世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Thermal Management for Advanced Driver-Assistance Systems (ADAS) 2023-2033


先進運転支援システム(ADAS)向けサーマルマネジメント 2023-2033年

この調査レポートでは、ADASにおける熱材料の市場分析として、トレンド、プレイヤー、きめ細かな市場予測について詳細に調査・分析しています。   主な掲載内容(目次より抜粋) ... もっと見る

 

 

出版社 出版年月 価格 ページ数 言語
IDTechEx
アイディーテックエックス
2022年6月21日 お問い合わせください
ライセンス・価格情報
注文方法はこちら
244 英語

※価格はデータリソースまでお問い合わせください。


 

Summary

この調査レポートでは、ADASにおける熱材料の市場分析として、トレンド、プレイヤー、きめ細かな市場予測について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 熱電冷却
  • エミとサーマル材料
  • レーダーレドーム、エンクロージャ材料
  • サーマルインターフェイス材料
  • ADAS用ダイアタッチ
  • 業績予想の概要
 
Report Summary
The automotive market is rapidly adopting autonomous features to aid in safety and driving convenience. This requires a suite of sensors (cameras, radars, and LiDARs) and computing platforms. These components are evolving and present thermal management challenges, leading to opportunities for thermal interface materials, die attach, radar radome materials, and electromagnetic interference (EMI) shielding. This report provides a market analysis for thermal materials in ADAS with trends, players, and granular market forecasts.
 
The automotive market is trending towards greater levels of autonomy, with advanced driver-assistance systems (ADAS) becoming increasingly adopted to improve the safety of drivers and pedestrians or even just to make driving a more convenient experience. ADAS encompasses a huge variety of functions from automatic emergency braking all the way to fully autonomous driving. Something that all ADAS features have in common is the need for high quality sensors and the associated processing of their data. The quantity of sensors per vehicle also increases rapidly with greater levels of autonomy. These sensors and their evolution provide new markets for thermal management materials within the automotive industry.
 
IDTechEx's report 'Thermal Management for ADAS 2023-2033' builds on IDTechEx's thermal management portfolio to cover the adoption of autonomy and ADAS features, the trends in ADAS sensors and their thermal management, thermal interface materials, die attach materials, and radar radome materials with an analysis of the requirements, players, and market forecasts for the next ten years.
 
The adoption of ADAS features requires a sensor suite, each of which has its own thermal material opportunities. Source: Thermal Management for ADAS.
 
What's changing with ADAS components?
Cameras and radars are already ubiquitous in vehicles, but greater levels of autonomy will require larger sensor suites with greater capabilities in each sensor. IDTechEx is predicting that there will be more than a sixfold increase in the yearly demand for automotive sensors, including cameras, radars, and LiDARs, by 2033. A key factor is integration; to fit more sensors to vehicles in an aesthetically pleasing fashion, the units will require smaller form factors, leading to densification of components and hence thermal management challenges. This is especially true for LiDAR where many autonomous vehicle testbeds use LiDAR systems mounted on top of or separate to the vehicle body, which is not viable for a production passenger vehicle.
 
ADAS sensors are also often used in non-ideal environments for electronics. In addition to the obvious vibration and shock requirements, sensors may be mounted in locations near a combustion engine where heat can build up. For many sensor locations, active cooling will not be viable and in hot climates the temperatures of sensors could increase significantly whilst the vehicle is stationary.
 
Another factor to consider is data processing. More sensors and sensors with greater fidelity will generate more data that needs processing by the vehicle. Some parts of this will be done within the sensor units themselves, but a central computer or electronic control unit (ECU) will be required to communicate this information to the relevant vehicle controls. The greater data requirements lead to using more power dense integrated circuits (ICs) and hence a greater thermal management requirement. We have already seen this with Tesla's adoption of a liquid cooling circuit for their computer, highlighting the heat generated.
 
What are the material trends?
Like any modern electronics component, ADAS sensors and computers require thermal interface materials (TIMs) to help spread heat from the heat-generating element to a heat sink or unit enclosure. Cameras, radars, LiDARs, and ECUs all have their own TIM requirements and as their designs evolve, so too do their TIM needs. Whilst the average ECU now may use a fairly typical TIM with 3-4 W/m·K thermal conductivity, the increased processing power required for autonomous functions could see this rise significantly.
 
Many of the sensors spread throughout the vehicle will be relatively small and low power, hence not necessarily needing a high performance TIM. However, the rapidly growing market for ADAS features means that the volume demands for TIMs will increase significantly. IDTechEx is forecasting an increase in TIM demand of three times in just the next five years for ADAS sensors. The report details the current and future requirements for TIMs within ADAS sensors and computers in terms of thermal conductivity and other crucial properties.
 
Another material that is often important when considering thermal reliability is die attach. In electronic packages, the die attach is often the failure point under thermal cycling. Automotive camera image sensors and radar transceiver ICs are typically low power and hence do not require a great deal of emphasis on the die attach, but will still require reliable materials and the rapidly growing market will create new demand for them. LiDAR tends to be higher power and the laser drivers may have to consider this option more carefully. This is especially true given how ubiquitous GaN FETs are in LiDAR and their potential for high power densities. The 'Thermal Management for ADAS 2023-2033' report discusses the die attach requirements for automotive cameras, radars, and LiDARs with a ten-year market forecast in area and tonnage.
 
Overview
The rapid adoption of ADAS features and autonomy in the automotive market presents great opportunities for thermal management material suppliers with sensor design evolving and a growing market for ADAS components. IDTechEx's report 'Thermal Management for ADAS 2023-2033' uses both primary and secondary research to cover these trends for ADAS sensor and computer evolution with a focus on thermal interface materials and die attach, as well as additional chapters on combined EMI and thermal materials and radar radome materials. Company profiles/interviews are also included along with ten-year market forecasts in terms of material area, tonnage, and market value.



ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Locations for Thermal Management Materials
1.2. The Automation Levels in Detail
1.3. Sensors and Their Purpose
1.4. Car Sales Forecast by SAE Level 2015-2033
1.5. Sensor Unit Sales Forecast 2020-2033
1.6. Thermal Interface Materials for ADAS
1.7. Thermal Interface Materials for ADAS Cameras
1.8. Thermal Interface Materials for ADAS Radars
1.9. Thermal Interface Materials for ADAS LiDAR
1.10. Thermal Interface Materials in the ECU
1.11. Liquid-Cooled ECUs Forecast 2019-2033
1.12. ADAS Chip Power Progression
1.13. Summary of Performance for TIM Players
1.14. TIM Requirements for ADAS Components
1.15. TIM Properties by Application
1.16. TIM Requirements for ADAS Components
1.17. TIM Forecast for ADAS (Area) 2020-2033
1.18. TIM Forecast for ADAS (Tonnes) 2020-2033
1.19. TIM Forecast for ADAS ($ Millions) 2020-2033
1.20. EMI is More Challenging at Higher Frequencies
1.21. Multifunctional TIMs as a Solution
1.22. Importance of the Radome
1.23. Radome Materials Forecast (Area) 2015-2033
1.24. How Important is Die Attach for ADAS Sensors?
1.25. Summary of Die Attach for ADAS Sensors
1.26. Die Attach Forecast for Key Components Within ADAS Sensors (Area) 2020-2033
1.27. Die Attach Forecast for Key Components Within ADAS Sensors (Tonnes) 2020-2033
1.28. Company Profiles
2. INTRODUCTION
2.1.1. The Automation Levels in Detail
2.1.2. Functions of Autonomous Driving at Different Levels
2.1.3. The Components of Autonomy
2.1.4. Typical Sensor Suite for Autonomous Cars
2.1.5. The Sensor Trifactor
2.1.6. Sensors and Their Purpose
2.1.7. Autonomy is Changing the Automotive Supply Chain
2.1.8. Car Sales Forecast by SAE Level 2015-2033
2.1.9. Sensor Suite Metadata
2.1.10. MaaS Sensor Analysis
2.1.11. MaaS Sensor Suite Analysis
2.1.12. Sensor Unit Sales Forecast 2020-2033
2.1.13. Autonomous Vehicle Markets
2.2. Thermal Management in ADAS Sensors
2.2.1. Locations for Thermal Management Materials
2.2.2. What are the Challenges?
2.3. Cameras
2.3.1. RGB/Visible Light Camera SWOT
2.3.2. CMOS Image Sensors vs CCD Cameras
2.3.3. Segmenting the Electromagnetic Spectrum
2.3.4. IR Cameras SWOT
2.3.5. Camera Anatomy
2.3.6. Camera Board Temperature Sensors
2.4. Radar
2.4.1. Radar SWOT
2.4.2. Radar — Radio Detection And Ranging
2.4.3. Front Radar Applications
2.4.4. Side Radars
2.4.5. Radar Anatomy
2.4.6. Radar Key Components
2.4.7. Primary Radar Components — The Antenna
2.4.8. Primary Radar Components — The RF Transceiver
2.4.9. Primary Radar Components — MCU
2.4.10. Board Trends
2.4.11. Radars are Getting Smaller
2.4.12. LANXESS Concept Radar
2.4.13. Automotive Radar Markets
2.5. LiDAR
2.5.1. Automotive LiDAR: SWOT Analysis
2.5.2. Automotive LiDAR: Operating Process and Requirements
2.5.3. Temperature and LiDAR
2.5.4. LiDAR Thermal Considerations
2.5.5. Thermal for LiDAR
2.5.6. Thermal Design for LiDAR Units
2.5.7. GaN in Automotive LiDAR
2.5.8. EPC — GaN in Automotive LiDAR
2.5.9. Laser Components — GaN in Automotive LiDAR
2.5.10. SABIC — LiDAR Materials
2.5.11. LiDAR Markets
2.6. ECUs/Computers
2.6.1. Computers and ECUs in ADAS
2.6.2. Thermal Management Integration Concepts in ECUs
2.6.3. Lack of TIMs in Previous ECU Designs
2.6.4. Audi zFAS Computer
2.6.5. Tesla's Computer Generations
2.6.6. Tesla's Liquid-Cooled MCU/ECU
2.6.7. Liquid-Cooled ECUs Forecast 2019-2033
3. THERMOELECTRIC COOLING
3.1. Thermoelectric Cooling
3.2. Laird Thermoelectric Coolers
3.3. Phononic Thermoelectric Coolers
3.4. Ferrotec Thermoelectric Coolers
4. EMI AND THERMAL MATERIALS
4.1. EMI is More Challenging at Higher Frequencies
4.2. Antenna De-sense
4.3. Heatsink Assembly for EMI
4.4. Multifunctional TIMs as a Solution
4.5. EMI Gaskets
4.6. Henkel — TIM and EMI
4.7. Kitagawa — TIM and EMI
4.8. Laird — TIM and EMI
4.9. Parker — Form-in-place EMI Gasket
4.10. Schlegel — TIM and EMI
4.11. Current State and Future Developments
5. RADAR RADOME AND ENCLOSURE MATERIALS
5.1. Importance of the Radome
5.2. Thermal and Dielectric Considerations
5.3. Ideal Radome Properties
5.4. Polymer Housing Materials
5.5. Avient — Polymer Enclosure Materials
5.6. DuPont — PBT Radome and Housing Materials
5.7. DSM — PPS Radar Materials
 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(ADAS)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/18 10:26

155.35 円

164.28 円

199.02 円

ページTOPに戻る