118
-
Table 61. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging. 119
-
Table 62. Typical applications for bioplastics in flexible packaging. 120
-
Table 63. Typical applications for bioplastics in rigid packaging. 122
-
Table 64. Types of next-gen natural fibers. 136
-
Table 65. Application, manufacturing method, and matrix materials of natural fibers. 139
-
Table 66. Typical properties of natural fibers. 140
-
Table 67. Commercially available next-gen natural fiber products. 140
-
Table 68. Market drivers for natural fibers. 143
-
Table 69. Overview of cotton fibers-description, properties, drawbacks and applications. 145
-
Table 70. Overview of kapok fibers-description, properties, drawbacks and applications. 147
-
Table 71. Overview of luffa fibers-description, properties, drawbacks and applications. 148
-
Table 72. Overview of jute fibers-description, properties, drawbacks and applications. 149
-
Table 73. Overview of hemp fibers-description, properties, drawbacks and applications. 151
-
Table 74. Overview of flax fibers-description, properties, drawbacks and applications. 152
-
Table 75. Overview of ramie fibers- description, properties, drawbacks and applications. 154
-
Table 76. Overview of kenaf fibers-description, properties, drawbacks and applications. 155
-
Table 77. Overview of sisal leaf fibers-description, properties, drawbacks and applications. 157
-
Table 78. Overview of abaca fibers-description, properties, drawbacks and applications. 159
-
Table 79. Overview of coir fibers-description, properties, drawbacks and applications. 160
-
Table 80. Overview of banana fibers-description, properties, drawbacks and applications. 162
-
Table 81. Overview of pineapple fibers-description, properties, drawbacks and applications. 163
-
Table 82. Overview of rice fibers-description, properties, drawbacks and applications. 165
-
Table 83. Overview of corn fibers-description, properties, drawbacks and applications. 165
-
Table 84. Overview of switch grass fibers-description, properties and applications. 166
-
Table 85. Overview of sugarcane fibers-description, properties, drawbacks and application and market size. 166
-
Table 86. Overview of bamboo fibers-description, properties, drawbacks and applications. 167
-
Table 87. Overview of wool fibers-description, properties, drawbacks and applications. 169
-
Table 88. Alternative wool materials producers. 170
-
Table 89. Overview of silk fibers-description, properties, application and market size. 170
-
Table 90. Alternative silk materials producers. 171
-
Table 91. Alternative leather materials producers. 172
-
Table 92. Next-gen fur producers. 173
-
Table 93. Alternative down materials producers. 174
-
Table 94. Applications of natural fiber composites. 175
-
Table 95. Typical properties of short natural fiber-thermoplastic composites. 176
-
Table 96. Properties of non-woven natural fiber mat composites. 177
-
Table 97. Properties of aligned natural fiber composites. 178
-
Table 98. Properties of natural fiber-bio-based polymer compounds. 178
-
Table 99. Properties of natural fiber-bio-based polymer non-woven mats. 179
-
Table 100. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 180
-
Table 101. Natural fiber-reinforced polymer composite in the automotive market. 182
-
Table 102. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 183
-
Table 103. Applications of natural fibers in the automotive industry. 184
-
Table 104. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use. 185
-
Table 105. Applications of natural fibers in the building/construction sector. 185
-
Table 106. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use. 187
-
Table 107. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use. 187
-
Table 108. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 189
-
Table 109. Technical lignin types and applications. 197
-
Table 110. Classification of technical lignins. 199
-
Table 111. Lignin content of selected biomass. 199
-
Table 112. Properties of lignins and their applications. 200
-
Table 113. Example markets and applications for lignin. 202
-
Table 114. Processes for lignin production. 204
-
Table 115. Commercial and pre-commercial biorefinery lignin production facilities and processes 213
-
Table 116. Market drivers and trends for lignin. 220
-
Table 117. Production capacities of technical lignin producers. 221
-
Table 118. Production capacities of biorefinery lignin producers. 222
-
Table 119. Estimated consumption of lignin, by type, 2019-2035 (000 MT). 222
-
Table 120. Estimated consumption of lignin, by market, 2019-2034 (000 MT). 225
-
Table 121. Lignin aromatic compound products. 230
-
Table 122. Prices of benzene, toluene, xylene and their derivatives. 231
-
Table 123. Lignin products in polymeric materials. 233
-
Table 124. Application of lignin in plastics and composites. 233
-
Table 125. Applications of lignin in construction materials. 238
-
Table 126. Lignin applications in rubber and elastomers. 239
-
Table 127. Lignin products in fuels. 241
-
Table 128. Lignin-derived anodes in lithium batteries. 243
-
Table 129. Application of lignin in binders, emulsifiers and dispersants. 245
-
Table 130. Lactips plastic pellets. 442
-
Table 131. Oji Holdings CNF products. 512
List of Figures
-
Figure 1. Coca-Cola PlantBottle®. 37
-
Figure 2. Interrelationship between conventional, bio-based and biodegradable plastics. 38
-
Figure 3. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes). 46
-
Figure 4. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes) 48
-
Figure 5. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes). 50
-
Figure 6. Production capacities of Polyethylene furanoate (PEF) to 2025. 53
-
Figure 7. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes). 53
-
Figure 8. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes). 55
-
Figure 9. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes). 57
-
Figure 10. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes). 59
-
Figure 11. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes). 61
-
Figure 12. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes). 62
-
Figure 13. PHA family. 65
-
Figure 14. PHA production capacities 2019-2035 (1,000 tonnes). 77
-
Figure 15. TEM image of cellulose nanocrystals. 79
-
Figure 16. CNC preparation. 80
-
Figure 17. Extracting CNC from trees. 81
-
Figure 18. CNC slurry. 83
-
Figure 19. Global demand for cellulose nanocrystals by market, 2018-2035 (metric tons). 87
-
Figure 20. CNF gel. 88
-
Figure 21. Global market demand for cellulose nanofibers in composites, 2018-2035 (metric tons). 92
-
Figure 22. Global market demand for cellulose nanofibers in the automotive sector, 2018-2035 (metric tons). 93
-
Figure 23. Demand for cellulose nanofibers in construction, 2018-2035 (tons). 94
-
Figure 24. Global demand for cellulose nanofibers in the paper & board/packaging market, 2018-2035 (tons). 95
-
Figure 25. Demand for cellulose nanofibers in the textiles sector, 2018-2035 (tons). 96
-
Figure 26. Global demand for cellulose nanofibers in biomedical and healthcare, 2018-2035 (tons). 97
-
Figure 27. Global demand for cellulose nanofibers in hygiene and sanitary products, 2018-2035 (tons). 98
-
Figure 28. Global demand for cellulose nanofibers in paint and coatings, 2018-2035 (tons). 99
-
Figure 29: Global demand for nanocellulose in in aerogels, 2018-2035 (tons). 99
-
Figure 30. Global demand for cellulose nanofibers in the oil and gas market, 2018-2035 (tons). 100
-
Figure 31. Global demand for Cellulose nanofibers in the filtration market, 2018-2035 (tons). 101
-
Figure 32. Global demand for cellulose nanofibers in the rheology modifiers market, 2018-2035 (tons). 101
-
Figure 33. Bacterial nanocellulose shapes 103
-
Figure 34. BLOOM masterbatch from Algix. 108
-
Figure 35. Typical structure of mycelium-based foam. 110
-
Figure 36. Commercial mycelium composite construction materials. 111
-
Figure 37. Global production capacities for bioplastics by region 2019-2035, 1,000 tonnes. 113
-
Figure 38. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes. 117
-
Figure 39. PHA bioplastics products. 119
-
Figure 40. The global market for biobased and biodegradable plastics for flexible packaging 2019–2035 (‘000 tonnes). 121
-
Figure 41. Production volumes for bioplastics for rigid packaging, 2019–2035 (‘000 tonnes). 123
-
Figure 42. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes. 125
-
Figure 43. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes. 127
-
Figure 44. Global production volumes for biobased and biodegradable polymers in building and construction 2019-2035, in 1,000 tonnes. 129
-
Figure 45. Global production volumes for biobased and biodegradable polymers in textiles 2019-2035, in 1,000 tonnes. 132
-
Figure 46. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes. 133
-
Figure 47. Biodegradable mulch films. 134
-
Figure 48. Global production volulmes for biobased and biodegradable polymers in agriculture 2019-2035, in 1,000 tonnes. 135
-
Figure 49. Types of natural fibers. 138
-
Figure 50. Absolut natural based fiber bottle cap. 141
-
Figure 51. Adidas algae-ink tees. 141
-
Figure 52. Carlsberg natural fiber beer bottle. 141
-
Figure 53. Miratex watch bands. 141
-
Figure 54. Adidas Made with Nature Ultraboost 22. 142
-
Figure 55. PUMA RE:SUEDE sneaker 142
-
Figure 56. Cotton production volume 2018-2035 (Million MT). 146
-
Figure 57. Kapok production volume 2018-2035 (MT). 147
-
Figure 58. Luffa cylindrica fiber. 148
-
Figure 59. Jute production volume 2018-2035 (Million MT). 150
-
Figure 60. Hemp fiber production volume 2018-2035 ( MT). 152
-
Figure 61. Flax fiber production volume 2018-2035 (MT). 154
-
Figure 62. Ramie fiber production volume 2018-2035 (MT). 155
-
Figure 63. Kenaf fiber production volume 2018-2035 (MT). 156
-
Figure 64. Sisal fiber production volume 2018-2035 (MT). 158
-
Figure 65. Abaca fiber production volume 2018-2035 (MT). 160
-
Figure 66. Coir fiber production volume 2018-2035 (MILLION MT). 161
-
Figure 67. Banana fiber production volume 2018-2035 (MT). 163
-
Figure 68. Pineapple fiber. 164
-
Figure 69. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019. 164
-
Figure 70. Bamboo fiber production volume 2018-2035 (MILLION MT). 168
-
Figure 71. Conceptual landscape of next-gen leather materials. 172
-
Figure 72. Hemp fibers combined with PP in car door panel. 179
-
Figure 73. Car door produced from Hemp fiber. 181
-
Figure 74. Mercedes-Benz components containing natural fibers. 182
-
Figure 75. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 188
-
Figure 76. Coir mats for erosion control. 189
-
Figure 77. Global fiber production in 2023, by fiber type, million MT and %. 191
-
Figure 78. Global fiber production (million MT), 2018-2035. 192
-
Figure 79. Natural fiber production 2018-2035, by material type, Million MT. 193
-
Figure 80. Natural fiber production 2018-2035, by market, Million MT. 194
-
Figure 81. High purity lignin. 195
-
Figure 82. Lignocellulose architecture. 196
-
Figure 83. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins. 197
-
Figure 84. The lignocellulose biorefinery. 202
-
Figure 85. LignoBoost process. 208
-
Figure 86. LignoForce system for lignin recovery from black liquor. 208
-
Figure 87. Sequential liquid-lignin recovery and purification (SLPR) system. 209
-
Figure 88. A-Recovery+ chemical recovery concept. 210
-
Figure 89. Kraft lignin SWOT analysis. 211
-
Figure 90. Soda lignin SWOT analysis. 212
-
Figure 91. Biorefinery lignin SWOT analysis. 216
-
Figure 92. Organosolv lignin. 217
-
Figure 93. Hydrolytic lignin powder. 217
-
Figure 94. Estimated consumption of lignin, by type, 2019-2035 (000 MT). 224
-
Figure 95. Estimated consumption of lignin, by market, 2019-2035 (000 MT). 226
-
Figure 96. Schematic of WISA plywood home. 232
-
Figure 97. Lignin based activated carbon. 237
-
Figure 98. Lignin/celluose precursor. 237
-
Figure 99. Functional rubber filler made from lignin. 239
-
Figure 100. Road repair utilizing lignin. 240
-
Figure 101. Prototype of lignin based supercapacitor. 242
-
Figure 102. Stora Enso lignin battery materials. 245
-
Figure 103. Pluumo. 257
-
Figure 104. ANDRITZ Lignin Recovery process. 266
-
Figure 105. Anpoly cellulose nanofiber hydrogel. 267
-
Figure 106. MEDICELLU™. 268
-
Figure 107. Asahi Kasei CNF fabric sheet. 276
-
Figure 108. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 276
-
Figure 109. CNF nonwoven fabric. 277
-
Figure 110. Roof frame made of natural fiber. 286
-
Figure 111. Beyond Leather Materials product. 289
-
Figure 112. BIOLO e-commerce mailer bag made from PHA. 296
-
Figure 113. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 297
-
Figure 114. Fiber-based screw cap. 308
-
Figure 115. formicobio™ technology. 327
-
Figure 116. nanoforest-S. 329
-
Figure 117. nanoforest-PDP. 329
-
Figure 118. nanoforest-MB. 330
-
Figure 119. sunliquid® production process. 337
-
Figure 120. CuanSave film. 339
-
Figure 121. Celish. 341
-
Figure 122. Trunk lid incorporating CNF. 342
-
Figure 123. ELLEX products. 344
-
Figure 124. CNF-reinforced PP compounds. 344
-
Figure 125. Kirekira! toilet wipes. 344
-
Figure 126. Color CNF. 345
-
Figure 127. Rheocrysta spray. 350
-
Figure 128. DKS CNF products. 351
-
Figure 129. Domsjö process. 352
-
Figure 130. Mushroom leather. 361
-
Figure 131. CNF based on citrus peel. 362
-
Figure 132. Citrus cellulose nanofiber. 363
-
Figure 133. Filler Bank CNC products. 374
-
Figure 134. Fibers on kapok tree and after processing. 376
-
Figure 135. GREEN CHIP CMF pellets and injection moulded products. 379
-
Figure 136. TMP-Bio Process. 380
-
Figure 137. Flow chart of the lignocellulose biorefinery pilot plant in Leuna. 381
-
Figure 138. Water-repellent cellulose. 383
-
Figure 139. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 384
-
Figure 140. PHA production process. 385
-
Figure 141. CNF products from Furukawa Electric. 386
-
Figure 142. AVAPTM process. 396
-
Figure 143. GreenPower+™ process. 397
-
Figure 144. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 401
-
Figure 145. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 404
-
Figure 146. CNF gel. 410
-
Figure 147. Block nanocellulose material. 411
-
Figure 148. CNF products developed by Hokuetsu. 411
-
Figure 149. Marine leather products. 414
-
Figure 150. Inner Mettle Milk products. 417
-
Figure 151. Kami Shoji CNF products. 428
-
Figure 152. Dual Graft System. 431
-
Figure 153. Engine cover utilizing Kao CNF composite resins. 432
-
Figure 154. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended). 432
-
Figure 155. Kel Labs yarn. 433
-
Figure 156. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side). 439
-
Figure 157. Lignin gel. 449
-
Figure 158. BioFlex process. 453
-
Figure 159. Nike Algae Ink graphic tee. 455
-
Figure 160. LX Process. 458
-
Figure 161. Made of Air's HexChar panels. 461
-
Figure 162. TransLeather. 462
-
Figure 163. Chitin nanofiber product. 466
-
Figure 164. Marusumi Paper cellulose nanofiber products. 468
-
Figure 165. FibriMa cellulose nanofiber powder. 468
-
Figure 166. METNIN™ Lignin refining technology. 473
-
Figure 167. IPA synthesis method. 477
-
Figure 168. MOGU-Wave panels. 479
-
Figure 169. CNF slurries. 481
-
Figure 170. Range of CNF products. 481
-
Figure 171. Reishi. 485
-
Figure 172. Compostable water pod. 501
-
Figure 173. Leather made from leaves. 502
-
Figure 174. Nike shoe with beLEAF™. 502
-
Figure 175. CNF clear sheets. 512
-
Figure 176. Oji Holdings CNF polycarbonate product. 513
-
Figure 177. Fluorene cellulose ® powder. 516
-
Figure 178. Enfinity cellulosic ethanol technology process. 527
-
Figure 179. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 532
-
Figure 180. XCNF. 539
-
Figure 181: Plantrose process. 540
-
Figure 182. LOVR hemp leather. 543
-
Figure 183. CNF insulation flat plates. 545
-
Figure 184. Hansa lignin. 551
-
Figure 185. Manufacturing process for STARCEL. 555
-
Figure 186. Manufacturing process for STARCEL. 559
-
Figure 187. 3D printed cellulose shoe. 566
-
Figure 188. Lyocell process. 569
-
Figure 189. North Face Spiber Moon Parka. 574
-
Figure 190. PANGAIA LAB NXT GEN Hoodie. 574
-
Figure 191. Spider silk production. 575
-
Figure 192. Stora Enso lignin battery materials. 579
-
Figure 193. 2 wt.% CNF suspension. 580
-
Figure 194. BiNFi-s Dry Powder. 581
-
Figure 195. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 581
-
Figure 196. Silk nanofiber (right) and cocoon of raw material. 582
-
Figure 197. Sulapac cosmetics containers. 583
-
Figure 198. Sulzer equipment for PLA polymerization processing. 584
-
Figure 199. Solid Novolac Type lignin modified phenolic resins. 585
-
Figure 200. Teijin bioplastic film for door handles. 595
-
Figure 201. Corbion FDCA production process. 603
-
Figure 202. Comparison of weight reduction effect using CNF. 604
-
Figure 203. CNF resin products. 608
-
Figure 204. UPM biorefinery process. 609
-
Figure 205. Vegea production process. 614
-
Figure 206. The Proesa® Process. 616
-
Figure 207. Goldilocks process and applications. 617
-
Figure 208. Visolis’ Hybrid Bio-Thermocatalytic Process. 620
-
Figure 209. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 623
-
Figure 210. Worn Again products. 628
-
Figure 211. Zelfo Technology GmbH CNF production process. 633
ページTOPに戻る
Summary
The global market for biobased polymers and plastics is experiencing rapid growth as industries and consumers increasingly seek sustainable alternatives to conventional petroleum-based materials. This burgeoning sector represents a critical component in the transition towards a more circular and environmentally friendly economy. Biobased polymers, derived from renewable biomass sources such as corn, sugarcane, and cellulose, offer the potential to significantly reduce carbon footprints and dependence on fossil fuels. The importance of this market extends beyond environmental benefits. It plays a crucial role in driving innovation across multiple industries, from packaging and consumer goods to automotive and construction. As regulations tighten around single-use plastics and carbon emissions, biobased alternatives are becoming essential for companies to meet sustainability targets and maintain consumer trust.
Furthermore, the development of biobased polymers is spurring advancements in agricultural practices, biorefining technologies, and materials science. This cross-sector innovation is creating new economic opportunities, particularly in rural areas where biomass feedstocks are grown and processed. The market's growth is also catalyzing investments in research and development, leading to improvements in the performance and cost-competitiveness of bioplastics.
This comprehensive 600+ page report provides an in-depth analysis of the rapidly growing global market for biobased polymers and plastics. This report examines the latest technological developments, market trends, and growth opportunities in this dynamic sector. Report contents include:
-
Detailed analysis of synthetic and natural bio-based polymers including PLA, PHA, bio-PE, bio-PET, bio-PA, and more
-
Evaluation of biodegradable and compostable plastic materials
-
Examination of natural fibers and lignin-based materials
-
Market forecasts from 2019-2035 for production volumes and capacities
-
Profiles of over 500 companies across the bioplastics value chain. Companies profiled include Avantium, BASF, Biome Bioplastics, Braskem, Buyo, Danimer Scientific, FabricNano, FlexSea, Floreon, Gevo, MetaCycler BioInnovations, Mi Terro, PlantSwitch, Teijin Limited, Verde Bioresins, Versalis, and Xampla.
-
Analysis of market drivers, challenges, and emerging applications
The report segments the market by polymer type, application, and region, providing granular data on production volumes, consumption patterns, and growth projections. It highlights the shift from first-generation feedstocks to advanced biomass sources and the integration of recycled content in bio-based plastics.
Synthetic Bio-based Polymers:
-
Polylactic acid (PLA)
-
Bio-polyethylene terephthalate (Bio-PET)
-
Bio-polyamides (Bio-PA)
-
Bio-polyethylene (Bio-PE)
-
Bio-polypropylene (Bio-PP)
-
Polyethylene furanoate (PEF)
-
Polytrimethylene terephthalate (PTT)
-
Polybutylene succinate (PBS)
-
Poly(butylene adipate-co-terephthalate) (PBAT)
Natural Bio-based Polymers:
-
Polyhydroxyalkanoates (PHA)
-
Cellulose-based materials (including nanocellulose)
-
Starch-based plastics
-
Lignin-based materials
-
Proteins (soy, casein, etc.)
-
Natural fibers (cotton, jute, flax, etc.)
The study provides a thorough examination of each polymer type, including production processes, properties, cost analysis, and comparative advantages versus conventional plastics. Emerging materials like bacterial cellulose and mycelium-based composites are also evaluated for their future market potential.
Applications Analysis:
Detailed market data and growth projections are provided for key application areas:
-
Packaging (rigid and flexible)
-
Consumer goods
-
Automotive
-
Building & construction
-
Textiles
-
Electronics
-
Agriculture
The packaging sector currently dominates bioplastics usage, accounting for over 50% of the market. However, automotive and construction applications are expected to see the fastest growth rates in the coming years as bioplastics increasingly replace conventional materials in these industries.
Regional Analysis:
The report offers a comprehensive regional breakdown, covering:
-
North America
-
Europe
-
Asia Pacific
-
Latin America
-
Middle East & Africa
Competitive Landscape:
An extensive analysis of the competitive environment includes:
-
Market shares of leading biopolymer producers
-
Detailed company profiles of over 500 key players
-
Strategic initiatives, partnerships, and M&A activities
-
Investments in capacity expansion and new technology development
-
Emerging start-ups and their innovative approaches
Technology Assessment:
The study provides an in-depth look at the latest technological developments in bio-based polymers, including:
-
Advances in fermentation and biorefining processes
-
Innovations in polymer blending and compounding
-
Progress in biodegradability and compostability
-
Improvements in barrier properties and heat resistance
-
Integration of recycled content in bio-based plastics
-
Development of novel biomass feedstocks
Regulatory Landscape:
A thorough examination of the regulatory environment influencing bioplastics markets, including:
-
Single-use plastic bans and restrictions
-
Biodegradability and compostability standards
-
Recycling regulations and infrastructure development
-
Carbon pricing mechanisms and their impact on bioplastics
-
Incentives for bio-based products in government procurement
It also identifies key opportunities for growth and innovation, such as:
-
Development of advanced biorefineries for integrated production
-
Expansion into high-performance engineering plastics
-
Customization of bioplastics for specific end-use requirements
-
Creation of new value-added applications for lignin and other bio-based materials
-
Potential for carbon-negative plastics through biomass feedstocks and carbon capture
ページTOPに戻る
Table of Contents
1 RESEARCH METHODOLOGY 33
2 INTRODUCTION 34
-
2.1 Types of bioplastics 35
-
2.2 Bio-based or renewable plastics 36
-
2.2.1 Drop-in bio-based plastics 36
-
2.2.2 Novel bio-based plastics 37
-
2.3 Biodegradable and compostable plastics 38
-
2.3.1 Biodegradability 38
-
2.3.2 Compostability 39
-
2.4 Key market players 40
3 SYNTHETIC BIO-BASED POLYMERS AND PLASTICS 42
-
3.1 Polylactic acid (Bio-PLA) 42
-
3.1.1 Market analysis 42
-
3.1.2 Production 44
-
3.1.3 Producers and production capacities, current and planned 44
-
3.1.3.1 Lactic acid producers and production capacities 44
-
3.1.3.2 PLA producers and production capacities 44
-
3.1.3.3 Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes) 46
-
3.2 Polyethylene terephthalate (Bio-PET) 47
-
3.2.1 Market analysis 47
-
3.2.2 Producers and production capacities 48
-
3.2.3 Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes) 48
-
3.3.1 Market analysis 49
-
3.3.2 Producers and production capacities 49
-
3.3.3 Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes) 50
-
3.4.1 Market analysis 51
-
3.4.2 Comparative properties to PET 52
-
3.4.3 Producers and production capacities 52
-
3.4.3.1 FDCA and PEF producers and production capacities 52
-
3.4.3.2 Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes). 53
-
3.5.1 Market analysis 54
-
3.5.2 Producers and production capacities 55
-
3.5.3 Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes) 55
-
3.6.1 Market analysis 56
-
3.6.2 Producers and production capacities 56
-
3.6.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes) 57
-
3.7.1 Market analysis 58
-
3.7.2 Producers and production capacities 59
-
3.7.3 Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes) 59
-
3.8.1 Market analysis 60
-
3.8.2 Producers and production capacities 60
-
3.8.3 Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes). 61
-
3.9.1 Market analysis 61
-
3.9.2 Producers and production capacities 62
-
3.9.3 Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes) 62
-
3.3 Polytrimethylene terephthalate (Bio-PTT) 49
-
3.4 Polyethylene furanoate (Bio-PEF) 51
-
3.5 Polyamides (Bio-PA) 54
-
3.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) 56
-
3.7 Polybutylene succinate (PBS) and copolymers 58
-
3.8 Polyethylene (Bio-PE) 60
-
3.9 Polypropylene (Bio-PP) 61
4 NATURAL BIO-BASED POLYMERS 63
-
4.1 Polyhydroxyalkanoates (PHA) 63
-
4.1.1 Technology description 63
-
4.1.2 Types 64
-
4.1.2.1 PHB 66
-
4.1.2.2 PHBV 67
-
4.1.3 Synthesis and production processes 68
-
4.1.4 Market analysis 70
-
4.1.5 Commercially available PHAs 71
-
4.1.6 Markets for PHAs 72
-
4.1.6.1 Packaging 73
-
4.1.6.2 Cosmetics 74
-
4.1.6.2.1 PHA microspheres 74
-
4.1.6.3 Medical 75
-
4.1.6.3.1 Tissue engineering 75
-
4.1.6.3.2 Drug delivery 75
-
4.1.6.4.1 Mulch film 75
-
4.1.6.4.2 Grow bags 75
-
4.1.6.4 Agriculture 75
-
4.1.7 Producers and production capacities 76
-
4.1.8 PHA production capacities 2019-2035 (1,000 tonnes) 77
-
4.2 Cellulose 78
-
4.2.1 Microfibrillated cellulose (MFC) 78
-
4.2.1.1 Market analysis 78
-
4.2.1.2 Producers and production capacities 79
-
4.2.2 Nanocellulose 79
-
4.2.2.1 Cellulose nanocrystals 79
-
4.2.2.1.1 Synthesis 80
-
4.2.2.1.2 Properties 81
-
4.2.2.1.3 Production 82
-
4.2.2.1.4 Applications 82
-
4.2.2.1.5 Market analysis 84
-
4.2.2.1.6 Producers and production capacities 85
-
4.2.2.1.7 Global demand for cellulose nanocrystals by market 85
-
4.2.2.2 Cellulose nanofibers 88
-
4.2.2.2.1 Applications 88
-
4.2.2.2.2 Market analysis 89
-
4.2.2.2.3 Producers and production capacities 90
-
4.2.2.2.3.1 Global demand in tons by market 91
-
4.2.2.2.3.1.1 Composites 91
-
4.2.2.2.3.1.2 Automotive 92
-
4.2.2.2.3.1.3 Building and construction 93
-
4.2.2.2.3.1.4 Paper & board/packaging 94
-
4.2.2.2.3.1.5 Textiles 95
-
4.2.2.2.3.1.6 Biomedicine and healthcare 96
-
4.2.2.2.3.1.7 Hygiene and sanitary products 97
-
4.2.2.2.3.1.8 Paint and coatings 98
-
4.2.2.2.3.1.9 Aerogels 99
-
4.2.2.2.3.1.10 Oil and gas 99
-
4.2.2.2.3.1.11 Filtration 100
-
4.2.2.2.3.1.12 Rheology modifiers 101
-
4.2.2.3.1 Production 101
-
4.2.2.3.2 Applications 104
-
4.2.2.3 Bacterial Nanocellulose (BNC) 101
-
4.2.3.1 Types, applications and producers 105
-
4.2.4.1 Algal 107
-
4.2.4.1.1 Advantages 107
-
4.2.4.1.2 Production 108
-
4.2.4.1.3 Producers 108
-
4.2.4.2 Mycelium 109
-
4.2.4.2.1 Properties 109
-
4.2.4.2.2 Applications 110
-
4.2.4.2.3 Commercialization 111
-
4.2.5.1 Technology description 111
-
4.2.3 Protein-based bioplastics 105
-
4.2.4 Algal and fungal 106
-
4.2.5 Chitosan 111
5 PRODUCTION OF BIO-BASED POLYMERS AND PLASTICS, BY REGION 113
-
5.1 North America 114
-
5.2 Europe 114
-
5.3 Asia-Pacific 115
-
5.3.1 China 115
-
5.3.2 Japan 115
-
5.3.3 Thailand 115
-
5.3.4 Indonesia 115
-
5.4 Latin America 116
6 MARKET SEGMENTATION OF BIOPLASTICS 117
-
6.1 Packaging 118
-
6.1.1 Processes for bioplastics in packaging 118
-
6.1.2 Applications 119
-
6.1.3 Flexible packaging 119
-
6.1.3.1 Production volumes 2019-2035 121
-
6.1.4 Rigid packaging 122
-
6.1.4.1 Production volumes 2019-2035 123
-
6.2 Consumer products 124
-
6.2.1 Applications 124
-
6.2.2 Production volumes 2019-2035 124
-
6.3.1 Applications 126
-
6.3.2 Production volumes 2019-2035 127
-
6.4.1 Applications 128
-
6.4.2 Production volumes 2019-2035 128
-
6.5.1 Apparel 129
-
6.5.2 Footwear 130
-
6.5.3 Medical textiles 131
-
6.5.4 Production volumes 2019-2035 131
-
6.5.5 Electronics 132
-
6.5.5.1 Applications 132
-
6.5.5.2 Production volumes 2019-2035 133
-
6.5.6 Agriculture and horticulture 133
-
6.5.6.1 Production volumes 2019-2035 134
-
6.3 Automotive 126
-
6.4 Building & construction 128
-
6.5 Textiles 129
7 NATURAL FIBERS 136
-
7.1 Manufacturing method, matrix materials and applications of natural fibers 139
-
7.2 Advantages of natural fibers 140
-
7.3 Commercially available next-gen natural fiber products 140
-
7.4 Market drivers for next-gen natural fibers 143
-
7.5 Challenges 144
-
7.6 Plants (cellulose, lignocellulose) 145
-
7.6.1 Seed fibers 145
-
7.6.1.1 Cotton 145
-
7.6.1.1.1 Production volumes 2018-2035 146
-
7.6.1.2 Kapok 147
-
7.6.1.2.1 Production volumes 2018-2035 147
-
7.6.1.3 Luffa 148
-
7.6.2 Bast fibers 149
-
7.6.2.1 Jute 149
-
7.6.2.2 Production volumes 2018-2035 150
-
7.6.2.2.1 Hemp 151
-
7.6.2.2.2 Production volumes 2018-2035 151
-
7.6.2.3 Flax 152
-
7.6.2.3.1 Production volumes 2018-2035 153
-
7.6.2.4.1 Production volumes 2018-2035 154
-
7.6.2.5.1 Production volumes 2018-2035 156
-
7.6.2.4 Ramie 154
-
7.6.2.5 Kenaf 155
-
7.6.3.1 Sisal 157
-
7.6.3.1.1 Production volumes 2018-2035 157
-
7.6.3.2 Abaca 159
-
7.6.3.2.1 Production volumes 2018-2035 159
-
7.6.4.1 Coir 160
-
7.6.4.1.1 Production volumes 2018-2035 161
-
7.6.4.2 Banana 162
-
7.6.4.2.1 Production volumes 2018-2035 162
-
7.6.4.3 Pineapple 163
-
7.6.5.1 Rice fiber 165
-
7.6.5.2 Corn 165
-
7.6.6.1 Switch grass 166
-
7.6.6.2 Sugarcane (agricultural residues) 166
-
7.6.6.3 Bamboo 167
-
7.6.6.3.1 Production volumes 2018-2035 168
-
7.6.6.4 Fresh grass (green biorefinery) 169
-
7.6.3 Leaf fibers 157
-
7.6.4 Fruit fibers 160
-
7.6.5 Stalk fibers from agricultural residues 165
-
7.6.6 Cane, grasses and reed 166
-
7.7 Animal (fibrous protein) 169
-
7.7.1 Wool 169
-
7.7.1.1 Alternative wool materials 170
-
7.7.1.2 Producers 170
-
7.7.2 Silk fiber 170
-
7.7.2.1 Alternative silk materials 171
-
7.7.3.1 Alternative leather materials 172
-
7.7.4.1 Producers 173
-
7.7.5.1 Alternative down materials 174
-
7.7.3 Leather 171
-
7.7.4 Fur 173
-
7.7.5 Down 174
-
7.8.1 Composites 174
-
7.8.2 Applications 175
-
7.8.3 Natural fiber injection moulding compounds 176
-
7.8.3.1 Properties 176
-
7.8.3.2 Applications 176
-
7.8.4 Non-woven natural fiber mat composites 177
-
7.8.4.1 Automotive 177
-
7.8.4.2 Applications 177
-
7.8.5 Aligned natural fiber-reinforced composites 177
-
7.8.6 Natural fiber biobased polymer compounds 178
-
7.8.7.1 Flax 179
-
7.8.7.2 Kenaf 179
-
7.8.7 Natural fiber biobased polymer non-woven mats 179
-
7.8.9.1 Market overview 180
-
7.8.10.1 Market overview 180
-
7.8.10.2 Applications of natural fibers 184
-
7.8.11.1 Market overview 185
-
7.8.11.2 Applications of natural fibers 185
-
7.8.12.1 Market overview 186
-
7.8.13.1 Market overview 187
-
7.8.13.2 Consumer apparel 188
-
7.8.13.3 Geotextiles 188
-
7.8.14.1 Market overview 189
-
7.8.8 Natural fiber thermoset bioresin composites 179
-
7.8.9 Aerospace 180
-
7.8.10 Automotive 180
-
7.8.11 Building/construction 184
-
7.8.12 Sports and leisure 186
-
7.8.13 Textiles 187
-
7.8.14 Packaging 189
-
7.9.1 Overall global fibers market 191
-
7.9.2 By material types 193
-
7.9.3 By market 193
-
7.8 Markets for natural fibers 174
-
7.9 Global production of natural fibers 191
8 LIGNIN 194
-
8.1 Introduction 195
-
8.1.1 What is lignin? 195
-
8.1.1.1 Lignin structure 195
-
8.1.2 Types of lignin 196
-
8.1.2.1 Sulfur containing lignin 198
-
8.1.2.2 Sulfur-free lignin from biorefinery process 199
-
8.1.3 Properties 199
-
8.1.4 The lignocellulose biorefinery 201
-
8.1.5 Markets and applications 202
-
8.1.6 Challenges for using lignin 203
-
8.2 Lignin production processes 203
-
8.2.1 Feedstock Preprocessing 205
-
8.2.2 Conversion Processes 206
-
8.2.2.1 Thermochemical Conversion 206
-
8.2.2.2 Chemical Conversion 206
-
8.2.2.3 Biological Conversion 206
-
8.2.2.4 Electrochemical Conversion 206
-
8.2.3 Lignosulphonates 207
-
8.2.4 Kraft Lignin 207
-
8.2.4.1 LignoBoost process 207
-
8.2.4.2 LignoForce method 208
-
8.2.4.3 Sequential Liquid Lignin Recovery and Purification 209
-
8.2.4.4 A-Recovery+ 209
-
8.2.4.5 SWOT analysis 210
-
8.2.5.1 Description 211
-
8.2.5.2 SWOT analysis 212
-
8.2.6.1 Products Extraction & Purification 213
-
8.2.6.2 Lignocellulose Biorefinery Economics 213
-
8.2.6.3 Commercial and pre-commercial biorefinery lignin production facilities and processes 213
-
8.2.6.4 SWOT analysis 215
-
8.2.5 Soda lignin 211
-
8.2.6 Biorefinery lignin 213
-
8.2.7 Organosolv lignins 216
-
8.2.8 Hydrolytic lignin 217
-
8.3 Lignin nanoparticles 217
-
8.4 Lignin-based carbon materials 218
-
8.5 Depolymerized lignin products 218
-
8.6 Lignin-based bioplastics 219
-
8.7.1 Market drivers and trends for lignin 220
-
8.7.2 Production capacities 221
-
8.7.2.1 Technical lignin availability (dry ton/y) 221
-
8.7.2.2 Biomass conversion (Biorefinery) 222
-
8.7.3 Consumption of lignin 222
-
8.7.3.1 By type 222
-
8.7.3.2 By market 224
-
8.7.4 Prices 227
-
8.7.5 Markets and applications 227
-
8.7.5.1 Heat and power energy 227
-
8.7.5.2 Bio-oils 227
-
8.7.5.3 Syngas 228
-
8.7.5.4 Aromatic compounds 229
-
8.7.5.4.1 Benzene, toluene and xylene 230
-
8.7.5.4.2 Phenol and phenolic resins 231
-
8.7.5.4.3 Vanillin 232
-
8.7.5.5 Polymers 232
-
8.7.5.6 Hydrogels 234
-
8.7.5.6.1 Adhesives 235
-
8.7.5.7.1 Carbon black 235
-
8.7.5.7.2 Activated carbons 236
-
8.7.5.7.3 Carbon fiber 237
-
8.7.5.7 Carbon materials 235
-
8.7.5.8 Construction materials 238
-
8.7.5.9 Rubber 238
-
8.7.5.10 Bitumen and Asphalt 239
-
8.7.5.12.1 Supercapacitors 242
-
8.7.5.12.2 Anodes for lithium-ion batteries 243
-
8.7.5.12.3 Gel electrolytes for lithium-ion batteries 244
-
8.7.5.12.4 Binders for lithium-ion batteries 244
-
8.7.5.12.5 Cathodes for lithium-ion batteries 244
-
8.7.5.12.6 Sodium-ion batteries 244
-
8.7.5.11 Fuels 240
-
8.7.5.12 Energy storage 241
-
8.7.5.13 Binders, emulsifiers and dispersants 245
-
8.7.5.14 Chelating agents 247
-
8.7.5.15 Coatings 248
-
8.7.5.16 Ceramics 249
-
8.7.5.17 Automotive 250
-
8.7.5.18 Fire retardants 250
-
8.7.5.19 Antioxidants 251
-
8.7.5.20 Lubricants 252
-
8.7.5.21 Dust control 252
-
8.7 Markets for lignin 220
9 COMPANY PROFILES 253 (553 company profiles)
10 REFERENCES 637
ページTOPに戻る
List of Tables/Graphs
List of Tables
-
Table 1. Types of Bio-based and/or Biodegradable Plastics, applications. 35
-
Table 2. Type of biodegradation. 39
-
Table 3. Advantages and disadvantages of biobased plastics compared to conventional plastics. 39
-
Table 4. Key market players by Bio-based and/or Biodegradable Plastic types. 40
-
Table 5. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 42
-
Table 6. Lactic acid producers and production capacities. 44
-
Table 7. PLA producers and production capacities. 44
-
Table 8. Planned PLA capacity expansions in China. 45
-
Table 9. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications. 47
-
Table 10. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 48
-
Table 11. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications. 49
-
Table 12. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers. 49
-
Table 13. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications. 51
-
Table 14. PEF vs. PET. 52
-
Table 15. FDCA and PEF producers. 53
-
Table 16. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications. 54
-
Table 17. Leading Bio-PA producers production capacities. 55
-
Table 18. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications. 56
-
Table 19. Leading PBAT producers, production capacities and brands. 56
-
Table 20. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications. 58
-
Table 21. Leading PBS producers and production capacities. 59
-
Table 22. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications. 60
-
Table 23. Leading Bio-PE producers. 60
-
Table 24. Bio-PP market analysis- manufacture, advantages, disadvantages and applications. 61
-
Table 25. Leading Bio-PP producers and capacities. 62
-
Table 26.Types of PHAs and properties. 65
-
Table 27. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 67
-
Table 28. Polyhydroxyalkanoate (PHA) extraction methods. 69
-
Table 29. Polyhydroxyalkanoates (PHA) market analysis. 70
-
Table 30. Commercially available PHAs. 71
-
Table 31. Markets and applications for PHAs. 72
-
Table 32. Applications, advantages and disadvantages of PHAs in packaging. 73
-
Table 33. Polyhydroxyalkanoates (PHA) producers. 76
-
Table 34. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications. 78
-
Table 35. Leading MFC producers and capacities. 79
-
Table 36. Synthesis methods for cellulose nanocrystals (CNC). 80
-
Table 37. CNC sources, size and yield. 81
-
Table 38. CNC properties. 81
-
Table 39. Mechanical properties of CNC and other reinforcement materials. 82
-
Table 40. Applications of nanocrystalline cellulose (NCC). 83
-
Table 41. Cellulose nanocrystals analysis. 84
-
Table 42: Cellulose nanocrystal production capacities and production process, by producer. 85
-
Table 43. Global demand for cellulose nanocrystals by market, 2018-2035 (metric tons). 85
-
Table 44. Applications of cellulose nanofibers (CNF). 88
-
Table 45. Cellulose nanofibers market analysis. 89
-
Table 46. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 90
-
Table 47. Applications of bacterial nanocellulose (BNC). 104
-
Table 48. Types of protein based-bioplastics, applications and companies. 105
-
Table 49. Types of algal and fungal based-bioplastics, applications and companies. 106
-
Table 50. Overview of alginate-description, properties, application and market size. 107
-
Table 51. Companies developing algal-based bioplastics. 108
-
Table 52. Overview of mycelium fibers-description, properties, drawbacks and applications. 109
-
Table 53. Companies developing mycelium-based bioplastics. 111
-
Table 54. Overview of chitosan-description, properties, drawbacks and applications. 111
-
Table 55. Global production capacities of biobased and sustainable plastics in 2019-2035, by region, 1,000 tonnes. 113
-
Table 56. Biobased and sustainable plastics producers in North America. 114
-
Table 57. Biobased and sustainable plastics producers in Europe. 114
-
Table 58. Biobased and sustainable plastics producers in Asia-Pacific. 115
-
Table 59. Biobased and sustainable plastics producers in Latin America. 116
-
Table 60. Processes for bioplastics in packaging. 118
-
Table 61. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging. 119
-
Table 62. Typical applications for bioplastics in flexible packaging. 120
-
Table 63. Typical applications for bioplastics in rigid packaging. 122
-
Table 64. Types of next-gen natural fibers. 136
-
Table 65. Application, manufacturing method, and matrix materials of natural fibers. 139
-
Table 66. Typical properties of natural fibers. 140
-
Table 67. Commercially available next-gen natural fiber products. 140
-
Table 68. Market drivers for natural fibers. 143
-
Table 69. Overview of cotton fibers-description, properties, drawbacks and applications. 145
-
Table 70. Overview of kapok fibers-description, properties, drawbacks and applications. 147
-
Table 71. Overview of luffa fibers-description, properties, drawbacks and applications. 148
-
Table 72. Overview of jute fibers-description, properties, drawbacks and applications. 149
-
Table 73. Overview of hemp fibers-description, properties, drawbacks and applications. 151
-
Table 74. Overview of flax fibers-description, properties, drawbacks and applications. 152
-
Table 75. Overview of ramie fibers- description, properties, drawbacks and applications. 154
-
Table 76. Overview of kenaf fibers-description, properties, drawbacks and applications. 155
-
Table 77. Overview of sisal leaf fibers-description, properties, drawbacks and applications. 157
-
Table 78. Overview of abaca fibers-description, properties, drawbacks and applications. 159
-
Table 79. Overview of coir fibers-description, properties, drawbacks and applications. 160
-
Table 80. Overview of banana fibers-description, properties, drawbacks and applications. 162
-
Table 81. Overview of pineapple fibers-description, properties, drawbacks and applications. 163
-
Table 82. Overview of rice fibers-description, properties, drawbacks and applications. 165
-
Table 83. Overview of corn fibers-description, properties, drawbacks and applications. 165
-
Table 84. Overview of switch grass fibers-description, properties and applications. 166
-
Table 85. Overview of sugarcane fibers-description, properties, drawbacks and application and market size. 166
-
Table 86. Overview of bamboo fibers-description, properties, drawbacks and applications. 167
-
Table 87. Overview of wool fibers-description, properties, drawbacks and applications. 169
-
Table 88. Alternative wool materials producers. 170
-
Table 89. Overview of silk fibers-description, properties, application and market size. 170
-
Table 90. Alternative silk materials producers. 171
-
Table 91. Alternative leather materials producers. 172
-
Table 92. Next-gen fur producers. 173
-
Table 93. Alternative down materials producers. 174
-
Table 94. Applications of natural fiber composites. 175
-
Table 95. Typical properties of short natural fiber-thermoplastic composites. 176
-
Table 96. Properties of non-woven natural fiber mat composites. 177
-
Table 97. Properties of aligned natural fiber composites. 178
-
Table 98. Properties of natural fiber-bio-based polymer compounds. 178
-
Table 99. Properties of natural fiber-bio-based polymer non-woven mats. 179
-
Table 100. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 180
-
Table 101. Natural fiber-reinforced polymer composite in the automotive market. 182
-
Table 102. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 183
-
Table 103. Applications of natural fibers in the automotive industry. 184
-
Table 104. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use. 185
-
Table 105. Applications of natural fibers in the building/construction sector. 185
-
Table 106. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use. 187
-
Table 107. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use. 187
-
Table 108. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 189
-
Table 109. Technical lignin types and applications. 197
-
Table 110. Classification of technical lignins. 199
-
Table 111. Lignin content of selected biomass. 199
-
Table 112. Properties of lignins and their applications. 200
-
Table 113. Example markets and applications for lignin. 202
-
Table 114. Processes for lignin production. 204
-
Table 115. Commercial and pre-commercial biorefinery lignin production facilities and processes 213
-
Table 116. Market drivers and trends for lignin. 220
-
Table 117. Production capacities of technical lignin producers. 221
-
Table 118. Production capacities of biorefinery lignin producers. 222
-
Table 119. Estimated consumption of lignin, by type, 2019-2035 (000 MT). 222
-
Table 120. Estimated consumption of lignin, by market, 2019-2034 (000 MT). 225
-
Table 121. Lignin aromatic compound products. 230
-
Table 122. Prices of benzene, toluene, xylene and their derivatives. 231
-
Table 123. Lignin products in polymeric materials. 233
-
Table 124. Application of lignin in plastics and composites. 233
-
Table 125. Applications of lignin in construction materials. 238
-
Table 126. Lignin applications in rubber and elastomers. 239
-
Table 127. Lignin products in fuels. 241
-
Table 128. Lignin-derived anodes in lithium batteries. 243
-
Table 129. Application of lignin in binders, emulsifiers and dispersants. 245
-
Table 130. Lactips plastic pellets. 442
-
Table 131. Oji Holdings CNF products. 512
List of Figures
-
Figure 1. Coca-Cola PlantBottle®. 37
-
Figure 2. Interrelationship between conventional, bio-based and biodegradable plastics. 38
-
Figure 3. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes). 46
-
Figure 4. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes) 48
-
Figure 5. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes). 50
-
Figure 6. Production capacities of Polyethylene furanoate (PEF) to 2025. 53
-
Figure 7. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes). 53
-
Figure 8. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes). 55
-
Figure 9. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes). 57
-
Figure 10. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes). 59
-
Figure 11. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes). 61
-
Figure 12. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes). 62
-
Figure 13. PHA family. 65
-
Figure 14. PHA production capacities 2019-2035 (1,000 tonnes). 77
-
Figure 15. TEM image of cellulose nanocrystals. 79
-
Figure 16. CNC preparation. 80
-
Figure 17. Extracting CNC from trees. 81
-
Figure 18. CNC slurry. 83
-
Figure 19. Global demand for cellulose nanocrystals by market, 2018-2035 (metric tons). 87
-
Figure 20. CNF gel. 88
-
Figure 21. Global market demand for cellulose nanofibers in composites, 2018-2035 (metric tons). 92
-
Figure 22. Global market demand for cellulose nanofibers in the automotive sector, 2018-2035 (metric tons). 93
-
Figure 23. Demand for cellulose nanofibers in construction, 2018-2035 (tons). 94
-
Figure 24. Global demand for cellulose nanofibers in the paper & board/packaging market, 2018-2035 (tons). 95
-
Figure 25. Demand for cellulose nanofibers in the textiles sector, 2018-2035 (tons). 96
-
Figure 26. Global demand for cellulose nanofibers in biomedical and healthcare, 2018-2035 (tons). 97
-
Figure 27. Global demand for cellulose nanofibers in hygiene and sanitary products, 2018-2035 (tons). 98
-
Figure 28. Global demand for cellulose nanofibers in paint and coatings, 2018-2035 (tons). 99
-
Figure 29: Global demand for nanocellulose in in aerogels, 2018-2035 (tons). 99
-
Figure 30. Global demand for cellulose nanofibers in the oil and gas market, 2018-2035 (tons). 100
-
Figure 31. Global demand for Cellulose nanofibers in the filtration market, 2018-2035 (tons). 101
-
Figure 32. Global demand for cellulose nanofibers in the rheology modifiers market, 2018-2035 (tons). 101
-
Figure 33. Bacterial nanocellulose shapes 103
-
Figure 34. BLOOM masterbatch from Algix. 108
-
Figure 35. Typical structure of mycelium-based foam. 110
-
Figure 36. Commercial mycelium composite construction materials. 111
-
Figure 37. Global production capacities for bioplastics by region 2019-2035, 1,000 tonnes. 113
-
Figure 38. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes. 117
-
Figure 39. PHA bioplastics products. 119
-
Figure 40. The global market for biobased and biodegradable plastics for flexible packaging 2019–2035 (‘000 tonnes). 121
-
Figure 41. Production volumes for bioplastics for rigid packaging, 2019–2035 (‘000 tonnes). 123
-
Figure 42. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes. 125
-
Figure 43. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes. 127
-
Figure 44. Global production volumes for biobased and biodegradable polymers in building and construction 2019-2035, in 1,000 tonnes. 129
-
Figure 45. Global production volumes for biobased and biodegradable polymers in textiles 2019-2035, in 1,000 tonnes. 132
-
Figure 46. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes. 133
-
Figure 47. Biodegradable mulch films. 134
-
Figure 48. Global production volulmes for biobased and biodegradable polymers in agriculture 2019-2035, in 1,000 tonnes. 135
-
Figure 49. Types of natural fibers. 138
-
Figure 50. Absolut natural based fiber bottle cap. 141
-
Figure 51. Adidas algae-ink tees. 141
-
Figure 52. Carlsberg natural fiber beer bottle. 141
-
Figure 53. Miratex watch bands. 141
-
Figure 54. Adidas Made with Nature Ultraboost 22. 142
-
Figure 55. PUMA RE:SUEDE sneaker 142
-
Figure 56. Cotton production volume 2018-2035 (Million MT). 146
-
Figure 57. Kapok production volume 2018-2035 (MT). 147
-
Figure 58. Luffa cylindrica fiber. 148
-
Figure 59. Jute production volume 2018-2035 (Million MT). 150
-
Figure 60. Hemp fiber production volume 2018-2035 ( MT). 152
-
Figure 61. Flax fiber production volume 2018-2035 (MT). 154
-
Figure 62. Ramie fiber production volume 2018-2035 (MT). 155
-
Figure 63. Kenaf fiber production volume 2018-2035 (MT). 156
-
Figure 64. Sisal fiber production volume 2018-2035 (MT). 158
-
Figure 65. Abaca fiber production volume 2018-2035 (MT). 160
-
Figure 66. Coir fiber production volume 2018-2035 (MILLION MT). 161
-
Figure 67. Banana fiber production volume 2018-2035 (MT). 163
-
Figure 68. Pineapple fiber. 164
-
Figure 69. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019. 164
-
Figure 70. Bamboo fiber production volume 2018-2035 (MILLION MT). 168
-
Figure 71. Conceptual landscape of next-gen leather materials. 172
-
Figure 72. Hemp fibers combined with PP in car door panel. 179
-
Figure 73. Car door produced from Hemp fiber. 181
-
Figure 74. Mercedes-Benz components containing natural fibers. 182
-
Figure 75. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 188
-
Figure 76. Coir mats for erosion control. 189
-
Figure 77. Global fiber production in 2023, by fiber type, million MT and %. 191
-
Figure 78. Global fiber production (million MT), 2018-2035. 192
-
Figure 79. Natural fiber production 2018-2035, by material type, Million MT. 193
-
Figure 80. Natural fiber production 2018-2035, by market, Million MT. 194
-
Figure 81. High purity lignin. 195
-
Figure 82. Lignocellulose architecture. 196
-
Figure 83. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins. 197
-
Figure 84. The lignocellulose biorefinery. 202
-
Figure 85. LignoBoost process. 208
-
Figure 86. LignoForce system for lignin recovery from black liquor. 208
-
Figure 87. Sequential liquid-lignin recovery and purification (SLPR) system. 209
-
Figure 88. A-Recovery+ chemical recovery concept. 210
-
Figure 89. Kraft lignin SWOT analysis. 211
-
Figure 90. Soda lignin SWOT analysis. 212
-
Figure 91. Biorefinery lignin SWOT analysis. 216
-
Figure 92. Organosolv lignin. 217
-
Figure 93. Hydrolytic lignin powder. 217
-
Figure 94. Estimated consumption of lignin, by type, 2019-2035 (000 MT). 224
-
Figure 95. Estimated consumption of lignin, by market, 2019-2035 (000 MT). 226
-
Figure 96. Schematic of WISA plywood home. 232
-
Figure 97. Lignin based activated carbon. 237
-
Figure 98. Lignin/celluose precursor. 237
-
Figure 99. Functional rubber filler made from lignin. 239
-
Figure 100. Road repair utilizing lignin. 240
-
Figure 101. Prototype of lignin based supercapacitor. 242
-
Figure 102. Stora Enso lignin battery materials. 245
-
Figure 103. Pluumo. 257
-
Figure 104. ANDRITZ Lignin Recovery process. 266
-
Figure 105. Anpoly cellulose nanofiber hydrogel. 267
-
Figure 106. MEDICELLU™. 268
-
Figure 107. Asahi Kasei CNF fabric sheet. 276
-
Figure 108. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 276
-
Figure 109. CNF nonwoven fabric. 277
-
Figure 110. Roof frame made of natural fiber. 286
-
Figure 111. Beyond Leather Materials product. 289
-
Figure 112. BIOLO e-commerce mailer bag made from PHA. 296
-
Figure 113. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 297
-
Figure 114. Fiber-based screw cap. 308
-
Figure 115. formicobio™ technology. 327
-
Figure 116. nanoforest-S. 329
-
Figure 117. nanoforest-PDP. 329
-
Figure 118. nanoforest-MB. 330
-
Figure 119. sunliquid® production process. 337
-
Figure 120. CuanSave film. 339
-
Figure 121. Celish. 341
-
Figure 122. Trunk lid incorporating CNF. 342
-
Figure 123. ELLEX products. 344
-
Figure 124. CNF-reinforced PP compounds. 344
-
Figure 125. Kirekira! toilet wipes. 344
-
Figure 126. Color CNF. 345
-
Figure 127. Rheocrysta spray. 350
-
Figure 128. DKS CNF products. 351
-
Figure 129. Domsjö process. 352
-
Figure 130. Mushroom leather. 361
-
Figure 131. CNF based on citrus peel. 362
-
Figure 132. Citrus cellulose nanofiber. 363
-
Figure 133. Filler Bank CNC products. 374
-
Figure 134. Fibers on kapok tree and after processing. 376
-
Figure 135. GREEN CHIP CMF pellets and injection moulded products. 379
-
Figure 136. TMP-Bio Process. 380
-
Figure 137. Flow chart of the lignocellulose biorefinery pilot plant in Leuna. 381
-
Figure 138. Water-repellent cellulose. 383
-
Figure 139. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 384
-
Figure 140. PHA production process. 385
-
Figure 141. CNF products from Furukawa Electric. 386
-
Figure 142. AVAPTM process. 396
-
Figure 143. GreenPower+™ process. 397
-
Figure 144. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 401
-
Figure 145. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 404
-
Figure 146. CNF gel. 410
-
Figure 147. Block nanocellulose material. 411
-
Figure 148. CNF products developed by Hokuetsu. 411
-
Figure 149. Marine leather products. 414
-
Figure 150. Inner Mettle Milk products. 417
-
Figure 151. Kami Shoji CNF products. 428
-
Figure 152. Dual Graft System. 431
-
Figure 153. Engine cover utilizing Kao CNF composite resins. 432
-
Figure 154. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended). 432
-
Figure 155. Kel Labs yarn. 433
-
Figure 156. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side). 439
-
Figure 157. Lignin gel. 449
-
Figure 158. BioFlex process. 453
-
Figure 159. Nike Algae Ink graphic tee. 455
-
Figure 160. LX Process. 458
-
Figure 161. Made of Air's HexChar panels. 461
-
Figure 162. TransLeather. 462
-
Figure 163. Chitin nanofiber product. 466
-
Figure 164. Marusumi Paper cellulose nanofiber products. 468
-
Figure 165. FibriMa cellulose nanofiber powder. 468
-
Figure 166. METNIN™ Lignin refining technology. 473
-
Figure 167. IPA synthesis method. 477
-
Figure 168. MOGU-Wave panels. 479
-
Figure 169. CNF slurries. 481
-
Figure 170. Range of CNF products. 481
-
Figure 171. Reishi. 485
-
Figure 172. Compostable water pod. 501
-
Figure 173. Leather made from leaves. 502
-
Figure 174. Nike shoe with beLEAF™. 502
-
Figure 175. CNF clear sheets. 512
-
Figure 176. Oji Holdings CNF polycarbonate product. 513
-
Figure 177. Fluorene cellulose ® powder. 516
-
Figure 178. Enfinity cellulosic ethanol technology process. 527
-
Figure 179. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 532
-
Figure 180. XCNF. 539
-
Figure 181: Plantrose process. 540
-
Figure 182. LOVR hemp leather. 543
-
Figure 183. CNF insulation flat plates. 545
-
Figure 184. Hansa lignin. 551
-
Figure 185. Manufacturing process for STARCEL. 555
-
Figure 186. Manufacturing process for STARCEL. 559
-
Figure 187. 3D printed cellulose shoe. 566
-
Figure 188. Lyocell process. 569
-
Figure 189. North Face Spiber Moon Parka. 574
-
Figure 190. PANGAIA LAB NXT GEN Hoodie. 574
-
Figure 191. Spider silk production. 575
-
Figure 192. Stora Enso lignin battery materials. 579
-
Figure 193. 2 wt.% CNF suspension. 580
-
Figure 194. BiNFi-s Dry Powder. 581
-
Figure 195. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 581
-
Figure 196. Silk nanofiber (right) and cocoon of raw material. 582
-
Figure 197. Sulapac cosmetics containers. 583
-
Figure 198. Sulzer equipment for PLA polymerization processing. 584
-
Figure 199. Solid Novolac Type lignin modified phenolic resins. 585
-
Figure 200. Teijin bioplastic film for door handles. 595
-
Figure 201. Corbion FDCA production process. 603
-
Figure 202. Comparison of weight reduction effect using CNF. 604
-
Figure 203. CNF resin products. 608
-
Figure 204. UPM biorefinery process. 609
-
Figure 205. Vegea production process. 614
-
Figure 206. The Proesa® Process. 616
-
Figure 207. Goldilocks process and applications. 617
-
Figure 208. Visolis’ Hybrid Bio-Thermocatalytic Process. 620
-
Figure 209. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 623
-
Figure 210. Worn Again products. 628
-
Figure 211. Zelfo Technology GmbH CNF production process. 633
ページTOPに戻る
Future Markets, inc.社のバイオエコノミー分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
Future Markets, inc.社はどのような調査会社ですか?
Future Markets, inc.は先端技術に焦点をあてたスウェーデンの調査会社です。
2009年設立のFMi社は先端素材、バイオ由来の素材、ナノマテリアルの市場をトラッキングし、企業や学... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|