世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

AR、VR、MRにおけるオプティクスとディスプレイ 2020-2030:技術、企業と市場:AR、VR、MRにおける技術、企業、市場の完全概要と予測


Optics and Displays in AR, VR, and MR 2020-2030: Technologies, Players and Markets

このレポートはAR/MR、VRデバイスにおけるオプティクスとディスプレイ技術を調査しています。   主な掲載内容   ※目次より抜粋 エグゼクティブサマリ イントロ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2020年8月21日 US$6,500
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報・注文方法はこちら
280 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。


 

サマリー

このレポートはAR/MR、VRデバイスにおけるオプティクスとディスプレイ技術を調査しています。
 
主な掲載内容 ※目次より抜粋
  • エグゼクティブサマリ
  • イントロダクション
  • オプティクス
  • 予測とディスカッション:オプティクス
  • ディスプレイ
  • 予測とディスカッション:ディスプレイ
  • 企業プロフィール
 
Report Details
 
This report discusses the markets of the optics and displays technologies within AR/MR and VR devices. The basic definitions of VR, AR and MR are as follows:
  • Virtual reality (VR). This replaces reality with a completely new 3D digital environment.
  • Augmented reality (AR). This overlays digital content on top of the real world.
  • Mixed reality (MR): adds superimposed digital content that superficially interacts with the environment in real-time.
 
Optics
Why do optics matter? Optics influence the immersiveness of an AR/MR or a VR experience. If a user has effects such as God Rays, Rainbow effects, or headaches due to the vergence-accommodation issue, this can contribute to a negative experience. In the future, these problems will be overcome, and improvements and changes to the optical market in both AR/MR and VR devices are an important contributor these trends.
 
Within optics in AR/MR, this report discusses the different types of waveguides, such as diffractive and geometric waveguides in AR/MR devices. The report discusses the benefits and drawbacks of different optical methods and set-ups, with case studies from a number of the major players in these markets. Within VR devices, the main optics discussed are Fresnel lenses. These lenses magnify the display for the user to see, and have a big impact on the experience a user has when using a spatial reality device.
 
Displays
Another important aspect of an AR, MR or VR device is the display which is used to project the image. Typically, different micro-displays have been used for different spatial reality devices. For example, VR devices have historically used OLED or LCD micro-displays, used in the smartphone industry for many years, and they are a mature, high yield manufacturing choice for VR devices. However, in AR/MR devices, LCoS displays are the most common, because they provide a high brightness and good resolution quality for input to the optical waveguide. This report covers the 6 most important types of micro-display within spatial reality devices: LCD, OLED, DLP, LCoS, OLED-on-Si and mLED. Comparisons are made between the benefits and drawbacks for each display type, with forecasts for each within AR, MR, and VR devices.
 
 
Market Analysis
This report covers the forecasts for both the optical and display markets in AR/MR and VR markets. The current state of these markets is discussed and analysed with long range forecasts from 2020-2030 for revenue and volume by technology in:
  • AR/MR Optics
  • VR Optics
  • AR/MR micro-displays
  • VR micro-displays
 
Key Questions Answered in the Report
  • How has COVID impacted the AR/VR market?
  • What are the major drivers for optic choice in an AR/MR or VR device?
  • What are the major drivers for display choice in an AR/MR or VR device?
  • What the strengths and weaknesses of the six major micro-display types used in AR/MR and VR devices?
  • How will the micro-display choice change in the future?
  • How will the sales of optical devices and display devices evolve from 2020-2030?

 



ページTOPに戻る


目次

Table of Contents

1. EXECUTIVE SUMMARY
1.1.1. Executive Introduction
1.1.2. Nomenclature: VR, AR, MR, XR
1.1.3. Applications in VR, AR & MR
1.1.4. Forecasts for the VR Market
1.1.5. Forecasts for the AR/MR Market
1.1.6. AR/VR/MR and COVID
1.2. Executive Summary: Optics
1.2.1. Key Trends: Optics
1.2.2. Historic Trends: Optics in AR/MR
1.2.3. Historic Trends: Optics in VR
1.2.4. What matters when choosing optics?
1.2.5. AR/MR Optics Forecasts 2020-2030
1.2.6. VR Optics Forecasts 2020-2030
1.3. Executive Summary: Displays
1.3.1. Key Trends: Displays
1.3.2. Key Trends: Micro-displays
1.3.3. The uptake of micro-LED
1.3.4. Which properties matter for a display in a VR device?
1.3.5. Which properties matter for a display in an AR/MR device?
1.3.6. Historic Market Data: Displays
1.3.7. Displays in AR/MR and VR: Revenue Trends
1.3.8. Display Trends in AR/MR
1.3.9. Display Trends in VR
2. INTRODUCTION
2.1. Introduction: Virtual, Augmented and Mixed Reality
2.2. AR/VR/MR has advanced in the past decade
2.3. Terminology: Search trends
2.4. Glossary
2.5. Nomenclature: VR, AR, MR, XR
2.6. Applications in VR, AR & MR
2.7. AR/VR/MR and COVID
2.8. The Continued Uptake of Smart Devices
2.9. The Range of Headsets Available
2.10. How the human eye understands space
2.11. Field of view for different headsets
2.12. What optics and displays are used in XR devices?
2.13. How Lenses work
2.14. What needs to be overcome in ARVR
2.15. Vergence- Accommodation Issue
2.16. Optical Aberrations
2.17. The Screen Door Effect
3. OPTICS
3.1. Introduction
3.1.1. What are optics?
3.1.2. Optics Chapter Structure
3.1.3. Optics: Glossary
3.2. Optics in AR/MR: Common Optical Combiner Architectures
3.2.1. Summary of Optical Combiner Architectures
3.2.2. Birdbath Combiners
3.2.3. Bug-eye Combiners
3.2.4. Case Study: Meta 2
3.2.5. Off-Axis with multiple reflectors
3.2.6. Tilted plate combiner
3.2.7. Total Internal Reflection Prism Combiners
3.2.8. Case Study: Google Glass (2013)
3.2.9. Butterfly Waveguide Combiner
3.3. Optics in AR/MR: Waveguides
3.3.1. Common Waveguides
3.3.2. Common Waveguides - diagram of operation
3.4. Geometric Waveguides
3.4.1. Manufacturing Geometric Waveguides
3.4.2. Companies which make geometric waveguides
3.4.3. Lumus
3.4.4. Case Study: Lumus DK-50/DK-51/DK-52/ DK-vision
3.4.5. Kura
3.4.6. Kura Gallium Headset
3.4.7. SWOT - Geometric Waveguide
3.4.8. RADAR Chart - Geometric Waveguide
3.5. Diffractive Waveguides
3.5.1. Surface Relief Grating Waveguides
3.5.2. SRG Waveguide Example: Hololens
3.5.3. SRG Waveguide Example: Magic Leap
3.5.4. WaveOptics
3.5.5. Vuzix
3.5.6. Volumetric Holographic Grating Waveguides
3.5.7. ImagineOptix
3.5.8. Luminit
3.5.9. Holoptic
3.5.10. Zemax
3.5.11. Akonia
3.5.12. DigiLens
3.5.13. Manufacturing techniques for diffractive waveguides
3.5.14. SWOT - Diffractive Waveguide
3.5.15. RADAR chart - Diffractive Waveguide
3.5.16. Case Study: Sony SED-100A
3.5.17. Case Study: Hololens 2
3.6. What makes a successful waveguide?
3.6.1. Factors to consider
3.6.2. RADAR Chart: Waveguides
3.6.3. The future of waveguide technology
3.7. Optics in AR/MR: Alternative AR/MR Combiners
3.7.1. Alternative AR/MR combiners
3.7.2. Alternative AR combiners
3.7.3. Pin Mirror Optics
3.7.4. Laser Beam Scanning
3.7.5. Optics: Lenses in VR
3.8. Lenses in VR
3.8.1. Types of Fresnel Lens
3.8.2. Facebook patented Fresnel lens
3.8.3. Oculus' Half Dome 3
3.8.4. Users modifying headsets
3.9. Optical Coatings In AR and VR Devices
3.9.1. Optic Coatings in VR and AR
3.9.2. Anti-reflective Coatings
3.9.3. Beam-splitter Coatings
3.9.4. Metal Mirror Coatings
3.9.5. Companies: Optical Coatings
3.9.6. Denton Vacuum
3.9.7. AccuCoat inc
3.9.8. Optics Blazers
4. FORECASTS AND DISCUSSION: OPTICS
4.1. Comparison of Historic Optics Properties
4.1.1. Historic Trends: Optics in AR/MR
4.1.2. Historic Trends: Optics in VR
4.1.3. What matters when choosing optics?
4.2. Forecasts: Optics in AR/MR and VR
4.2.1. Forecasts for the VR Market
4.2.2. Forecasts for the AR/MR Market
4.2.3. Waveguides in AR/MR
4.2.4. AR/MR Optics: Revenue
4.2.5. AR/MR Optics: Volumes
4.2.6. VR Optics Forecasts
4.2.7. VR Optics: Revenue Forecasts
4.2.8. VR Optics: Volume Forecasts
5. DISPLAYS
5.1. Introduction
5.1.1. Micro-display technology comparison
5.1.2. Displays Discussed
5.1.3. Display Types in VR Products
5.1.4. Display Types in AR/MR Products
5.2. Display Deep Dive: LCD
5.2.1. Structural comparison between Microdisplays: LCD
5.2.2. Manufacturing Methods: LCD
5.2.3. Headset example - LCD
5.2.4. LCD Manufactures
5.3. Display Deep Dive: OLED
5.3.1. Structural comparison between Microdisplays: OLED
5.3.2. Structural comparison between Microdisplays: PMOLED and AMOLED
5.3.3. Manufacturing methods: OLED
5.3.4. Headset Example - OLED
5.3.5. Headset Example - AMOLED
5.3.6. OLED Manufactures
5.3.7. Raystar Optronics
5.3.8. KOPIN
5.4. Display Deep Dive: DLP
5.4.1. Structural Comparison: DLP
5.4.2. Headset Example - Texas Instruments
5.4.3. Manufactures of DLP micro-displays
5.5. Display Deep Dive: LCoS
5.5.1. Structural comparison between Microdisplays: LCoS
5.5.2. Manufacturing Methods: LCoS
5.5.3. Headset examples - LCoS
5.5.4. LCoS Manufactures
5.5.5. Syndiant
5.5.6. OmniVision
5.5.7. Meadowlark Optics Inc.
5.5.8. HOLOEYE Photonics
5.5.9. Himax Technologies Inc.
5.6. Display Deep Dive: OLED-on-Silicon
5.6.1. Structural comparison between Microdisplays: OLED-on-Silicon
5.6.2. Headset Example -OLED-on-Si
5.6.3. OLED-on-Silicon Manufacturers
5.6.4. MicroOLED
5.6.5. SONY
5.6.6. eMagin
5.6.7. Epson
5.7. Displays: Micro-LED
5.7.1. RADAR Chart: micro-LED display
5.7.2. Display types based on micro-LEDs
5.7.3. Structural Comparison: Micro-LED
5.7.4. Manufacturing Methods: Micro-LED
5.7.5. Positives and Negatives: micro-LED
5.7.6. SWOT analysis of micro-LED micro-displays
5.7.7. Micro-LED Manufacturers
5.8. Sharp
5.8.1. Sharp: introduction
5.8.2. Process flow of Silicon Display
5.8.3. Display driver
5.8.4. Monolithic micro-LED array
5.8.5. Full colour realization
5.8.6. Prototypes made by Sharp
5.9. Plessey
5.9.1. Plessey: GaN-on-Silicon
5.9.2. Plessey's display development roadmap
5.9.3. LED manufacturing
5.9.4. Pixel development
5.9.5. RGB GaN on silicon
5.9.6. Plessey's core development
5.9.7. Prototype
5.10. Lumiode
5.10.1. Lumiode: introduction
5.10.2. Lumiode approach, process details
5.10.3. Lumiode's micro-LED performance
5.10.4. Lumiode's device performance
5.11. Jade Bird Display
5.11.1. Jade Bird Display: introduction
5.11.2. Existing hybrid integration technology by flip chip technique
5.11.3. Device fabrication
5.11.4. Device structure and architecture
5.11.5. micro-LEDs for JBD's micro-displays
5.11.6. JBD's monochromatic AM micro-LED micro-displays
5.11.7. AM micro-LED with directional emission
5.11.8. Application: 3 colour LED projector
5.11.9. High PPI AM micro-LED micro-display
5.11.10. AM micro-LED chips
5.11.11. Prototype for AR/VR
5.12. Glō
5.12.1. Introduction of Glō
5.12.2. Glō's technology
5.12.3. Glō's prototypes
5.13. Displays: Overall Comparison
5.13.1. Introduction
5.13.2. Comparing Micro-displays
5.13.3. Deeper Dive: LCD
5.13.4. Deeper Dive: OLED
5.13.5. Deeper Dive: DLP
5.13.6. Deeper Dive: LCoS
5.13.7. Deeper Dive: OLED-on-Silicon
5.13.8. Deeper Dive: micro-LED
5.14. The Future: Focus Tunable Displays
5.14.1. Monovision vs. focus-tunable displays
5.14.2. Deep Optics: dynamically focus-tunable displays
5.14.3.

 

ページTOPに戻る


 

Summary

このレポートはAR/MR、VRデバイスにおけるオプティクスとディスプレイ技術を調査しています。
 
主な掲載内容 ※目次より抜粋
  • エグゼクティブサマリ
  • イントロダクション
  • オプティクス
  • 予測とディスカッション:オプティクス
  • ディスプレイ
  • 予測とディスカッション:ディスプレイ
  • 企業プロフィール
 
Report Details
 
This report discusses the markets of the optics and displays technologies within AR/MR and VR devices. The basic definitions of VR, AR and MR are as follows:
  • Virtual reality (VR). This replaces reality with a completely new 3D digital environment.
  • Augmented reality (AR). This overlays digital content on top of the real world.
  • Mixed reality (MR): adds superimposed digital content that superficially interacts with the environment in real-time.
 
Optics
Why do optics matter? Optics influence the immersiveness of an AR/MR or a VR experience. If a user has effects such as God Rays, Rainbow effects, or headaches due to the vergence-accommodation issue, this can contribute to a negative experience. In the future, these problems will be overcome, and improvements and changes to the optical market in both AR/MR and VR devices are an important contributor these trends.
 
Within optics in AR/MR, this report discusses the different types of waveguides, such as diffractive and geometric waveguides in AR/MR devices. The report discusses the benefits and drawbacks of different optical methods and set-ups, with case studies from a number of the major players in these markets. Within VR devices, the main optics discussed are Fresnel lenses. These lenses magnify the display for the user to see, and have a big impact on the experience a user has when using a spatial reality device.
 
Displays
Another important aspect of an AR, MR or VR device is the display which is used to project the image. Typically, different micro-displays have been used for different spatial reality devices. For example, VR devices have historically used OLED or LCD micro-displays, used in the smartphone industry for many years, and they are a mature, high yield manufacturing choice for VR devices. However, in AR/MR devices, LCoS displays are the most common, because they provide a high brightness and good resolution quality for input to the optical waveguide. This report covers the 6 most important types of micro-display within spatial reality devices: LCD, OLED, DLP, LCoS, OLED-on-Si and mLED. Comparisons are made between the benefits and drawbacks for each display type, with forecasts for each within AR, MR, and VR devices.
 
 
Market Analysis
This report covers the forecasts for both the optical and display markets in AR/MR and VR markets. The current state of these markets is discussed and analysed with long range forecasts from 2020-2030 for revenue and volume by technology in:
  • AR/MR Optics
  • VR Optics
  • AR/MR micro-displays
  • VR micro-displays
 
Key Questions Answered in the Report
  • How has COVID impacted the AR/VR market?
  • What are the major drivers for optic choice in an AR/MR or VR device?
  • What are the major drivers for display choice in an AR/MR or VR device?
  • What the strengths and weaknesses of the six major micro-display types used in AR/MR and VR devices?
  • How will the micro-display choice change in the future?
  • How will the sales of optical devices and display devices evolve from 2020-2030?

 



ページTOPに戻る


Table of Contents

Table of Contents

1. EXECUTIVE SUMMARY
1.1.1. Executive Introduction
1.1.2. Nomenclature: VR, AR, MR, XR
1.1.3. Applications in VR, AR & MR
1.1.4. Forecasts for the VR Market
1.1.5. Forecasts for the AR/MR Market
1.1.6. AR/VR/MR and COVID
1.2. Executive Summary: Optics
1.2.1. Key Trends: Optics
1.2.2. Historic Trends: Optics in AR/MR
1.2.3. Historic Trends: Optics in VR
1.2.4. What matters when choosing optics?
1.2.5. AR/MR Optics Forecasts 2020-2030
1.2.6. VR Optics Forecasts 2020-2030
1.3. Executive Summary: Displays
1.3.1. Key Trends: Displays
1.3.2. Key Trends: Micro-displays
1.3.3. The uptake of micro-LED
1.3.4. Which properties matter for a display in a VR device?
1.3.5. Which properties matter for a display in an AR/MR device?
1.3.6. Historic Market Data: Displays
1.3.7. Displays in AR/MR and VR: Revenue Trends
1.3.8. Display Trends in AR/MR
1.3.9. Display Trends in VR
2. INTRODUCTION
2.1. Introduction: Virtual, Augmented and Mixed Reality
2.2. AR/VR/MR has advanced in the past decade
2.3. Terminology: Search trends
2.4. Glossary
2.5. Nomenclature: VR, AR, MR, XR
2.6. Applications in VR, AR & MR
2.7. AR/VR/MR and COVID
2.8. The Continued Uptake of Smart Devices
2.9. The Range of Headsets Available
2.10. How the human eye understands space
2.11. Field of view for different headsets
2.12. What optics and displays are used in XR devices?
2.13. How Lenses work
2.14. What needs to be overcome in ARVR
2.15. Vergence- Accommodation Issue
2.16. Optical Aberrations
2.17. The Screen Door Effect
3. OPTICS
3.1. Introduction
3.1.1. What are optics?
3.1.2. Optics Chapter Structure
3.1.3. Optics: Glossary
3.2. Optics in AR/MR: Common Optical Combiner Architectures
3.2.1. Summary of Optical Combiner Architectures
3.2.2. Birdbath Combiners
3.2.3. Bug-eye Combiners
3.2.4. Case Study: Meta 2
3.2.5. Off-Axis with multiple reflectors
3.2.6. Tilted plate combiner
3.2.7. Total Internal Reflection Prism Combiners
3.2.8. Case Study: Google Glass (2013)
3.2.9. Butterfly Waveguide Combiner
3.3. Optics in AR/MR: Waveguides
3.3.1. Common Waveguides
3.3.2. Common Waveguides - diagram of operation
3.4. Geometric Waveguides
3.4.1. Manufacturing Geometric Waveguides
3.4.2. Companies which make geometric waveguides
3.4.3. Lumus
3.4.4. Case Study: Lumus DK-50/DK-51/DK-52/ DK-vision
3.4.5. Kura
3.4.6. Kura Gallium Headset
3.4.7. SWOT - Geometric Waveguide
3.4.8. RADAR Chart - Geometric Waveguide
3.5. Diffractive Waveguides
3.5.1. Surface Relief Grating Waveguides
3.5.2. SRG Waveguide Example: Hololens
3.5.3. SRG Waveguide Example: Magic Leap
3.5.4. WaveOptics
3.5.5. Vuzix
3.5.6. Volumetric Holographic Grating Waveguides
3.5.7. ImagineOptix
3.5.8. Luminit
3.5.9. Holoptic
3.5.10. Zemax
3.5.11. Akonia
3.5.12. DigiLens
3.5.13. Manufacturing techniques for diffractive waveguides
3.5.14. SWOT - Diffractive Waveguide
3.5.15. RADAR chart - Diffractive Waveguide
3.5.16. Case Study: Sony SED-100A
3.5.17. Case Study: Hololens 2
3.6. What makes a successful waveguide?
3.6.1. Factors to consider
3.6.2. RADAR Chart: Waveguides
3.6.3. The future of waveguide technology
3.7. Optics in AR/MR: Alternative AR/MR Combiners
3.7.1. Alternative AR/MR combiners
3.7.2. Alternative AR combiners
3.7.3. Pin Mirror Optics
3.7.4. Laser Beam Scanning
3.7.5. Optics: Lenses in VR
3.8. Lenses in VR
3.8.1. Types of Fresnel Lens
3.8.2. Facebook patented Fresnel lens
3.8.3. Oculus' Half Dome 3
3.8.4. Users modifying headsets
3.9. Optical Coatings In AR and VR Devices
3.9.1. Optic Coatings in VR and AR
3.9.2. Anti-reflective Coatings
3.9.3. Beam-splitter Coatings
3.9.4. Metal Mirror Coatings
3.9.5. Companies: Optical Coatings
3.9.6. Denton Vacuum
3.9.7. AccuCoat inc
3.9.8. Optics Blazers
4. FORECASTS AND DISCUSSION: OPTICS
4.1. Comparison of Historic Optics Properties
4.1.1. Historic Trends: Optics in AR/MR
4.1.2. Historic Trends: Optics in VR
4.1.3. What matters when choosing optics?
4.2. Forecasts: Optics in AR/MR and VR
4.2.1. Forecasts for the VR Market
4.2.2. Forecasts for the AR/MR Market
4.2.3. Waveguides in AR/MR
4.2.4. AR/MR Optics: Revenue
4.2.5. AR/MR Optics: Volumes
4.2.6. VR Optics Forecasts
4.2.7. VR Optics: Revenue Forecasts
4.2.8. VR Optics: Volume Forecasts
5. DISPLAYS
5.1. Introduction
5.1.1. Micro-display technology comparison
5.1.2. Displays Discussed
5.1.3. Display Types in VR Products
5.1.4. Display Types in AR/MR Products
5.2. Display Deep Dive: LCD
5.2.1. Structural comparison between Microdisplays: LCD
5.2.2. Manufacturing Methods: LCD
5.2.3. Headset example - LCD
5.2.4. LCD Manufactures
5.3. Display Deep Dive: OLED
5.3.1. Structural comparison between Microdisplays: OLED
5.3.2. Structural comparison between Microdisplays: PMOLED and AMOLED
5.3.3. Manufacturing methods: OLED
5.3.4. Headset Example - OLED
5.3.5. Headset Example - AMOLED
5.3.6. OLED Manufactures
5.3.7. Raystar Optronics
5.3.8. KOPIN
5.4. Display Deep Dive: DLP
5.4.1. Structural Comparison: DLP
5.4.2. Headset Example - Texas Instruments
5.4.3. Manufactures of DLP micro-displays
5.5. Display Deep Dive: LCoS
5.5.1. Structural comparison between Microdisplays: LCoS
5.5.2. Manufacturing Methods: LCoS
5.5.3. Headset examples - LCoS
5.5.4. LCoS Manufactures
5.5.5. Syndiant
5.5.6. OmniVision
5.5.7. Meadowlark Optics Inc.
5.5.8. HOLOEYE Photonics
5.5.9. Himax Technologies Inc.
5.6. Display Deep Dive: OLED-on-Silicon
5.6.1. Structural comparison between Microdisplays: OLED-on-Silicon
5.6.2. Headset Example -OLED-on-Si
5.6.3. OLED-on-Silicon Manufacturers
5.6.4. MicroOLED
5.6.5. SONY
5.6.6. eMagin
5.6.7. Epson
5.7. Displays: Micro-LED
5.7.1. RADAR Chart: micro-LED display
5.7.2. Display types based on micro-LEDs
5.7.3. Structural Comparison: Micro-LED
5.7.4. Manufacturing Methods: Micro-LED
5.7.5. Positives and Negatives: micro-LED
5.7.6. SWOT analysis of micro-LED micro-displays
5.7.7. Micro-LED Manufacturers
5.8. Sharp
5.8.1. Sharp: introduction
5.8.2. Process flow of Silicon Display
5.8.3. Display driver
5.8.4. Monolithic micro-LED array
5.8.5. Full colour realization
5.8.6. Prototypes made by Sharp
5.9. Plessey
5.9.1. Plessey: GaN-on-Silicon
5.9.2. Plessey's display development roadmap
5.9.3. LED manufacturing
5.9.4. Pixel development
5.9.5. RGB GaN on silicon
5.9.6. Plessey's core development
5.9.7. Prototype
5.10. Lumiode
5.10.1. Lumiode: introduction
5.10.2. Lumiode approach, process details
5.10.3. Lumiode's micro-LED performance
5.10.4. Lumiode's device performance
5.11. Jade Bird Display
5.11.1. Jade Bird Display: introduction
5.11.2. Existing hybrid integration technology by flip chip technique
5.11.3. Device fabrication
5.11.4. Device structure and architecture
5.11.5. micro-LEDs for JBD's micro-displays
5.11.6. JBD's monochromatic AM micro-LED micro-displays
5.11.7. AM micro-LED with directional emission
5.11.8. Application: 3 colour LED projector
5.11.9. High PPI AM micro-LED micro-display
5.11.10. AM micro-LED chips
5.11.11. Prototype for AR/VR
5.12. Glō
5.12.1. Introduction of Glō
5.12.2. Glō's technology
5.12.3. Glō's prototypes
5.13. Displays: Overall Comparison
5.13.1. Introduction
5.13.2. Comparing Micro-displays
5.13.3. Deeper Dive: LCD
5.13.4. Deeper Dive: OLED
5.13.5. Deeper Dive: DLP
5.13.6. Deeper Dive: LCoS
5.13.7. Deeper Dive: OLED-on-Silicon
5.13.8. Deeper Dive: micro-LED
5.14. The Future: Focus Tunable Displays
5.14.1. Monovision vs. focus-tunable displays
5.14.2. Deep Optics: dynamically focus-tunable displays
5.14.3.

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD(ディスプレイ)の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/07/04 10:27

162.47 円

175.74 円

209.86 円

ページTOPに戻る