世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Materials and Processing for Advanced Semiconductor Packaging 2024-2034


先端半導体パッケージングの材料とプロセス 2024-2034

この調査レポートは、先端半導体パッケージングの技術、開発動向、主要アプリケーション、エコシステムについて詳細に調査・分析しています。   主な掲載内容(目次より抜粋) ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2023年6月28日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
225 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。


 

Summary

この調査レポートは、先端半導体パッケージングの技術、開発動向、主要アプリケーション、エコシステムについて詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 先端半導体パッケージング:性能評価と製造プロセスおよび材料との関連性
  • Cu-Cuハイブリッド・ボンディング技術による3次元ダイ・スタッキング
 
Report Summary
Why do we need Advanced Semiconductor Packaging?
We are living in a data-centric world. The growing amount of data generated in various industries is increasingly driving the demand for high-bandwidth computing. Applications such as machine learning and AI require powerful processing capabilities, leading to the need for dense transistor placement on chips and compact interconnection bump pitches in packaging. The latter highlights the significance of semiconductor technologies in meeting these requirements.
 
Semiconductor packaging has evolved from board-level to wafer-level integration, bringing notable advancements. Wafer level integration provides advantages over traditional methods, such as increased connection density, smaller footprints for size-sensitive applications, and enhanced performance.
 
"Advanced" semiconductor packaging specifically includes high-density fan-out, 2.5D, and 3D packaging, characterized by a bumping pitch size below 100 µm, enabling at least 10x higher interconnect densities.
 
Bandwidth is key
To enhance bandwidth from a packaging perspective, two key factors come into play: the total number of I/Os (input/output) and the bit rate per I/O. Increasing the total number of I/Os requires enabling finer line/space (L/S) patterns in each routing layer/redistribution layer (RDL) and having a higher number of routing layers. On the other hand, improving the bit rate per I/O is influenced by the interconnect distance between chiplets and the selection of dielectric materials. These factors directly impact the overall performance and efficiency of the packaging system.
 
Key factors that affect the bandwidth of a packaged module. Source: IDTechEx
 
Unleashing High Bandwidth: Exploring Materials and Processing for Advanced Semiconductor Packaging
Delving deeper into achieving higher wiring density and a higher bit rate per I/O from a materials and processing perspective reveals the critical role played by the selection of dielectric materials and the utilization of appropriate processing techniques. These factors have a significant impact on the overall performance and capabilities of the packaging system.
 
Electronic interconnects: SiO2 vs Organic dielectric. Source: IDTechEx
 
Selecting suitable dielectric materials is crucial, considering properties like low dielectric constant, optimal CTE (as close to the CTE of Cu as possible), and favorable mechanical characteristics that ensure module reliability, such as Young's modulus and elongation. These choices enable higher data rates while preserving signal integrity and facilitating fine line/space features for increased wiring density.
 
In high-performance accelerators, such as GPUs, inorganic dielectrics like SiO2 have been extensively utilized to achieve ultra-fine line/space (L/S) features. Nevertheless, their use is limited in applications that demand high-speed connectivity due to their high RC delays. As an alternative, organic dielectrics have been proposed for their cost-effectiveness and ability to mitigate RC delays through their low dielectric constant. However, organic dielectrics present challenges, including high CTE, which can negatively impact the device reliability, and difficulties in scaling to fine L/S features.
 
In addition to selecting appropriate materials, the processing techniques employed during packaging fabrication play a crucial role in achieving a higher number of I/Os and improving the bit rate per I/O. The steps involved in 2.5D packaging processes, including lithography, CMP (Chemical Mechanical Planarization), etching processes, and the CMP and bonding processes in 3D Cu-Cu hybrid bonding, present challenges in achieving tighter routing and increased wiring density. IDTechEx provides detailed insights into how the choice of materials influences the fabrication processes, offering a comprehensive understanding of their impact on advanced semiconductor packaging.
 
What materials and technologies are covered in this report?
Scope of "Materials and Processing for Advanced Semiconductor Packaging 2024-2034". Source: IDTechEx
 
IDTechEx's "Materials and Processing for Advanced Semiconductor Packaging 2024-2034" report is divided into four main parts, offering a structured approach to understanding advanced semiconductor packaging. The first part provides a comprehensive introduction to the technologies, development trends, key applications, and ecosystem of advanced semiconductor packaging, providing readers with a solid overview knowledge. The second part focuses on 2.5D packaging processes, delving into crucial aspects including dielectric materials for RDL and Microvia, RDL fabrication techniques, and material selection for EMC and MUF. Each sub-section within this part presents a detailed analysis of process flows, technology benchmarks, player evaluations, and future trends, providing readers with comprehensive insights.
 
The report continues beyond the discussion of 2.5D packaging to the third part, which focuses on the innovative Cu-Cu hybrid bonding technology for 3D die stacking. This section provides valuable insights into the manufacturing process and offers guidance on material selection for optimal outcomes. It also showcases case studies highlighting the successful implementation of Cu-Cu hybrid bonding using both organic and inorganic dielectrics. Additionally, the report includes a 10-year market forecast for the Organic Dielectric Advanced Semiconductor Packaging Module, presented in the last chapter. This forecast encompasses unit and area metrics, providing industry with meaningful perspectives into anticipated market growth and trends for the next decade.
 


ページTOPに戻る


Table of Contents

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野の最新刊レポート

  • 本レポートと同分野の最新刊レポートはありません。

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Report scope
1.2. Advanced semiconductor packaging - An overview
1.3. From 1D to 3D semiconductor packaging
1.4. Semiconductor packaging - An overview of technology
1.5. Overview of interconnection technique in advanced semiconductor packaging
1.6. Key trends in fan-out packaging
1.7. Key factors to consider when choosing material for electronic interconnects
1.8. Key parameters for organic RDL materials for next generation 2.5D fan-out packaging
1.9. Benchmark of organic dielectrics for RDL
1.10. Industry players of organic RDL
1.11. Comparison of polymer dielectric materials in current high-performance packages
1.12. Benchmark of RDL formation technology
1.13. Overview of RDL L/S range by different RDL formation technology (1)
1.14. Overview of via diameter range by different microvia creation technology (1)
1.15. Overview of via diameter range by different microvia creation technology (2)
1.16. Overview of lithography challenges in high density RDL packaging
1.17. Key parameters for EMC materials
1.18. Challenges in conventional bumping
1.19. Micro bumps (µ bumps) vs bumpless Cu-Cu hybrid bonding
1.20. Overview of devices that make use of hybrid bonding
1.21. Cu-Cu hybrid bonding manufacturing process flow
1.22. 3D SoIC process flow deep dive - 1
1.23. Key factors in hybrid bonding that are impacted by the choice of dielectric material
1.24. Inorganic dielectric vs organic dielectric: A quick overview
1.25. Technology Benchmark of different dielectric materials for Cu-Cu hybrid bonding
1.26. Key process know-how for inorganic dielectric Cu-Cu hybrid bonding
1.27. Comparison of polymer case studies for hybrid bonding benchmarking
1.28. Key summary of polymer dielectric for hybrid bonding research
1.29. Forecast: Organic Dielectric Advanced Semiconductor Packaging Module Area (Unit and mm2)
2. INTRODUCTION OF ADVANCED SEMICONDUCTOR PACKAGING
2.1.1. Advanced semiconductor packaging - An overview
2.1.2. The rise of advanced semiconductor packaging and its challenges
2.1.3. From 1D to 3D semiconductor packaging
2.1.4. Semiconductor packaging - An overview of technology
2.1.5. Overview of interconnection technique in advanced semiconductor packaging
2.1.6. Fan out wafer level packaging
2.1.7. Interposer technology
2.1.8. 2.5D and 3D IC packaging
2.1.9. 2.5D IC Packaging
2.1.10. 2.5D IC packaging
2.1.11. 3D IC packaging technology
2.1.12. 3D IC packaging
2.1.13. 3D IC packaging
2.1.14. Advanced semiconductor packaging technologies - Our scope
2.1.15. Packaging trend for key markets
2.2. Advanced Semiconductor Packaging - Ecosystem
2.2.1. Business value chain in the IC industry
2.2.2. Ecosystem/Business model in the IC industry
2.2.3. Role and advantages of players in advanced semiconductor packaging market
2.2.4. Players in advanced semiconductor packaging and their solutions
2.2.5. An overview of chip supply chain
3. ADVANCED SEMICONDUCTOR PACKAGING: PERFORMANCE EVALUATION, AND ITS LINK TO FABRICATION PROCESSES AND MATERIALS
3.1.1. Key factors impacting advanced semiconductor packaging performance
3.1.2. Primary considerations for advanced packaging
3.1.3. The key metrics that impact advanced semiconductor packaging performance: Bandwidth
3.1.4. The definition of IO density
3.1.5. IO density calculation
3.1.6. Routes to increase I/O density
3.1.7. The key metrics that impact advanced semiconductor packaging performance: Power efficiency
3.2. 2.5D Packaging process flow know-how
3.2.1. 2.5D Packaging - High density fan-out packaging
3.2.2. Key trends in fan-out packaging
3.2.3. Fan-out packaging process overview
3.2.4. Fan-out chip-first process flow
3.2.5. Fan-out Chip-last process flow
3.2.6. Fan-out chip last RDL formation - Development trend
3.2.7. Challenges in future fan-out process
3.2.8. 2.5D Packaging that involves Si as electronic interconnect
3.2.9. Through-Si-Via (TSV) process flow
3.2.10. Dual Damascene process flow (for inorganic RDL fabrication)
3.2.11. Process flow for Si interposer on package substrate
3.3. Fan out process flows from key companies
3.3.1. SPIL FOEB Technology process flow
3.3.2. ASE FOCoS Process flow (1)
3.3.3. Flip chip on FOWLP - Process flow
3.3.4. Samsung's FOWLP device structure
3.4. Redistribution layer (RDL) & Microvia - Materials
3.4.1. Redistribution Layer (RDL)
3.4.2. Key Factors to Consider When Choosing material for Electronic Interconnects
3.4.3. Dielectric thickness of RDL
3.4.4. Electronic interconnects: SiO2 vs Organic dielectric
3.4.5. Limitations of SiO2 in 2.5D packaging
3.4.6. Electrical characteristics vs different RDL solution - Amkor's perspective
3.4.7. Replace inorganic dielectric with organic polymers?
3.4.8. Importance of low-loss RDL materials for different packaging technologies
3.4.9. Key parameters for organic RDL materials for next generation 2.5D fan-out packaging
3.4.10. Benchmark of organic dielectrics for RDL
3.4.11. Benchmark of material properties used in packaging
3.4.12. Dielectric challenges in fan-out applications - 1
3.4.13. Dielectric challenges in fan-out applications - 2
3.4.14. Industry players of organic RDL
3.4.15. RDL-dielectric suppliers: Toray's polyimide materials
3.4.16. Toray's solution for advanced semiconductor packaging
3.4.17. Low Dk and Low Df materials for RF devices - Solution from Toray
3.4.18. RDL-dielectric suppliers: HD Microsystems
3.4.19. Low-curing temp. RDL from HD Microsystem
3.4.20. RDL-dielectric suppliers: DuPont's Arylalkyl polymers (1)
3.4.21. RDL-dielectric suppliers: DuPont's PID dryfilm
3.4.22. RDL-dielectric suppliers: DuPont's InterVia
3.4.23. RDL-dielectric suppliers: Taiyo Ink's epoxy-based RDL
3.4.24. RDL-dielectric suppliers: Ajinomoto's nanofiller ABF
3.4.25. RDL-dielectric supplier: Showa Denko
3.4.26. Low-loss RDL materials for mmWave: TSMC's InFO AiP
3.4.27. Comparison of polymer dielectric materials in current high performance packages
3.5. Redistribution layer (RDL) & Microvia - Fabrication Processes
3.5.1. Overview of RDL fabrication technology
詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/15 10:26

157.84 円

166.62 円

202.61 円

ページTOPに戻る