世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Battery Markets in Construction, Agriculture & Mining Machines 2024-2034


建設・農業・鉱山機械のバッテリー市場 2024-2034

この調査レポートは、2024-2034年の​建設・農業・鉱山機械のバッテリー市場について詳細に調査・分析しています。   主な掲載内容(目次より抜粋) 電動カム装置の紹介 ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2024年4月25日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
256 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。


 

Summary

この調査レポートは、2024-2034年の​建設・農業・鉱山機械のバッテリー市場について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 電動カム装置の紹介
  • カム装置のバッテリー要件
  • ターンキーバッテリーのサプライヤーと技術
  • 将来のバッテリー技術
  • 予測
  • 会社概要
 
Report Summary
Electrification in the construction, agriculture, and mining (CAM) industries is growing. The construction industry now has many production electric machines, with agriculture and mining soon to follow. With this growth in electrification comes a new market opportunity for cell manufacturers and battery pack makers. In total, this report finds that battery demand across all CAM industries is expected to reach 53.6 GWh in 2034. This equates to an industry valued at US$7.8 billion in 2034, representing a 10-year CAGR of 27.1%.
 
Electrifying CAM machines requires a wide range of battery sizes, from 10kWh to 2MWh, and a wide range of performance, safety and longevity requirements. Traditionally, the priority in battery development has been increasing gravimetric and volumetric densities, allowing auto-makers to build EVs with longer range, or physically smaller and lighter battery packs. The size and weight of most CAM machines means energy density is not a concern. Lots of existing diesel machines even utilize concrete ballast for balance and stability. Hence the priorities and needs of EV CAM machines are more focused on cost, safety, and longevity. This report takes a close look at the battery requirements that CAM machines have and how the existing and upcoming battery technologies can meet those demands.
 
Electric CAM Equipment Battery Sizes. Source: IDTechEx
 
NMC/LFP Across the CAM Market
The global battery market is currently dominated by NMC (nickel manganese cobalt) and LFP (lithium ferrous phosphate) cathodes with lithium as the charge carrier and a graphite anode. This is no different in the CAM markets. The products from turnkey battery pack manufacturers like Forsee, Accelera, and CATL are dominated by NMC and LFP options. These technologies offer pack level energy densities in the range of 100-200Wh/kg, volumetric energy densities in the 300-400Wh/L range, and enough cycle life to meet many applications.
 
"Battery Markets in Construction, Agriculture & Mining Machines 2024-2034" finds that LFP and NMC are used throughout the CAM markets. The report also finds that there are trends which impact whether a machine is more likely to use LFP or NMC. Although both chemistries offer very good energy density, the extra volumetric density of NMC means that it can make physically smaller packs, which can be easier to integrate in smaller machines, such as 2-tonne excavators. LFP on the other hand is typically less dense, but cheaper than NMC. This makes it a more common choice for larger machines, where the additional weight and volume can be tolerated and the cost savings are appreciated. In addition to energy density and cost pressures, the choice of LFP or NMC might also be impacted be geography, with some regions having better availability than others.
 
In addition to LFP and NMC, there are many other technologies coming to the battery market over the next few years. In this report IDTechEx analyzes the benefits and drawbacks of eight additional battery chemistries, and aligns their performance attributes and drawbacks with the needs of 15 vehicle types across the CAM markets.
 
LTO and Haul Trucks
Lithium titanate (LTO) is an alternative anode technology, replacing the graphite but keeping either an NMC or LFP cathode. LTO doesn't have as high energy density as cells with a graphite anode, however, it is a very stable and robust chemistry. It can provide very high cycle life and supports very quick re-charging. Its lack of energy density means that it is not compatible with all EV CAM machines, but those that can manage the lack of density stand to benefit from its significant charging and longevity advantages.
 
Haul trucks are a prime example of a machine that could leverage the advantages of an LTO battery. Haul trucks need to operate for 20 hours per day, with very little downtime. Combined with a life expectancy of more than ten years, and subsequently a requirement of more than 12,000 cycles, haul trucks are a tough vehicle to electrify. However, LTO could help. LTO batteries can be charged in as little as three minutes, minimizing downtime. Longevity is also not an issue, with pack manufacturers like ABB estimating that their packs will last 40,000 cycles before end of life.
 
Silicon Anode Cells and Agriculture
Adding silicon to the graphite anode is one way in which battery companies are looking to increase the energy density of cells. Silicon stores lithium through an alloying reaction, which gives it the potential for very high energy density, but also creates challenges around longevity. As the silicon becomes lithiated it swells, and over time the repeated swelling caused by charge and discharge cycles causes the anode to deteriorate. Current examples of advanced silicon cells (with 10-50% silicon by weight) struggle to exceed cycle lives of more than 1,000 cycles. For many CAM applications this is simply insufficient. The machines could need multiple replacements over their lifetimes making the total cost of ownership too high.
 
However, silicon anodes could have a place within agriculture. Some large farming machines only see the fields for a few weeks each year, meaning even over a 10-20 year lifespan they will require far fewer charge and discharge cycles than say an excavator. Additionally, operating over rough/muddy terrain, pulling heavy equipment through the field is energetic work. This report finds that electric tractors need approximately 50% more energy than equivalently sized machines in construction and mining, making the additional energy density of silicon anode technologies potentially very valuable.
 
This IDTechEx report examines a database of over 200 electric machines from the CAM sectors, combined with nearly 200 products from turnkey battery pack suppliers. It considers the individual needs of 15 different machine types, and the merits of ten battery technologies, including; NMC, LFP, LTO, sodium-ion, solid-state batteries, silicon anode batteries, lithium-metal batteries, and more. These combine to give recommendations for the best battery fit for each of the machines across construction, agriculture and mining industries. The report concludes with forecasts for the growth of these technologies within the CAM market, evaluating the market size and distribution over the next 10 years.
 
Key aspects
This report provides critical market intelligence on battery markets for construction, agriculture, and mining. This includes:
  • An overview of CAM EVs
  • Vehicle trends and performance analysis
  • Benchmarking of off-the-shelf battery products and suppliers' core technologies
  • An overview of Li-ion and beyond Li-ion batteries, and their applicability to CAM
  • Granular 10-year forecasts for battery demand and revenue


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Key Report Findings
1.2. Advantages of / Barriers to Machine Electrification
1.3. Construction Machines Overview
1.4. Agriculture Machines Overview
1.5. Mining Machines Overview
1.6. Battery Sizing for Different Machine Types
1.7. Battery Chemistries for Different Machine Sizes
1.8. Battery Cycle Life Requirements
1.9. Battery Performance Requirements
1.10. Battery Pack Requirements for EV Construction Machines
1.11. Battery Pack Requirements for EV Agriculture Machines
1.12. Battery Pack Requirements for EV Mining Machines
1.13. Battery Cost Requirements
1.14. Turnkey Battery Pack Suppliers Analysis
1.15. Cycle Life vs Energy Density for Different Chemistries
1.16. Lithium Battery Chemistries
1.17. Key Differences Between Battery Technologies
1.18. Battery Technology Comparison
1.19. Best Fit Battery Technologies for Construction Machines
1.20. Best Fit Battery Technologies for Agriculture Machines
1.21. Best Fit Battery Technologies for Mining Machines
1.22. Total Battery Demand (GWh) by Region 2024 - 2034
1.23. Total Battery Demand (GWh) by Industry 2024 - 2034
1.24. Total Battery Demand (GWh) by Chemistry 2024 - 2034
2. INTRODUCTION TO ELECTRIC CAM EQUIPMENT
2.1. Electric Construction Equipment
2.1.1. Overview of Electric Construction Vehicles
2.1.2. Key Construction Machine Types for Electrification
2.1.3. Advantages of / Barriers to Machine Electrification
2.1.4. Electrification Activity of Major Construction OEMs (1)
2.1.5. Electrification Activity of Major Construction OEMs (2)
2.1.6. Mini Excavator OEMs
2.1.7. Example Electric Mini-Excavator - Caterpillar 301.9
2.1.8. Medium / Large Excavator OEMs
2.1.9. Example Excavator - John Deere 145 X-Tier
2.1.10. Compact Loaders / Skid Steer / Dumpers
2.1.11. Compact Loaders OEMs
2.1.12. Example Compact Loader - Bobcat S7X and T7X
2.1.13. Backhoe Loaders OEMs
2.1.14. Example Backhoe Loader - CASE Construction 580EV
2.1.15. Wheel Loaders OEMs
2.1.16. Example Wheel Loader - LuiGong 856E Max and 856HE MAX
2.1.17. Telehandlers
2.1.18. JCB 525-60E Electric Telehandler
2.1.19. Mobile Cranes OEMs
2.1.20. XCMG XCT25EV and XCA60EV PHEV Truck Cranes
2.1.21. Other Construction Vehicles
2.2. Electric Agricultural Equipment
2.2.1. Key Agriculture Vehicles for Electrification
2.2.2. Electrification Activity of Major Agriculture OEMs
2.2.3. Sub-compact Tractor OEMs
2.2.4. Example Electric Sub-compact Tractor: Solis SV26
2.2.5. Compact Tractor OEMs
2.2.6. Example Electric Compact Tractor: Rigitrac SKE 40 Electric
2.2.7. Utility Tractor OEMs
2.2.8. Example Electric Utility Tractor: Case IH Farmall 75C Electric
2.2.9. Other Agriculture Vehicles
2.3. Electric Mining Equipment
2.3.1. Key Mining Vehicle Types for Electrification
2.3.2. Electrification Activity of Major Mining OEMs
2.3.3. Haul Truck OEMs
2.3.4. Example Electric Haul Truck: XEMC SF31904
2.3.5. Dump Truck OEMs
2.3.6. Example Electric Dump Truck: XCMG XDR80TE
2.3.7. Wheel Loader OEMs
2.3.8. Example Electric Wheel Loader: Batt Mobile Equipment BIT210 and BME220
2.3.9. Underground Loader OEMs
2.3.10. Example Electric Underground Loader: Sandvik - Toro and Artisan Models
2.3.11. Underground Truck OEMs
2.3.12. Example Electric Underground Truck: Epiroc Minetruck MT42 SG
2.3.13. Mining Light Vehicle OEMs
2.3.14. Example Electric Mining Light Vehicle: Rokion R100, R200, and R400
2.3.15. Other Mining Vehicles
3. BATTERY REQUIREMENTS FOR CAM EQUIPMENT
3.1. Battery Sizing for Different Machine Types
3.2. Battery Sizing for EV Machines Smaller Than 50-tonne
3.3. Most Common Battery Pack Sizing
3.4. Battery Capacity and Runtimes
3.5. Battery Sizing for Excavators
3.6. Battery Power Requirements
3.7. Battery Discharge Rate
3.8. Battery Charging Rates
3.9. Battery Voltages
3.10. Battery Voltages Binned
3.11. Battery Voltages in Construction Machines
3.12. Battery Chemistries in Different Machine Sizes
3.13. Typical Battery Chemistry Choices in Different Industries
3.14. Battery Chemistry by Region
3.15. Battery Lifetime Requirements
3.16. Typical Battery Pack Requirements for Different EV CAM Machines - Construction
3.17. Typical Battery Pack Requirements for Different CAM Machines - Agriculture
3.18. Typical Battery Pack Requirements for Different CAM Machines - Mining
3.19. Battery Performance Requirements
3.20. Battery Cost Requirements
4. TURNKEY BATTERY SUPPLIERS AND THEIR TECHNOLOGIES
4.1. Product Benchmarking and Trends
4.1.1. Batteries for CAM
4.1.2. Introduction to Turnkey Battery Pack Suppliers and Key Takeaways
4.1.3. Suppliers and their Offerings - North America
4.1.4. Suppliers and their Offerings - Europe (1)
4.1.5. Suppliers and their Offerings - Europe (2)
4.1.6. Suppliers and their Offerings - China
4.1.7. Suppliers and their Offerings - Other
4.1.8. Availability of Different Chemistries
4.1.9. Availability of Different Cell Form Factors
4.1.10. LTO and Sodium-ion from the Turnkey Suppliers
4.1.11. Benchmarking
4.1.12. Benchmarking - Best Packs for Gravimetric Energy Density
4.1.13. Benchmarking - Best Packs for Volumetric Energy Density
4.1.14. Benchmarking - Best Packs for Gravimetric Power Density
4.1.15. Benchmarking - Best Packs for Volumetric Power Density

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(エネルギー貯蔵)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/01/07 10:26

159.22 円

165.80 円

202.00 円

ページTOPに戻る