世界の重要原材料(CMP) 回収市場 2025-2040年
The Global Critical Raw Materials Recovery Market 2025-2040
重要原材料(CRM)回収市場は、世界がよりクリーンな技術と循環型経済へとシフトする中で、著しい成長と変貌を遂げている。同市場は、先端技術、特にクリーンエネルギーへの移行とデジタル革命に不可欠と見なさ... もっと見る
Summary
The Critical Raw Materials (CRM) Recovery market is experiencing significant growth and transformation as the world shifts towards cleaner technologies and a circular economy. The market focuses on the extraction and recycling of materials deemed critical for advanced technologies, particularly those essential for the clean energy transition and digital revolution. Key drivers of the CRM Recovery market include:
-
Increasing demand for clean energy technologies like electric vehicles, wind turbines, and solar panels, which require substantial amounts of CRMs.
-
Growing awareness of supply chain vulnerabilities and the need for resource security, especially given the geographic concentration of many CRM sources.
-
Regulatory pressures promoting recycling and sustainable resource use, such as the EU's Critical Raw Materials Act.
-
Advancements in recycling technologies making CRM recovery more economically viable.
The market encompasses various materials, including rare earth elements, lithium, cobalt, platinum group metals, and others. Major sources for recovery include:
-
End-of-life products (e-waste, spent batteries, catalytic converters)
-
Industrial production scrap
-
Urban mining initiatives
-
Landfill mining projects
Key technologies in the CRM Recovery market include hydrometallurgy, pyrometallurgy, bioleaching, and direct recycling methods. The choice of technology depends on the specific materials being recovered and the source. The CRM Recovery market is poised for substantial growth as it plays a crucial role in enabling the transition to a more sustainable and resilient global economy. The market is attracting increased investment and seeing the entry of both established players and innovative start-ups, driving technological advancements and expanding recovery capabilities. This comprehensive market research report provides an in-depth analysis of the global critical raw materials market from 2025 to 2040. Report contents include:
-
Detailed market size forecasts in both volume (ktonnes) and value (USD billions) from 2025-2040
-
Segmentation by material type, recovery source, and geographic region
-
Analysis of 15+ critical materials including rare earth elements, lithium, cobalt, platinum group metals, and more
-
Evaluation of primary and secondary (recycled) material sources
-
Assessment of extraction and recovery technologies
-
Profiles of 135+ key players in the CRM industry. Companies profiled include ACCUREC-Recycling GmbH, Ascend Elements, BANiQL, BASF, Ceibo, Cirba Solutions, Cyclic Materials, Enim, HyProMag, Librec AG, NeoMetals, Posco, SiTration, Sumitomo and Summit Nanotech.
-
Global supply and trade dynamics for CRMs
-
The circular economy and sustainable use of CRMs
-
Critical and strategic materials used in the energy transition
-
CRM Recovery in Semiconductors and Electronics: Types of CRMs found in e-waste; Concentration and value of CRMs in e-waste; Collection, sorting, and pre-processing technologies; Metal recovery technologies like pyrometallurgy, hydrometallurgy, and biometallurgy; Market forecasts for CRM recovery from electronics 2025-2040.
-
CRM Recovery in Lithium-ion Batteries: Li-ion battery recycling value chain; Recycling processes for different cathode chemistries; Comparison of recycling techniques (hydrometallurgy, pyrometallurgy, direct recycling); Economic factors in battery recycling; Market forecasts for CRM recovery from batteries 2025-2040.
-
Rare Earth Elements Recovery: REE recovery technologies; Comparison of recovery methods; REE recycling markets and players; Forecasts for REE recovery 2025-2040.
-
Platinum Group Metals Recovery: PGM recovery from automotive catalysts; PGM recovery from fuel cells and electrolyzers; PGM recycling markets; Forecasts for PGM recovery 2025-2040
Critical raw materials are essential enablers of the clean energy transition and next-generation technologies. However, they face supply risks, price volatility, and sustainability concerns. This report provides businesses, investors, and policymakers with crucial intelligence on the rapidly evolving CRM market landscape.
Key questions answered include:
-
What are the supply and demand projections for key CRMs through 2040?
-
Which recovery technologies and sources will see the highest growth?
-
How will recycling and urban mining impact primary CRM production?
-
What are the economic factors driving CRM recovery from end-of-life products?
-
Which geographic markets offer the greatest opportunities for CRM recovery?
-
Who are the key players across the CRM value chain?
-
What regulatory and sustainability trends will shape the market?
With detailed forecasts, technology assessments, and competitive analysis, this report offers an essential tool for strategy formulation in the critical materials sector. The shift towards clean energy and electrification is creating major market opportunities in CRM recovery and recycling. This comprehensive study provides the market intelligence needed to capitalize on the growing demand for sustainably-sourced critical raw materials.
ページTOPに戻る
Table of Contents
1 EXECUTIVE SUMMARY 17
-
1.1 Definition and Importance of Critical Raw Materials 17
-
1.2 E-Waste as a Source of Critical Raw Materials 19
-
1.3 Electrification, Renewable and Clean Technologies 20
-
1.4 Regulatory Landscape 20
-
1.5 Key Market Drivers and Restraints 23
-
1.6 The Global Critical Raw Materials Market in 2024 25
-
1.7 Critical Raw Materials Value Chain 28
-
1.8 The Economic Case for Critical Raw Materials Recovery 29
-
1.9 Price Trends for Key Recovered Materials (2020-2024) 30
-
1.10 Global market frorecasts 31
-
1.10.1 By Material Type (2025-2040) 32
-
1.10.2 By Recovery Source (2025-2040) 35
-
1.10.3 By Region (2025-2040) 39
2 INTRODUCTION 45
-
2.1 Critical Raw Materials 45
-
2.2 Global situation in supply and trade 46
-
2.3 Circular economy 48
-
2.3.1 Circular use of critical raw materials 48
-
2.4 Critical and strategic raw materials used in the energy transition 52
-
2.4.1 Greening critical metals 54
-
2.5 Metals and minerals processed and extracted 55
-
2.5.1 Copper 55
-
2.5.1.1 Global copper demand and trends 55
-
2.5.1.2 Markets and applications 55
-
2.5.1.3 Copper extraction and recovery 56
-
2.5.2 Nickel 57
-
2.5.2.1 Global nickel demand and trends 57
-
2.5.2.2 Markets and applications 57
-
2.5.2.3 Nickel extraction and recovery 58
-
2.5.3 Cobalt 60
-
2.5.3.1 Global cobalt demand and trends 60
-
2.5.3.2 Markets and applications 60
-
2.5.3.3 Cobalt extraction and recovery 61
-
2.5.4 Rare Earth Elements (REE) 62
-
2.5.4.1 Global Rare Earth Elements demand and trends 62
-
2.5.4.2 Markets and applications 62
-
2.5.4.3 Rare Earth Elemens extraction and recovery 63
-
2.5.4.4 Recovery of REEs from secondary resources 64
-
2.5.5 Lithium 64
-
2.5.5.1 Global lithium demand and trends 64
-
2.5.5.2 Markets and applications 65
-
2.5.5.3 Lithium extraction and recovery 66
-
2.5.6 Gold 66
-
2.5.6.1 Global gold demand and trends 66
-
2.5.6.2 Markets and applications 67
-
2.5.6.3 Gold extraction and recovery 67
-
2.5.7 Uranium 68
-
2.5.7.1 Global uranium demand and trends 68
-
2.5.7.2 Markets and applications 69
-
2.5.7.3 Uranium extraction and recovery 69
-
2.5.8 Zinc 70
-
2.5.8.1 Global Zinc demand and trends 70
-
2.5.8.2 Markets and applications 70
-
2.5.8.3 Zinc extraction and recovery 71
-
2.5.9 Manganese 72
-
2.5.9.1 Global manganese demand and trends 72
-
2.5.9.2 Markets and applications 72
-
2.5.9.3 Manganese extraction and recovery 73
-
2.5.10 Tantalum 73
-
2.5.10.1 Global tantalum demand and trends 73
-
2.5.10.2 Markets and applications 74
-
2.5.10.3 Tantalum extraction and recovery 75
-
2.5.11 Niobium 75
-
2.5.11.1 Global niobium demand and trends 75
-
2.5.11.2 Markets and applications 76
-
2.5.11.3 Niobium extraction and recovery 77
-
2.5.12 Indium 77
-
2.5.12.1 Global indium demand and trends 77
-
2.5.12.2 Markets and applications 78
-
2.5.12.3 Indium extraction and recovery 78
-
2.5.13 Gallium 79
-
2.5.13.1 Global gallium demand and trends 79
-
2.5.13.2 Markets and applications 79
-
2.5.13.3 Gallium extraction and recovery 80
-
2.5.14 Germanium 80
-
2.5.14.1 Global germanium demand and trends 80
-
2.5.14.2 Markets and applications 80
-
2.5.14.3 Germanium extraction and recovery 81
-
2.5.15 Antimony 81
-
2.5.15.1 Global antimony demand and trends 81
-
2.5.15.2 Markets and applications 82
-
2.5.15.3 Antimony extraction and recovery 83
-
2.5.16 Scandium 83
-
2.5.16.1 Global scandium demand and trends 83
-
2.5.16.2 Markets and applications 83
-
2.5.16.3 Scandium extraction and recovery 84
-
2.6 Recovery sources 85
-
2.6.1 Primary sources 86
-
2.6.2 Secondary sources 88
-
2.6.2.1 Extraction 90
-
2.6.2.1.1 Hydrometallurgical extraction 91
-
2.6.2.1.2 Pyrometallurgical extraction 93
-
2.6.2.1.3 Biometallurgy 94
-
2.6.2.1.4 Ionic liquids and deep eutectic solvents 96
-
2.6.2.1.5 Electroleaching extraction 97
-
2.6.2.1.6 Supercritical fluid extraction 99
-
2.6.2.2 Recovery 100
-
2.6.2.2.1 Solvent extraction 100
-
2.6.2.2.2 Ion exchange recovery 102
-
2.6.2.2.3 Ionic liquid (IL) and deep eutectic solvent (DES) recovery 102
-
2.6.2.2.4 Precipitation 104
-
2.6.2.2.5 Biosorption 106
-
2.6.2.2.6 Electrowinning 108
-
2.6.2.2.7 Direct recovery 110
3 CRITICAL RAW MATERIALS RECOVERY IN SEMICONDUCTORS 112
-
3.1 Critical semiconductor materials 112
-
3.2 Electronic waste (e-waste) 115
-
3.2.1 Types of critical raw Materials found in E-Waste 115
-
3.3 Photovoltaic and solar technologies 118
-
3.4 Concentration and value of Critical Raw Materials in E-Waste 120
-
3.5 Applications and importance of key Critical Raw Materials 121
-
3.6 Waste Recycling and Recovery Processes 123
-
3.7 Collection and Sorting Infrastructure 124
-
3.8 Pre-Processing Technologies 126
-
3.9 Metal Recovery Technologies 127
-
3.9.1 Pyrometallurgy 127
-
3.9.2 Hydrometallurgy 130
-
3.9.3 Biometallurgy 132
-
3.9.4 Other Emerging Technologies 133
-
3.10 Global market 2025-2040 136
-
3.10.1 Ktonnes 139
-
3.10.2 Revenues 140
-
3.10.3 Regional 142
4 CRITICAL RAW MATERIALS RECOVERY IN LI-ION BATTERIES 145
-
4.1 Lithium-Ion Battery recycling value chain 146
-
4.2 Black mass powder 150
-
4.3 Recycling different cathode chemistries 150
-
4.4 Preparation 151
-
4.5 Pre-Treatment 151
-
4.5.1 Discharging 151
-
4.5.2 Mechanical Pre-Treatment 151
-
4.5.3 Thermal Pre-Treatment 155
-
4.6 Comparison of recycling techniques 155
-
4.7 Hydrometallurgy 157
-
4.7.1 Method overview 157
-
4.7.1.1 Solvent extraction 159
-
4.7.2 SWOT analysis 159
-
4.8 Pyrometallurgy 161
-
4.8.1 Method overview 161
-
4.8.2 SWOT analysis 162
-
4.9 Direct recycling 163
-
4.9.1 Method overview 163
-
4.9.1.1 Electrolyte separation 164
-
4.9.1.2 Separating cathode and anode materials 165
-
4.9.1.3 Binder removal 165
-
4.9.1.4 Relithiation 165
-
4.9.1.5 Cathode recovery and rejuvenation 166
-
4.9.1.6 Hydrometallurgical-direct hybrid recycling 167
-
4.9.2 SWOT analysis 168
-
4.10 Other methods 169
-
4.10.1 Mechanochemical Pretreatment 169
-
4.10.2 Electrochemical Method 169
-
4.10.3 Ionic Liquids 170
-
4.11 Recycling of Specific Components 170
-
4.11.1 Anode (Graphite) 170
-
4.11.2 Cathode 170
-
4.11.3 Electrolyte 171
-
4.12 Recycling of Beyond Li-ion Batteries 171
-
4.12.1 Conventional vs Emerging Processes 172
-
4.12.2 Li-Metal batteries 173
-
4.12.3 Lithium sulfur batteries (Li–S) 174
-
4.12.4 All-solid-state batteries (ASSBs) 175
-
4.13 Economic case for Li-ion battery recycling 176
-
4.13.1 Metal prices 177
-
4.13.2 Second-life energy storage 178
-
4.13.3 LFP batteries 178
-
4.13.4 Other components and materials 179
-
4.13.5 Reducing costs 179
-
4.14 Competitive landscape 180
-
4.15 Global capacities, current and planned 182
-
4.16 Future outlook 183
-
4.17 Global market 2025-2040 184
-
4.17.1 Chemistry 185
-
4.17.2 Ktonnes 187
-
4.17.3 Revenues 188
-
4.17.4 Regional 190
5 CRITICAL RARE-EARTH ELEMENT RECOVERY 193
-
5.1 Introduction 193
-
5.2 Recovery technologies 195
-
5.2.1 Long-loop and short-loop recovery methods 197
-
5.2.2 Long-loop magnet recycling 199
-
5.3 Markets 201
-
5.4 Global market 2025-2040 206
-
5.4.1 Ktonnes 206
-
5.4.2 Revenues 208
6 CRITICAL PLATINUM GROUP METAL RECOVERY 211
-
6.1 Introduction 211
-
6.2 PGM recovery from spent automotive catalysts 213
-
6.3 PGM recovery from hydrogen electrolyzers and fuel cells 216
-
6.4 Markets 218
-
6.5 Global market 2025-2040 221
-
6.5.1 Ktonnes 222
-
6.5.2 Revenues 223
7 COMPANY PROFILES 226 (135 company profiles)
8 APPENDICES 340
-
8.1 Research Methodology 341
-
8.2 List of Data Sources 342
-
8.3 Glossary of Terms 343
-
8.4 List of Abbreviations 344
9 REFERENCES 345
ページTOPに戻る
List of Tables/Graphs
List of Tables
-
Table 1. List of Key Critical Raw Materials and Their Primary Applications. 18
-
Table 2. Key Market Drivers and Restraints in Critical Raw Materials Recovery. 23
-
Table 3. Global Production of Critical Materials by Country (Top 10 Countries). 25
-
Table 4. Projected Demand for Critical Materials in Clean Energy Technologies (2024-2040). 26
-
Table 5. Value Proposition for Critical Material Extraction Technologies. 30
-
Table 6. Global critical raw materials recovery market by material types (2025-2040), by ktonnes. 32
-
Table 7. Global critical raw materials recovery market by material types (2025-2040), by value. 34
-
Table 8. Global critical raw materials recovery market by recovery source (2025-2040), by ktonnes. 35
-
Table 9. Global critical raw materials recovery market by recovery source (2025-2040), by value. 37
-
Table 10. Global critical raw materials recovery market by region (2025-2040), by ktonnes. 39
-
Table 11. Global critical raw materials recovery market by region (2025-2040), by value. 41
-
Table 12. Primary global suppliers of critical raw materials. 45
-
Table 13. Current contribution of recycling to meet global demand of CRMs. 49
-
Table 14. Comparison of Recovery Rates for Different Critical Materials. 52
-
Table 15. Markets and applications: copper. 56
-
Table 16. Markets and applications: nickel. 58
-
Table 17. Markets and applications: cobalt. 61
-
Table 18. Markets and applications: rare earth elements. 63
-
Table 19. Markets and applications: lithium. 65
-
Table 20. Markets and applications: gold. 67
-
Table 21. Markets and applications: uranium. 69
-
Table 22. Markets and applications: zinc. 70
-
Table 23. Markets and applications: manganese. 72
-
Table 24. Markets and applications: tantalum. 74
-
Table 25. Markets and applications: niobium. 76
-
Table 26. Markets and applications: indium. 78
-
Table 27. Markets and applications: gallium. 79
-
Table 28. Markets and applications: germanium. 81
-
Table 29. Markets and applications: antimony. 82
-
Table 30. Markets and applications: scandium. 83
-
Table 31. Key Performance Metrics for Critical Material Extraction Methods. 85
-
Table 32. Comparison of Primary vs Secondary Production for Key Materials. 85
-
Table 33. Environmental Impact Comparison: Primary vs Secondary Production. 87
-
Table 34. Technologies for critical raw material recovery from secondary sources. 89
-
Table 35. Critical raw material extraction technologies. 90
-
Table 36. Pyrometallurgical extraction methods. 93
-
Table 37. Critical Semiconductor Materials and Their Applications. 112
-
Table 38. Types of critical raw Materials found in E-Waste. 115
-
Table 39. E-waste Generation and Recycling Rates. 116
-
Table 40. Solar Panel Manufacturers and Their Recycling Capabilities. 118
-
Table 41. Global recovered critical raw electronics material, 2025-2040 (ktonnes) 139
-
Table 42. Global recovered critical raw electronics material market, 2025-2040 (billions USD). 140
-
Table 43. Recovered critical raw electronics material market, by region, 2025-2040 (ktonnes). 143
-
Table 44. Li-ion battery recycling value chain. 147
-
Table 45. Typical lithium-ion battery recycling process flow. 149
-
Table 46. Main feedstock streams that can be recycled for lithium-ion batteries. 149
-
Table 47. Comparison of LIB recycling methods. 155
-
Table 48. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries. 172
-
Table 49. Economic assessment of battery recycling options. 176
-
Table 50. Retired lithium-batteries. 180
-
Table 51. Global capacities, current and planned (tonnes/year). 182
-
Table 52. Global lithium-ion battery recycling market in tonnes segmented by cathode chemistry, 2025-2040. 185
-
Table 53. Global Li-ion battery recycling market, 2025-2040 (ktonnes) 187
-
Table 54. Global Li-ion battery recycling market, 2025-2040 (billions USD). 188
-
Table 55. Li-ion battery recycling market, by region, 2025-2040 (ktonnes). 191
-
Table 56. Critical rare-earth elements markets and applications. 193
-
Table 57. Critical rare-earth element recovery technologies. 195
-
Table 58. Rare Earth Element Content in Secondary Material Sources. 195
-
Table 59. Comparison of Short-loop and Long-loop Rare Earth Recovery Methods. 197
-
Table 60. Global Rare Earth Magnet Key Players. 203
-
Table 61. Global recovered critical rare-earth element market, 2025-2040 (ktonnes) 206
-
Table 62. Global recovered critical rare-earth element market, 2025-2040 (billions USD). 208
-
Table 63. Automotive Catalyst Recycling Players. 213
-
Table 64. Global PGM Demand by Application Segment. 219
-
Table 65. Technology Readiness of Critical PGM Recovery from Secondary Sources. 220
-
Table 66. Global recovered critical platinum group metal market, 2025-2040 (ktonnes) 222
-
Table 67. Global recovered critical platinum group metal market, 2025-2040 (billions USD). 223
List of Figures
-
Figure 1. TRL of critical material extraction technologies. 26
-
Figure 2. Critical Raw Materials Value Chain. 28
-
Figure 3. Global critical raw materials recovery market by material types (2025-2040), by ktonnes. 33
-
Figure 4. Global critical raw materials recovery market by material types (2025-2040), by value. 35
-
Figure 5. Global critical raw materials recovery market by recovery source (2025-2040), by ktonnes. 36
-
Figure 6. Global critical raw materials recovery market by recovery source (2025-2040), by value. 38
-
Figure 7. Global critical raw materials recovery market by region (2025-2040), by ktonnes. 40
-
Figure 8. Global critical raw materials recovery market by region (2025-2040), by value. 42
-
Figure 9. Global recovered critical materials forecast, 2025-2040. 43
-
Figure 10. Conceptual diagram illustrating the Circular Economy. 48
-
Figure 11. Current contribution of recycling to meet global demand of CRMs. 50
-
Figure 12. Circular Economy Model for Critical Materials. 50
-
Figure 13. Critical and strategic raw materials used in the energy transition. 52
-
Figure 14. Solvent extraction (SX) in hydrometallurgy. 91
-
Figure 15. Photovoltaic Cell Stack Composition and Design. 119
-
Figure 16. Global Li-ion battery recycling market, 2025-2040 (chemistry). 138
-
Figure 17. Global recovered critical raw electronics materialmarket, 2025-2040 (ktonnes) 140
-
Figure 18. Global recovered critical raw electronics material market, 2025-2040 (Billion USD). 141
-
Figure 19. Recovered critical raw electronics material market, by region, 2025-2040 (ktonnes). 144
-
Figure 20. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials. 148
-
Figure 21. Mechanical separation flow diagram. 152
-
Figure 22. Recupyl mechanical separation flow diagram. 154
-
Figure 23. Flow chart of recycling processes of lithium-ion batteries (LIBs). 157
-
Figure 24. Hydrometallurgical recycling flow sheet. 158
-
Figure 25. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling. 160
-
Figure 26. Umicore recycling flow diagram. 161
-
Figure 27. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling. 162
-
Figure 28. Schematic of direct recyling process. 164
-
Figure 29. SWOT analysis for Direct Li-ion Battery Recycling. 168
-
Figure 30. Schematic diagram of a Li-metal battery. 174
-
Figure 31. Schematic diagram of Lithium–sulfur battery. 174
-
Figure 32. Schematic illustration of all-solid-state lithium battery. 175
-
Figure 33. Global scrapped EV (BEV+PHEV) forecast to 2040. 184
-
Figure 34. Global Li-ion battery recycling market, 2025-2040 (chemistry). 186
-
Figure 35. Global Li-ion battery recycling market, 2025-2040 (ktonnes) 188
-
Figure 36. Global Li-ion battery recycling market, 2025-2040 (Billion USD). 189
-
Figure 37. Global Li-ion battery recycling market, by region, 2025-2040 (ktonnes). 192
-
Figure 38. Global recovered critical rare-earth element market, 2025-2040 (ktonnes) 207
-
Figure 39. Global recovered critical rare-earth element market, 2025-2040 (Billion USD). 209
-
Figure 40. Proton Exchange Membrane Electrolyzer Materials & Components. 216
-
Figure 41. Historical PGM Price Volatility Chart. 218
-
Figure 42. Global Recovery of Platinum, Palladium and Rhodium from Automotive Scrap. 219
-
Figure 43. Global recovered critical platinum group metal market, 2025-2040 (ktonnes) 223
-
Figure 44. Global recovered critical platinum group metal market, 2025-2040 (Billion USD). 224
ページTOPに戻る
Future Markets, inc.社のバイオエコノミー分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
Future Markets, inc.社はどのような調査会社ですか?
Future Markets, inc.は先端技術に焦点をあてたスウェーデンの調査会社です。
2009年設立のFMi社は先端素材、バイオ由来の素材、ナノマテリアルの市場をトラッキングし、企業や学... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|