Summary
この調査レポートでは、電気自動車用電池セル、パック向け材料、アルミニウム、スチール、銅、アルミニウム、炭素繊維強化ポリマー、ガラス繊維強化ポリマー、熱インターフェース材料、防火材料、電気絶縁、コールドプレート、冷却水ホースなどのバッテリーパック用材料について詳細に調査・分析しています。
主な掲載内容(目次より抜粋)
-
市場予測
-
ソフカス用燃料
-
Sofcsの商用・産業用アプリケーション
-
C&Iアプリケーションの主要プレーヤー
-
ソフカスへの住宅用アプリケーション
-
Sofcsの海上アプリケーション
-
ソフテックパワードビークル
-
固体酸化物電解
-
会社概要
Report Summary
Electric vehicles (EVs) generate material demands that are very different to those historically typical of combustion engine vehicle markets. With ongoing supply chain disruption and rapidly evolving battery technology, the materials that will be in demand over the coming years will vary significantly. This report takes a deep dive into battery chemistry, energy density, and design evolution in order to determine the market demand from 2021-2033 for 27 different materials in markets such as electric cars, buses, trucks, vans, two-wheelers, three-wheelers, and microcars.
Despite trends towards increased energy density and less use of materials per vehicle, thanks to the rapidly growing EV market, the demand for EV battery materials will grow over 12-fold with market value exhibiting a 26% CAGR between 2033 and 2021.
Battery Cell Materials
Battery chemistry continues to evolve. The ultimate goal has always been towards higher energy density, but other factors such as cell cost and supply chain diversity have created demand for alternative chemistries outside of typical NMC (nickel manganese cobalt). NMC chemistries provide the highest energy density, and to further improve this and avoid the use of cobalt, have transitioned to higher nickel variants such as NMC 811 over the previous NMC 111/523. Cobalt is a more costly material and has a very geographically constrained supply with questionable mining practices, the trend to higher nickel chemistries alleviates these concerns, albeit increasing demand for nickel.
Batteries using LFP (lithium iron phosphate) chemistries nearly exited the EV market in 2018-2019 thanks to their lower energy density than NMC. However, the need for a greater variety in cell supply and the ability to reduce costs has seen a huge resurgence in LFP adoption, especially in the lower- to mid-range market segments. The energy density hit of using LFP has been somewhat offset by improvements in packing efficiency. The greater adoption of LFP mitigates some of the demand for materials such as nickel, and cobalt.
In addition to the cathode chemistry, there has also been evolution in the anode. Some have been incorporating small percentages of silicon into anodes to improve energy density, resulting in a decrease in graphite intensity in the cell. In the future we can expect to see adoption of much greater silicon contents with silicon dominant anodes gaining interest.
There are several other materials critical to the operation of a battery cell, such as the collector foils, binders, and more. This report contains forecasts for battery cell material demand to 2033 for materials including: lithium, nickel, cobalt, iron, manganese, copper, aluminum, graphite, silicon, phosphorous, electrolyte, binder, casing, conductive additive, and the separator.
Despite energy density improvements, many cell materials will exhibit rapid growth in demand with significantly differing market shares. Source: IDTechEx
Battery Pack Materials
Increasing the energy density of battery cells is important, but the construction of the pack as a whole is also a great avenue to improve battery energy density. The market has gradually reduced the amount of materials used to package the cells, increasing the ratio of the pack's weight and volume that is accounted for by the cells. The step change in this regard is the adoption of cell-to-pack designs where the modular nature is removed in favor of packing all the cells directly together. Despite the reduction in materials this causes, the rapid growth of the EV market means that many of the materials used in a battery pack will see increased demand.
The materials used to package cells into a pack have reduced by over 50% since 2015. Source: IDTechEx
Thermal management is crucial to keeping cells at an optimal operating temperature and requires components such as cold plates and coolant hoses. Thermal interface materials are required to aid in heat transfer between the cells and the cooling structure. Preventing thermal runaway from propagating between the cells and outside the battery pack requires passive fire protection materials. How these thermal management materials and components are integrated is becoming simplified, especially with adoption of cell-to-pack designs, but will remain as critical operating components with increased demand.
A key avenue for weight saving is the adoption of composites and polymers over traditional aluminum and steel. Much of the battery structure is made from aluminum, but many have adopted composite enclosure lids to reduce weight and form more complex shapes. There is a push towards multi-material battery enclosures to combine the benefits of the materials available. A key consideration for composite or polymer enclosures is EMI shielding and fire protection, this can be added later or integrated into the material itself.
This report forecasts materials for battery packs including aluminum, steel, copper, aluminum, carbon fiber reinforced polymer, glass fiber reinforced polymer, thermal interface materials, fire protection materials, electrical insulation, cold plates, and coolant hoses.
Report Metrics |
Details |
Historic Data |
2021 - 2022 |
CAGR |
The global market for battery cell and pack materials will exceed US$230 billion by 2033 representing a CAGR of 26%. |
Forecast Period |
2023 - 2033 |
Forecast Units |
kg, US$ |
Regions Covered |
Worldwide |
Segments Covered |
Cars, buses, vans, trucks, two wheelers, three wheelers, microcars. |
ページTOPに戻る
Table of Contents
1. |
EXECUTIVE SUMMARY |
1.1. |
What's New in This Report? |
1.2. |
Materials Considered in this Report |
1.3. |
EV Battery Demand Market Share Forecast (GWh) |
1.4. |
Cathode Chemistry: Nickel Up, Cobalt Down, and LFP Resurgence |
1.5. |
Cathode Market Share for Li-ion in EVs (2015-2033) |
1.6. |
Li-ion Timeline - Technology and Performance |
1.7. |
Cathode Material Intensities (kg/kWh) |
1.8. |
How Does Material Intensity Change? |
1.9. |
The Promise of Silicon |
1.10. |
Anode Material Demand Forecast for EVs 2021-2033 (kg) |
1.11. |
Battery Cell Material Demand Forecast for EVs 2021-2033 (kg) |
1.12. |
Battery Cell Material Market Value Forecast for EVs 2021-2033 (US$) |
1.13. |
Cell Format Market Share |
1.14. |
Gravimetric Energy Density and Cell-to-pack Ratio |
1.15. |
Cell vs Pack Energy Density |
1.16. |
Component Breakdown of a Battery Pack |
1.17. |
Thermal Interface Material Trends |
1.18. |
Battery Thermal Management Strategy Market Share |
1.19. |
Energy Density Improvements with Composites |
1.20. |
Insulation Materials Comparison |
1.21. |
Electrical Interconnects: Aluminum, Copper, and Insulation Forecast 2021-2033 (kg) |
1.22. |
Fire Protection Material Market Shares |
1.23. |
Battery Pack Materials Forecast 2021-2033 (kg) |
1.24. |
Battery Pack Material Market Value Forecast for EVs 2021-2033 (US$) |
1.25. |
Total Battery Cell and Pack Materials Forecast by Material 2021-2033 (kg) |
1.26. |
Total Battery Cell and Pack Materials Market Value Forecast 2021-2033 (US$) |
2. |
INTRODUCTION |
2.1. |
Electric Vehicle Definitions |
2.2. |
Drivetrain Specifications |
2.3. |
Battery Materials for Electric Vehicles |
2.4. |
Materials Considered in this Report |
3. |
LI-ION BATTERY CHEMISTRY |
3.1. |
What is a Li-ion Battery? |
3.2. |
Lithium Battery Chemistries |
3.3. |
Why Lithium? |
3.4. |
Li-ion Cathode Benchmark |
3.5. |
Li-ion Anode Benchmark |
3.6. |
Cathode Chemistry: Nickel Up, Cobalt Down, and LFP Resurgence |
4. |
CELL COSTS AND ENERGY DENSITY |
4.1. |
Chemistry Energy Density Comparison |
4.2. |
Li-ion Timeline - Technology and Performance |
4.3. |
Impact of Material Price Volatility |
4.4. |
Impact of Material Price |
4.5. |
BEV Battery Cell and Pack Price Forecast 2020-2033 ($/kWh) |
4.6. |
Li-ion Batteries: Technologies, Markets and End of Life |
5. |
MATERIALS FOR LI-ION BATTERY CELLS |
5.1. |
Introduction |
5.1.1. |
Impact of Material Price Volatility |
5.1.2. |
Raw Material Uncertainty |
5.1.3. |
Drivers and Restraints for Battery Recycling |
5.1.4. |
How Does Material Intensity Change? |
5.1.5. |
Inactive Material Intensities (exc. casings) |
5.2. |
Raw Materials |
5.2.1. |
The Elements Used in Li-ion Batteries |
5.2.2. |
The Li-ion Supply Chain |
5.2.3. |
Raw Materials Critical to Li-ion |
5.2.4. |
Raw Material Supply a Driver for Alternative Chemistries? |
5.2.5. |
Li-ion Raw Material Geographical Distribution |
5.3. |
Cathode Materials |
5.3.1. |
Cathode Development |
5.3.2. |
Cathode Material Intensities (kg/kWh) |
5.3.3. |
Cathode Market Share for Li-ion in EVs (2015-2033) |
5.3.4. |
Cathode Material Demand Forecast 2021-2033 (kg) |
5.3.5. |
Price Assumptions |
5.3.6. |
Critical Cathode Material Value Forecast 2021-2033 (US$) |
5.3.7. |
Lithium |
5.3.8. |
Cobalt |
5.3.9. |
Nickel |
5.4. |
Anode Materials |
5.4.1. |
Anode Materials |
5.4.2. |
Anode Material Demand Forecast for EVs 2021-2033 (kg) |
5.4.3. |
Anode Material Prices |
5.4.4. |
Anode Material Market Value Forecast for EVs 2021-2033 (US$) |
5.4.5. |
Graphite |
5.4.6. |
Silicon |
5.5. |
Electrolytes, Separators, Binders, and Conductive Additives |
5.5.1. |
What is in a Cell? |
5.5.2. |
Introduction to Li-ion Electrolytes |
5.5.3. |
Electrolyte Technology Overview |
5.5.4. |
Introduction to Separators |
5.5.5. |
Polyolefin Separators |
5.5.6. |
Introduction to Binders |
5.5.7. |
Binders - Aqueous vs Non-aqueous |
5.5.8. |
Conductive Agents |
5.5.9. |
Specialty Carbon Black Analysis |
5.5.10. |
Carbon Nanotubes in Li-ion Batteries |
5.5.11. |
Why Use Nanocarbons? |
5.5.12. |
Key Carbon Nanotube Relationships |
5.5.13. |
Market Expansion of MWCNTs |
5.5.14. |
Carbon Nanotubes |
5.5.15. |
Overview of Graphene's Potential in Energy Storage |
5.5.16. |
Main Graphene Players - Energy Storage |
5.5.17. |
Current Collectors in a Li-ion Battery Cell |
5.5.18. |
Current Collector Materials |
5.6. |
Total Battery Cell Materials Forecast |
5.6.1. |
Battery Cell Material Demand Forecast for EVs 2021-2033 (kg) |
5.6.2. |
Battery Cell Material Market Value Forecast for EVs 2021-2033 (US$) |
6. |
CELL AND PACK DESIGN |
6.1. |
Introduction |
6.1.1. |
Cell Types |
6.1.2. |
Cell Format Market Share |
6.1.3. |
Cell Format Comparison |
6.1.4. |
Li-ion Batteries: from Cell to Pack |
6.1.5. |
Pack Design |
6.2. |
Cell-to-pack, cell-to-chassis and Large Cell Formats: Designs and Announcements |
6.2.1. |
What is Cell-to-pack? |
6.2.2. |
Drivers and Challenges for Cell-to-pack |
6.2.3. |
What is Cell-to-chassis/body? |
6.2.4. |
Servicing/ Repair and Recyclability |
6.2.5. |
BYD Blade Cell-to-pack |
6.2.6. |
BYD Cell-to-body |
6.2.7. |
CATL Cell-to-pack and Cell-to-chassis |
6.2.8. |
GM Ul
ページTOPに戻る
本レポートと同分野(エネルギー貯蔵)の最新刊レポート
IDTechEx社のエネルギー、電池 - Energy, Batteries分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
IDTechEx社はどのような調査会社ですか?
IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|