世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Thermal Energy Storage 2024-2034: Technologies, Players, Markets, and Forecasts


熱エネルギー貯蔵2024-2034:技術、プレーヤー、市場、予測

この調査レポートは、2024-2034年の熱エネルギー貯蔵について詳細に調査・分析しています。   主な掲載内容(目次より抜粋) 熱エネルギー貯蔵の地域市場促進要因と取り組み ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2024年3月27日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
231 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。


 

Summary

この調査レポートは、2024-2034年の熱エネルギー貯蔵について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 熱エネルギー貯蔵の地域市場促進要因と取り組み
  • 熱エネルギー貯蔵アプリケーション
  • 熱エネルギー貯蔵市場の概要とデータ分析
  • 熱エネルギー貯蔵技術
  • 熱エネルギー貯蔵市場予測 2024-2034
  • 企業プロファイル
 
Report Summary
IDTechEx forecasts that the industrial thermal energy storage market will reach US$4.5B by 2034. Heating and cooling accounts for approximately 50% of global energy consumption, with ~30% of this consumption represented by heating demand from industry, with the majority of heat production using fossil fuels. Consequently, ~25% of the global energy pollution comes from heat produced for industrial processes. Therefore, there is growing demand across various industrial sectors for technologies to both generate and store decarbonized heat, such as thermal energy storage (TES).
 
TES systems have been widely adopted for applications such as pairing with concentrated solar power (CSP) plants, district heating, cold chain, and space heating for buildings. However, TES in industry is an emerging and niche market, and is only responsible for ~1% of the global TES market currently. IDTechEx expects that TES systems deployed in industry will form a growing proportion of global TES capacity and will be one of the key solutions needed to reduce global industrial emissions. Government and state-led initiatives such as the EU Innovation Project and the US Department of Energy's Industrial Heat ShotTM are looking to provide funding to companies developing technologies to decarbonize industrial processes, in which TES could be included. Moreover, recently higher natural gas prices in key regions also highlight the need for technologies to provide heat for industrial processes at a potentially lower and more stable cost.
 
The majority of TES technologies are primarily being developed to provide decarbonized heat to industrial processes. This could include sensible-heat technologies using materials such as molten salt, and solid-state media such as concrete and refractory brick, or latent-heat technologies using phase change materials. Different technologies also accept different forms of energy input, including renewable electricity to power electrical resistive heating elements, or excess heat capture (e.g., steam).
 
TES technologies could also be paired with turbine-generators to produce electricity, potentially while co-currently delivering heat. This could see some TES systems be used for long duration energy storage (LDES) applications. As the penetration of variable renewable energy sources, such as solar and wind, increases in national electricity grids, as will the need to manage greater fluctuating supply of energy over longer timeframes. This is where LDES technologies will be useful in dispatching energy over these longer timeframes. Electro-thermal energy storage (ETES) technologies such as those adopting materials such as sand, molten salt, CO2, and water are being developed for larger grid-scale LDES applications. However, conversion of heat to electricity results in efficiency losses, which would be a disadvantage of TES technologies compared to some other LDES technologies. Thermochemical energy storage (TCES) technologies are another type of TES technology and are generally still in prototype stage of development. Greater awareness, funding and material optimization is required to bring these technologies to market.
 
This IDTechEx report analyzes and appraises various TES technologies' commercial readiness for industrial applications, and advantages and disadvantages, including factors such as cost, maximum storage temperature, expected system lifetime, and round-trip efficiency.
 
Thermal energy storage working principles. Source: IDTechEx.
 
TES systems can be used in industry for various process heating applications, including calcination, drying, process fluid heating, and power generation, among more. Some of these processes are used across multiple industrial sectors, which TES players are targeting, such as chemicals, materials manufacturing, refining, food and beverage, pulp and paper, cement, glass, and metal sectors. These processes have requirements related to temperature and type of heat required. For instance, fluid heating processes are typically used in chemical manufacturing and refining processes, such as in distillation reboilers. These processes could see a thermal storage medium, such as molten salt, double up as a heat transfer fluid which, on discharge, passes through a heat exchanger as part of a recirculation loop. 'Medium temperatures' are generally required for such processes, ranging from 200-600°C. Whereas drying processes generally require lower temperatures below 200°C, and are ubiquitous across industrial sectors. These processes will typically require convective heat transfer from hot, dry air. Cooler air could pass through or around a TES medium to be heated and then supplied on discharge to an industrial drying process.
 
However, several metal and glass heat treating and melting processes require much higher temperatures, greater than 1000°C. Many of the TES systems being developed and commercialized are unable to store and supply heat at such temperatures without compromising the mechanical or thermal stability of the thermal storage medium. However, development of novel solid-state materials to withstand higher storage temperatures is being observed, which could promise the use of TES in these higher-temperature processes, which have been some of the most difficult to decarbonize. This IDTechEx report analyzes and examines TES technologies being developed by key players globally and assesses which technologies would be most suitable for different industrial heating applications.
 
Source: IDTechEx
 
As of January 2024, TES players have accumulated over US$600M in funding, to develop and commercialize their technologies, and to increase manufacturing capacity. State-level funding is expected to be an initial key driver across regions, though the proportion of funding attributed to TES versus other industrial decarbonization technologies is not always clear. While a few key GWh-scale non-CSP TES projects are planned for deployment in the US and China, IDTechEx expects most TES player attention is currently focused on the European market. At least 275 MWh of planned cumulative TES capacity is expected to be installed in Europe for industrial applications by 2025. Recently higher natural gas prices and emission caps enforced through the EU Emissions Trading System will be key drivers for European TES growth in industry. This IDTechEx report provides market overviews and data analysis for the industrial TES market, including value chain, strategic partnerships, funding, material suppliers, business models, key player activity, planned and existing projects, and manufacturing developments.
 
Source: IDTechEx.
 
This IDTechEx report also provides 10-year market forecasts on the TES market for the period 2020-2034, in both capacity (GWh) and market value (US$B). Capacity forecasts are provided by region, technology, and application. Regions include Europe, United States, Australia, China, and Rest of the World.


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Key market conclusions (1)
1.2. Key market conclusions (2)
1.3. Key technology conclusions (1)
1.4. Key technology conclusions (2)
1.5. Thermal energy storage classification and long-term end-use cases
1.6. Thermal energy storage technology working principle
1.7. Summary of regional drivers and initiatives for thermal energy storage
1.8. Thermal energy storage applications map
1.9. Industrial heating processes shared across industries
1.10. Map for TES industrial heating applications by temperature
1.11. TES summary for decarbonizing industrial heating processes
1.12. Thermal energy storage value chain
1.13. Key suppliers and manufacturers for thermal energy storage media and materials
1.14. Thermal energy storage players overview
1.15. Global map of key thermal energy storage player's headquarters
1.16. Global map of thermal energy storage system installations (excluding CSP)
1.17. Funding received by player (US$M)
1.18. Thermal energy storage system manufacturing developments
1.19. Key TES players: Pros and cons
1.20. Existing and planned TES projects by industry / sector end-user
1.21. Cumulative capacity of TES systems by region
1.22. TES technologies by commercial readiness levels (CRL)
1.23. Thermal energy storage CRL and technology benchmarking for industrial applications
1.24. Sensible and latent heat storage media map
1.25. Electro-thermal / pumped thermal energy storage for long duration energy storage applications (1)
1.26. Electro-thermal / pumped thermal energy storage for long duration energy storage applications (2)
1.27. Thermal energy storage advantages and disadvantages
1.28. Thermochemical energy storage summary
1.29. Thermochemical energy storage classification
1.30. Prototypes of thermochemical energy storage systems
1.31. Materials for thermochemical storage outlook and map
1.32. Thermal energy storage annual installations forecast by region (GWh) 2020-2034 with commentary
1.33. Thermal energy storage annual installations forecast by technology (GWh) 2020-2034 with commentary
1.34. Thermal energy storage annual installations forecast by technology segment (GWh) 2020-2034 with commentary
1.35. Thermal energy storage installations forecast by application (GWh) 2020-2034 with commentary
1.36. Thermal energy storage annual installations forecast by value (US$B) 2020-2034 with commentary
2. INTRODUCTION TO THERMAL ENERGY STORAGE
2.1. Introduction to thermal energy storage
2.2. Introduction to thermal energy storage technologies (1)
2.3. Introduction to thermal energy storage technologies (2)
3. REGIONAL MARKET DRIVERS AND INITIATIVES FOR THERMAL ENERGY STORAGE
3.1. Summary of regional drivers and initiatives for thermal energy storage
3.2. TES competing with natural gas: Europe and US
3.3. TES competing with natural gas: Asia-Pacific
3.4. US Department of Energy Industrial Heat ShotTM Initiative
3.5. EU Emissions Trading System
3.6. Policy support for heating and cooling decarbonization in the EU
3.7. EU Innovation Fund for net-zero technologies
3.8. ARENA funding for decarbonization of industrial process heat in Australia
3.9. Japanese Green Innovation Project
3.10. Korea Emissions Trading Scheme and Green New Deal
3.11. China's role in decarbonizing power and industrial sectors
4. THERMAL ENERGY STORAGE APPLICATIONS
4.1. Existing Thermal Energy Storage Applications
4.1.1. Concentrated solar power with thermal energy storage (1)
4.1.2. Concentrated solar power with thermal energy storage (2)
4.1.3. District heating and cooling
4.1.4. Cold chains and buildings
4.2. Thermal Energy Storage Applications to Decarbonize Industrial Heating
4.2.1. Introduction to TES applications for decarbonizing industrial process heating
4.2.2. Industrial heat demand by operation
4.2.3. Industrial heat demand by temperature (1)
4.2.4. Industrial heat demand by temperature (2)
4.2.5. Calcination
4.2.6. Adhesive bonding and curing
4.2.7. Drying
4.2.8. Process fluid heating
4.2.9. Metals and glass heat treating
4.2.10. Melting for metals and glass
4.2.11. Steam and power generation / steam recovery
4.2.12. Industrial heating processes shared across industries
4.2.13. Map for TES industrial heating applications by temperature
4.2.14. TES for decarbonizing industrial heating processes summary table
4.3. Chemical Looping
4.3.1. Summary: Future application of chemical looping for thermal energy storage
4.3.2. Chemical looping combustion (CLC)
4.3.3. Chemical looping hydrogen (CLH) generation
4.3.4. Sorption-enhanced SMR (SE-SMR)
4.3.5. Chemical looping market developments
4.3.6. HyPER Project
4.3.7. ZEG Power
4.3.8. Babcock & Wilcox
4.4. Thermal Energy Storage for Long Duration Energy Storage
4.4.1. Electro-thermal / pumped thermal energy storage for long duration energy storage applications (1)
4.4.2. Electro-thermal / pumped thermal energy storage for long duration energy storage applications (2)
4.4.3. TES as a technology to support adiabatic CAES and LAES systems
4.4.4. CAES systems classification (1)
4.4.5. CAES systems classification (2)
4.4.6. Schematic of adiabatic LAES system with thermal energy storage
4.4.7. Further information on long duration energy storage
5. THERMAL ENERGY STORAGE MARKET OVERVIEW AND DATA ANALYSIS
5.1. TES Installations with Concentrated Solar Power
5.1.1. TES deployments with CSP projects 2008-2023
5.1.2. Capacity of TES (MWh) with installed CSP plants by region
5.1.3. Capacity of TES (MWh) with planned CSP plants by country and project
5.1.4. List of concentrated solar power and thermal energy storage plants: Africa & Middle East
5.1.5. List of concentrated solar power and thermal energy storage plants: China
5.1.6. List of concentrated solar power and thermal energy storage plants: Europe & Americas
5.1.7. List of planned concentrated solar power and thermal energy storage plants
5.2. Industrial Thermal Energy Storage Market
5.2.1. Overview of TES for industrial and non-CSP applications
5.2.2. Thermal energy storage value chain
5.2.3. Strategic partnerships and supplier overview
5.2.4. Key suppliers and manufacturers for thermal energy storage media and materials
5.2.5. Heat as a Product and Heat as a Service
5.2.6. Thermal energy storage players overview
5.2.7. Global map of key thermal energy storage player's headquarters
5.2.8.  

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(エネルギー貯蔵)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/01/06 10:26

158.73 円

163.96 円

200.03 円

ページTOPに戻る