世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Battery Swapping for Electric Vehicles 2022-2032: Technology, Players and Forecasts


電気自動車向けバッテリースワップ 2022-2032年:技術、プレーヤー、予測

この調査レポートは、さまざまな車両セグメントにおけるスワップを取り上げ、技術、ビジネスモデル、業界内の関係者について詳細に調査・分析しています。   主な掲載内容(目... もっと見る

 

 

出版社 出版年月 価格 ページ数 言語
IDTechEx
アイディーテックエックス
2022年5月16日 お問い合わせください
ライセンス・価格情報
注文方法はこちら
273 英語

※価格はデータリソースまでお問い合わせください。


 

Summary

この調査レポートは、さまざまな車両セグメントにおけるスワップを取り上げ、技術、ビジネスモデル、業界内の関係者について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 自動車用バッテリー交換
  • 二輪車・三輪車用バッテリー交換
  • 商業用ヘビーデューティーとカムセグメント用のバッテリー交換
  • バッテリー交換の標準、規制、政策
  • 予測
 
Battery swapping as an alternative to charging
Traditional cable based charging of EVs is now being complemented by another solution: battery swapping. In theory, the process is quicker and more convenient than a fast charge - 3-5 minutes for a swap as compared to 30-60 minutes on a DC fast charger. A driver drives into a battery swap station (BSS), and an automated system replaces the depleted battery with a fully charged spare without any user intervention or the driver having to leave the vehicle. This is the case for cars and heavy duty segment vehicles including trucks, buses and construction vehicles. From our research, we have found that in the case of cars, the most widespread approach is seen to be a pack swap from under the chassis of the car (as used widely by market leaders Nio and Aulton) whereas in trucks and buses it is often done using robotic cranes that lift battery packs from either above or from the side of the vehicle. In the case of swapping in the two and three-wheeler micromobility segment, a self-service approach is used wherein the user replaces smaller, lightweight battery packs themselves from a vending-machine-like swap station that holds spare batteries. Gogoro, Immotor and Swobbee are some of the key players in this market. As EV ranges get longer and batteries get bigger, fast-charging technology is fighting physics. Cable based charging units alone will not satisfy the market demand as EV sales outpace the installation rate. This is one of the motives in searching for other efficient publicly available solutions, and explains why battery-swapping has gained high attention.
 
Battery swapping promotes new business models by decoupling the cost of the battery from the vehicle itself. The emergence of battery as a service (BaaS) business models and separate battery asset management companies is a trend we are noticing in the industry. Swapping can also benefit consumers. EV batteries lose range over the years but with a swap system, users can easily upgrade to the latest battery technologies provided their BMS is compatible. Centrally trickle charging batteries in a swap station also eliminates the degradation associated with DC fast charging. The technology will likely be a critical enabler for electrification, not just in cars, but micromobility, rideshare fleets, autonomous vehicles and heavy duty commercial fleets. It may also be one of the most economical ways to build the large stationary energy storage necessary to support the world's growing supplies of renewable energy.
 
The swapping ecosystem promotes the second life use and recycling of batteries. Source: IDTechEx
 
Battery swapping is successfully being carried out in population-dense regions of APAC. China is in the lead with around 1300 swap stations by the end of 2021 and pioneering swapping for cars. In neighboring regions, swapping is initially being adopted for electric two-wheelers and three-wheeler segments. Perhaps the biggest barrier to wide-scale adoption is that swapping systems demand standardisation of battery packs across large vehicle ranges to become feasible. This may be a challenge at present when manufacturers are holding their battery pack design as intellectual property and differentiation from one another. CATL being the industry's largest battery supplier has also recently announced its own swapping company which has brought the spotlight back to a once doomed industry. Whether all manufacturers are willing to come together and accept a single or a few types of battery packs to make them swappable is difficult to imagine but we are seeing commercial fleets adopting this technology widely with great success. IDTechEx also sees some promising applications for swapping within the electric heavy trucks (EHTs) and construction vehicles segment where high operational efficiency is achieved by utilising swapping.
 
The latest report from IDTechEx on Battery Swapping for Electric Vehicles 2022-2032 covers swapping across various vehicle segments and provides information on the technologies, business models and players involved within the industry. Newer technologies including modular battery swaps are also coming into the picture and their uptake is addressed within the market forecasts. The energy storage potential of various segments of swap stations is also presented with an increase in battery demand over the years. We provide a technological and business overview of the major established car battery swapping players including Chinese operators and also smaller players from Europe and the US. Extensive coverage of players within the micromobility swapping segment is also included. A cost comparison to AC/DC charging, total cost of ownership (TCO) analysis and profitability study are some of the highlights of this report.
 
Summary of report contents and forecasts:
  • Comprehensive overview of various battery swapping players and technologies across various vehicle segments.
  • Analysis of the battery swapping benefits and drawbacks for each segment with feasibility for adoption.
  • A breakdown of the mechanical componentry present inside car swap stations and varying approaches to mounting and locking the battery.
  • Business models and company financials of key players.
  • Detailed ten-year market forecast on battery swap station deployments globally and specifically in China. Granular forecasts split by type of swapping and mode of swapping. Infrastructure market value and storage capacity forecasts for the global swapping industry.



ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Battery swapping: charge it or change it?
1.2. There are many ways to charge your EV - charging modes comparison
1.3. Swap-capable EVs entering the market
1.4. Battery swapping pathways for different types of EVs
1.5. Car swapping process overview
1.6. Battery swapping market for cars in China is getting competitive
1.7. Swapping is more expensive than AC or DC charging
1.8. Swapping station deployment will rise over the next 5 years
1.9. Battery as a Service (BaaS) business model - a disintegrated approach
1.10. Two and three-wheelers use small capacity, self-service swap models
1.11. Two wheeler battery swapping is successfully being carried out in population-dense regions of APAC
1.12. Commercial heavy duty battery swapping is in its early stages
1.13. Battery swapping stations can act as grid support units and enable battery recycling
1.14. Battery swapping SWOT analysis
1.15. Battery swapping benefits and scepticism
1.16. Global cumulative swap station deployment by segment 2021-2032
1.17. Light EVs to remain most prominent segment for swapping, cars to follow
1.18. Battery swapping will impose additional demand on the global battery supply
1.19. Global battery swapping infrastructure market value per year - over $22 billion in 2032
1.20. High level findings
1.21. Access to IDTechEx portal profiles
2. INTRODUCTION
2.1. Why swap?
2.2. Ditching the cable
2.3. Current bottleneck in charging
2.4. From cable charging to battery swapping
2.5. Swapping vs cable charging
2.6. Battery swapping can serve more cars than superchargers
2.7. EV charging modes comparison
3. BATTERY SWAPPING FOR CARS
3.1. Introduction
3.1.1. History: a spectacular failure
3.1.2. Major milestones
3.1.3. Technology overview
3.1.4. Challenges and opportunities
3.1.5. Battery swapping scepticism
3.1.6. The cost problem $
3.1.7. Replacement queuing
3.1.8. Swapping industry seeing large investments
3.1.9. Can a swap station make profit?
3.1.10. Profitability analysis
3.1.11. Battery swapping advantages
3.1.12. Trickle/centralised charging enabled by swapping
3.1.13. Battery swapping is taking off in the Chinese EV market
3.1.14. China development phases
3.1.15. China swapping OEMs milestones
3.1.16. Historical swap station deployment in China
3.1.17. Swap stations in Chinese cities
3.1.18. 2021 was a pivotal year for battery swapping in China
3.1.19. Will it catch on outside of China?
3.1.20. Why battery swapping is ideal for fleets
3.1.21. Swapping value for end user
3.2. Battery Swapping Technologies
3.2.1. Battery swapping station (BSS)
3.2.2. Battery swapping mechanisms
3.2.3. Battery swapping can take various forms
3.2.4. Battery swapping mechanism - base frame type
3.2.5. Battery swapping mechanisms - forklift type
3.2.6. Battery swapping mechanism - gripper type
3.2.7. Above versus below ground swapping
3.2.8. Operation process in the swapping model
3.2.9. Real world BSS usage scenarios
3.2.10. How many excess batteries?
3.2.11. The inventory dilemma
3.2.12. Swapping station footprints and storage capacity
3.2.13. Swapping station footprint per MWh of storage capacity
3.2.14. Battery swap modes
3.2.15. Battery pack universality is hard to achieve
3.2.16. What's inside a BSS and how are they differentiated?
3.2.17. Nio BSS - how it works
3.2.18. Nio BSS components
3.2.19. Nio BSS tech specs
3.2.20. Controlling the BSS
3.2.21. Locking/unlocking the battery: Nio
3.2.22. Nio battery pack options
3.2.23. Nio to offer even more battery capacity
3.2.24. Aulton BSS: how it works
3.2.25. Aulton BSS tech specs
3.2.26. Locking/unlocking the battery: Aulton/BAIC
3.2.27. Botan swapping technology
3.2.28. Botan revives side to side pull out swap
3.2.29. Botan swapping modes
3.2.30. CATL EVOGO swapping technology
3.2.31. Ample swapping technology
3.2.32. Power Swap - swapping technology
3.2.33. Power Swap - automatic swapping unit components
3.2.34. System design for swapping
3.2.35. Comparison of different battery mounting options
3.2.36. Battery-to-grid within the battery swapping model
3.2.37. Safety - what can go wrong while swapping?
3.3. Battery Swapping Market
3.3.1. Market entrants
3.3.2. Location matters
3.3.3. Stakeholders
3.3.4. Tesla and Better Place swapping business models
3.3.5. Business model of Chinese enterprises
3.3.6. Battery as a Service (BaaS) business model - a disintegrated approach
3.3.7. Why BaaS will be a popular model
3.3.8. Nio sets up separate battery asset company
3.3.9. BaaS has low TCO in the short term
3.3.10. Nio lets users opt out of BaaS plan
3.3.11. Who owns the battery?
3.3.12. Battery swapping is becoming big business
3.3.13. Cost comparison
3.3.14. Fire risks and recalls in swapping
3.3.15. Swap enabled EV models
3.3.16. Passenger battery swapping EV models
3.3.17. Growing market for swap enabled EVs for private users
3.3.18.  

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/12/20 10:28

158.95 円

165.20 円

201.28 円

ページTOPに戻る