導電性接着剤 2022-2032年:技術、市場、予測Electrically Conductive Adhesives 2022-2032: Technologies, Markets, and Forecasts この調査レポートには、世界の導電性接着剤市場に注目し、等方性導電性接着剤(ICA)、異方性導電性ペースト(ACP)および異方性導電性フィルム(ACF)を含む導電性接着剤(ECA)を詳細に調査・分析してい... もっと見る
※価格はデータリソースまでお問い合わせください。
サマリー
この調査レポートには、世界の導電性接着剤市場に注目し、等方性導電性接着剤(ICA)、異方性導電性ペースト(ACP)および異方性導電性フィルム(ACF)を含む導電性接着剤(ECA)を詳細に調査・分析しています。
主な掲載内容(目次より抜粋)
Report Details
Electrically conductive adhesives (ECAs) are set to become a key conductive joining technology across a range of emerging industries. They may be used to connect components and circuitry across a wide range of uses, giving joins which are mechanically strong and electrically conductive. Due to the restricted use of lead-based solders, new alternatives are needed to fill the gap in the market, and IDTechEx believes electrically conductive adhesives are one of the most promising options.
Additionally, ECAs provide other benefits, such as fine pitch capacity, required for miniaturisation of electronics, and low temperature joining. Although they do have drawbacks, these benefits make ECAs well positioned to become the dominant joining technology in several emerging applications such as flexible, printable, and in-mold electronics.
Key questions answered in this report:
"Electrically Conductive Adhesives (ECAs) 2022-2032" contains key insights and commercial outlooks for ECAs, built upon primary interviews and product analysis. This comprehensive evaluation of the global ECA industry analyses the commercial and technological factors that are set to shape the emerging industry. The report considers both isotropically conductive adhesives (ICAs) and anisotropically conductive adhesives (ACAs), analysing them from both a technical and commercial point of view. Film based adhesives, in particularly anisotropically conductive films (ACFs), are also discussed.
The report analyses both current and emerging applications of ECAs, considering the key drivers and requirements for these areas, including automotive electronics, consumer electronics, display applications, printed electronics, and RFID applications.10-year market forecasts are given for each application area, broken down both by application, and by the type of adhesives used. Key players are evaluated, including Henkel, Panacol, Dexerials, Showa Denko Materials, and others.
Electrically Conductive Adhesives (ECAs): Technology Considerations
Electrically conductive adhesives are made of two components: the conductive filler, and the structural resin. The filler creates the conductive link across a join. Fillers are typically metal based, with the most common metal being silver. The resin provides mechanical strength to the adhesives and holds the filler particles in place. Resins are generally polymer based, with epoxy being the most common option. In this report, IDTechEx discusses established and emerging fillers and resins, analysing commercially available adhesives, and providing a detailed breakdown of commercially available ECAs. The exact properties desired from both the filler and the resin are also discussed, and different materials are evaluated for suitability.
The current state of the ECA industry technology and areas of innovation are also considered. Several novel ECA products are investigated, and areas of R&D pursued by market leading suppliers are highlighted.
Technology readiness levels for different component attachment materials and several innovations in Electrically Conductive Adhesives (ECAs)
Key benefits of Electrically Conductive Adhesives (ECAs)
Some key benefits of using an ECA are the fine pitch capacity, the low processing temperature, and the high flexibilities which can be achieved. These benefits make ECAs well suited to making smaller electronics and allow for use on a wider variety of substrates than alternative technologies, such as lead-free solders and silver sintering. Driven by these benefits, IDTechEx forecasts that the market for ECAs is growing, with ECAs set to replace outdated and poor performing competitors across a range of applications, including displays, consumer electronics and wearable technology.
ECAs are not a perfect technology, however. Drawbacks include high costs compared with other joining technologies, primarily due to high materials and processing costs, as well as a lack of self-alignment for components. This can make them unsuitable for certain applications, such as cost-sensitive applications where fine pitch is not required, or applications where ease of repair is desirable, such as hobbyist use. It is likely that no single conductive joining technology will win out in future, although IDTechEx believes that ECAs will become increasingly important over the next decade.
Electrically Conductive Adhesives (ECAs): Markets and Applications
ECAs are used across a range of established and emerging applications. Markets for established applications are more likely to grow at a steady rate, whereas emerging technologies that currently represent a comparatively small market may have the potential for much more rapid growth.
Current and future applications and markets considered in this report include:
With 10-year market forecasts, key specifications, and SWOT analyses, provided for each application.
Electrically Conductive Adhesives (ECAs) are used across a range of applications at different stages of development. They are already established in applications such as display attachment, and are forecast to become increasingly dominant in In-mold electronics.
目次
|