世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

抗菌技術市場 2021-2031年


Antimicrobial Technology Market 2021-2031

このレポートでは、主要な抗菌技術について深く掘り下げています。各抗菌技術の作用メカニズムを説明し、抗菌技術の商品化を行っている各企業の有効性の主張を比較しています。   主な掲載... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2021年2月4日 US$6,500
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報・注文方法はこちら
208 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。

日本語のページは自動翻訳を利用し作成しています。


 

サマリー

このレポートでは、主要な抗菌技術について深く掘り下げています。各抗菌技術の作用メカニズムを説明し、抗菌技術の商品化を行っている各企業の有効性の主張を比較しています。
 
主な掲載内容(目次より抜粋)
  1. 全体概要および結論
  2. はじめに
  3. 材料・技術
  4. アプリケーション
  5. 規則
Report Details
The COVID-19 pandemic has been one of the world's worst public health emergencies in living memory and has affected all aspects of life around the world. The pandemic has also propelled awareness of antimicrobial technology and antimicrobial products to new heights. Players in the antimicrobial technology market are developing antimicrobial additives and antimicrobial coatings to meet unprecedented demand for new antimicrobial products, with industry players seeing double-, triple-, or even quadruple-digit growth.
 
What are antimicrobial technologies?
Antimicrobial technologies, as covered in this IDTechEx report, refers to antimicrobial additives and antimicrobial coatings that decrease or even eliminate the activity of microorganisms, including bacteria, virus, and fungi. While regular cleaning can remove and kill the microorganisms present on a surface, antimicrobial technologies offer continuous protection between cleans.
 
But even before the COVID-19 pandemic, antimicrobial technologies have been saving lives and money across a broad number of sectors. A key driver for the use of antimicrobial technologies is their ability to address hospital-acquired infections (or healthcare-associated infections). When used in healthcare facilities such as hospitals, antimicrobial technologies have been demonstrated to significantly decrease the rates of infection. By doing so, thousands if not tens of thousands of deaths can be prevented, and billions of dollars can be saved.
 
There are many opportunities beyond the healthcare sector, including food, agriculture, aquaculture, construction (including HVAC systems), and public settings. The use of antimicrobial paints, antimicrobial coatings and antimicrobial additives in the built environment can not only extend the lifetime of the protected product, but also indirectly improve human health through addressing indoor air quality. Antimicrobial textiles can provide anti-odour effect to clothing, curtains, carpets, and soft furnishings. With the world moving against the prophylactic use of antibiotics in agriculture, antimicrobial companies are beginning to fill in the gap. And now, the COVID-19 pandemic has shed light on the importance of cleaning high-touch surfaces in public settings, and the role of antimicrobial technologies in providing safe environments for people in a post-pandemic world.
 
 
 
 
What is in this report?
This report takes a deep dive into key antimicrobial technologies. The mechanism of action of each antimicrobial technology is explained and a comparison of efficacy claims from companies commercializing antimicrobial technologies is provided. Profiles of both major and emerging players, including primary interviews, are included in the report.
 
The key antimicrobial technologies covered in the report are:
  • Silver, including silver chloride, silver zeolite, silver nanoparticles
  • Copper, including copper oxide and copper nanoparticles
  • Zinc, including zinc oxide and zinc pyrithione
  • Silane quaternary ammonium compounds
  • Titanium dioxide
 
The report also highlights a further 10 antimicrobial technologies either commercialized or in development, including new materials, innovative methods to stabilize and localize traditional disinfectants, biomimetic technologies such as surface patterning techniques, and antimicrobials derived from nature, such as enzymes, peptides, and dyes.
 
IDTechEx have identified over 100 companies that are actively developing antimicrobial technologies and products, including over 60 companies focused entirely in this area. Discussion on market sizing, market outlook, market forecast, and the effect of the COVID-19 pandemic are also included in the report.
 
Why is this important?
The information provided in this report will be helpful to those seeking to follow this rising antimicrobial trend by clarifying considerations in developing antimicrobial technology. While technologies may appear similar at first glance, the pandemic is driving a rise in companies looking to make quick wins by operating in grey areas. With public awareness at an all-time high, now is the time to develop environmentally responsible, sustainable, effective, and future-proof antimicrobial products. Antimicrobial technologies have significant potential beyond exiting the COVID-19 pandemic safely, but can also bring about worse problems when used incorrectly.


ページTOPに戻る


目次

1. EXECUTIVE SUMMARY& CONCLUSIONS
1.1. Antimicrobial Technology Market: Scope of the Report
1.2. Microorganisms are Everywhere
1.3. Key Driver: COVID-19
1.4. Key Driver: Hospital Acquired Infections
1.5. Key Driver: Antimicrobial Resistance
1.6. Antimicrobial Technology Market: Players
1.7. Antimicrobial Technology Players: By Technology
1.8. Summary of Key Antimicrobial Technologies
1.9. Environmental Considerations of Antimicrobial Technologies
1.10. Antimicrobial Technology and Antibiotic Resistance
1.11. Technology Conclusions and Outlook
1.12. Antimicrobial Technology Players: By Size and Year Founded
1.13. Key Applications of Antimicrobial Technologies
1.14. Antimicrobial Technology Market
1.15. Antimicrobial Technology Market: Effect of COVID-19
1.16. Antimicrobial Technology Market Size in 2020
1.17. Antimicrobial Technology Market Outlook
1.18. Antimicrobial Technology Market Forecast 2021-2031
2. INTRODUCTION
2.1. Scope of the Report
2.2. Microorganisms are Everywhere
2.3. Bacteria
2.4. Bacteria: Biology
2.5. Bacteria: Biofilm
2.6. Mold and Mildew
2.7. Virus
2.8. Key Driver: COVID-19
2.9. Key Driver: Hospital Acquired Infections
2.10. Key Driver: Antimicrobial Resistance
2.11. Ideal Antimicrobial Technology
3. MATERIALS AND TECHNOLOGIES
3.1.1. Techniques to Control Microorganisms
3.1.2. Mechanisms of Action
3.1.3. Substrates
3.1.4. Metals
3.2. Silver
3.2.1. Silver: Mechanism of Action
3.2.2. Silver: Efficacy
3.2.3. Silver: Effect of Moisture
3.2.4. Silver: Environmental Concerns
3.2.5. Silver: Potential for Resistance
3.2.6. Silver: SWOT Analysis
3.2.7. Silver: Players
3.2.8. Addmaster: Biomaster
3.2.9. Applied Silver: SilvaClean
3.2.10. Applied Silver: SilvaClean
3.2.11. AST Products: RepelaCOAT
3.2.12. Covalon: CovaClear, CovaCoat, and more
3.2.13. DuPont: SILVADUR
3.2.14. HeiQ: HeiQ Pure, HeiQ Viroblock
3.2.15. Inhibit Coatings
3.2.16. Innovotech: InnovoSIL and Agress
3.2.17. Microban: SilverShield
3.2.18. Noble Biomaterials: Ionic+
3.2.19. PURE Bioscience: PURE Hard Surface
3.2.20. Sanitized
3.2.21. Sciessent: Agion
3.2.22. Sciessent: Agion for Medical
3.3. Copper
3.3.1. Copper: Mechanism of Action
3.3.2. Copper: Efficacy
3.3.3. Copper: Potential for Resistance
3.3.4. Copper: Comparison with Silver
3.3.5. Copper: SWOT Analysis
3.3.6. Copper: Players
3.3.7. Aereus Technologies: CuVerro Shield
3.3.8. CleanCU: K COPPER PLUS
3.3.9. Copptech
3.3.10. Cupron
3.3.11. Nanosafe Solutions: AqCure and NSafe+
3.3.12. Antimicrobial Copper
3.4. Zinc
3.4.1. Zinc: Mechanism of Action
3.4.2. Zinc: Efficacy
3.4.3. Zinc: Potential for Resistance
3.4.4. Zinc: SWOT Analysis
3.4.5. Zinc: Players
3.4.6. Ascend Performance Materials: Acteev Protect
3.4.7. Microban: ZPTech
3.4.8. Thomson Research Associates: Ultra-Fresh
3.4.9. Parx Materials
3.4.10. Sonovia
3.5. Silane Quaternary Ammonium Compounds (Silane Quat)
3.5.1. Silane Quat: Mechanism of Action
3.5.2. Silane Quat: Efficacy
3.5.3. Silane Quat: SWOT Analysis
3.5.4. Silane Quat: Players
3.5.5. Goldshield Technologies: GS5 and GS75
3.5.6. Microban: AEGIS MicrobeShield
3.6. Titanium Dioxide
3.6.1. Titanium Dioxide: Mechanism of Action
3.6.2. Titanium Dioxide: Efficacy
3.6.3. Titanium Dioxide: SWOT Analysis
3.6.4. Titanium Dioxide: Players
3.6.5. Kastus
3.7. Others
3.7.1. Other Antimicrobial Technologies
3.7.2. PolyDADMAC
3.7.3. Quick-Med Technologies: Nimbus
3.7.4. Polyhexamethylene biguanide (PHMB)
3.7.5. BioInteractions: AvertPlus
3.7.6. Calcium Hydroxide
3.7.7. Alistagen: Caliwel
3.7.8. Hydrogen Peroxide: Quick-Med Technologies
3.7.9. Photosensitizing Chemicals

 

ページTOPに戻る


 

Summary

このレポートでは、主要な抗菌技術について深く掘り下げています。各抗菌技術の作用メカニズムを説明し、抗菌技術の商品化を行っている各企業の有効性の主張を比較しています。
 
主な掲載内容(目次より抜粋)
  1. 全体概要および結論
  2. はじめに
  3. 材料・技術
  4. アプリケーション
  5. 規則
Report Details
The COVID-19 pandemic has been one of the world's worst public health emergencies in living memory and has affected all aspects of life around the world. The pandemic has also propelled awareness of antimicrobial technology and antimicrobial products to new heights. Players in the antimicrobial technology market are developing antimicrobial additives and antimicrobial coatings to meet unprecedented demand for new antimicrobial products, with industry players seeing double-, triple-, or even quadruple-digit growth.
 
What are antimicrobial technologies?
Antimicrobial technologies, as covered in this IDTechEx report, refers to antimicrobial additives and antimicrobial coatings that decrease or even eliminate the activity of microorganisms, including bacteria, virus, and fungi. While regular cleaning can remove and kill the microorganisms present on a surface, antimicrobial technologies offer continuous protection between cleans.
 
But even before the COVID-19 pandemic, antimicrobial technologies have been saving lives and money across a broad number of sectors. A key driver for the use of antimicrobial technologies is their ability to address hospital-acquired infections (or healthcare-associated infections). When used in healthcare facilities such as hospitals, antimicrobial technologies have been demonstrated to significantly decrease the rates of infection. By doing so, thousands if not tens of thousands of deaths can be prevented, and billions of dollars can be saved.
 
There are many opportunities beyond the healthcare sector, including food, agriculture, aquaculture, construction (including HVAC systems), and public settings. The use of antimicrobial paints, antimicrobial coatings and antimicrobial additives in the built environment can not only extend the lifetime of the protected product, but also indirectly improve human health through addressing indoor air quality. Antimicrobial textiles can provide anti-odour effect to clothing, curtains, carpets, and soft furnishings. With the world moving against the prophylactic use of antibiotics in agriculture, antimicrobial companies are beginning to fill in the gap. And now, the COVID-19 pandemic has shed light on the importance of cleaning high-touch surfaces in public settings, and the role of antimicrobial technologies in providing safe environments for people in a post-pandemic world.
 
 
 
 
What is in this report?
This report takes a deep dive into key antimicrobial technologies. The mechanism of action of each antimicrobial technology is explained and a comparison of efficacy claims from companies commercializing antimicrobial technologies is provided. Profiles of both major and emerging players, including primary interviews, are included in the report.
 
The key antimicrobial technologies covered in the report are:
  • Silver, including silver chloride, silver zeolite, silver nanoparticles
  • Copper, including copper oxide and copper nanoparticles
  • Zinc, including zinc oxide and zinc pyrithione
  • Silane quaternary ammonium compounds
  • Titanium dioxide
 
The report also highlights a further 10 antimicrobial technologies either commercialized or in development, including new materials, innovative methods to stabilize and localize traditional disinfectants, biomimetic technologies such as surface patterning techniques, and antimicrobials derived from nature, such as enzymes, peptides, and dyes.
 
IDTechEx have identified over 100 companies that are actively developing antimicrobial technologies and products, including over 60 companies focused entirely in this area. Discussion on market sizing, market outlook, market forecast, and the effect of the COVID-19 pandemic are also included in the report.
 
Why is this important?
The information provided in this report will be helpful to those seeking to follow this rising antimicrobial trend by clarifying considerations in developing antimicrobial technology. While technologies may appear similar at first glance, the pandemic is driving a rise in companies looking to make quick wins by operating in grey areas. With public awareness at an all-time high, now is the time to develop environmentally responsible, sustainable, effective, and future-proof antimicrobial products. Antimicrobial technologies have significant potential beyond exiting the COVID-19 pandemic safely, but can also bring about worse problems when used incorrectly.


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY& CONCLUSIONS
1.1. Antimicrobial Technology Market: Scope of the Report
1.2. Microorganisms are Everywhere
1.3. Key Driver: COVID-19
1.4. Key Driver: Hospital Acquired Infections
1.5. Key Driver: Antimicrobial Resistance
1.6. Antimicrobial Technology Market: Players
1.7. Antimicrobial Technology Players: By Technology
1.8. Summary of Key Antimicrobial Technologies
1.9. Environmental Considerations of Antimicrobial Technologies
1.10. Antimicrobial Technology and Antibiotic Resistance
1.11. Technology Conclusions and Outlook
1.12. Antimicrobial Technology Players: By Size and Year Founded
1.13. Key Applications of Antimicrobial Technologies
1.14. Antimicrobial Technology Market
1.15. Antimicrobial Technology Market: Effect of COVID-19
1.16. Antimicrobial Technology Market Size in 2020
1.17. Antimicrobial Technology Market Outlook
1.18. Antimicrobial Technology Market Forecast 2021-2031
2. INTRODUCTION
2.1. Scope of the Report
2.2. Microorganisms are Everywhere
2.3. Bacteria
2.4. Bacteria: Biology
2.5. Bacteria: Biofilm
2.6. Mold and Mildew
2.7. Virus
2.8. Key Driver: COVID-19
2.9. Key Driver: Hospital Acquired Infections
2.10. Key Driver: Antimicrobial Resistance
2.11. Ideal Antimicrobial Technology
3. MATERIALS AND TECHNOLOGIES
3.1.1. Techniques to Control Microorganisms
3.1.2. Mechanisms of Action
3.1.3. Substrates
3.1.4. Metals
3.2. Silver
3.2.1. Silver: Mechanism of Action
3.2.2. Silver: Efficacy
3.2.3. Silver: Effect of Moisture
3.2.4. Silver: Environmental Concerns
3.2.5. Silver: Potential for Resistance
3.2.6. Silver: SWOT Analysis
3.2.7. Silver: Players
3.2.8. Addmaster: Biomaster
3.2.9. Applied Silver: SilvaClean
3.2.10. Applied Silver: SilvaClean
3.2.11. AST Products: RepelaCOAT
3.2.12. Covalon: CovaClear, CovaCoat, and more
3.2.13. DuPont: SILVADUR
3.2.14. HeiQ: HeiQ Pure, HeiQ Viroblock
3.2.15. Inhibit Coatings
3.2.16. Innovotech: InnovoSIL and Agress
3.2.17. Microban: SilverShield
3.2.18. Noble Biomaterials: Ionic+
3.2.19. PURE Bioscience: PURE Hard Surface
3.2.20. Sanitized
3.2.21. Sciessent: Agion
3.2.22. Sciessent: Agion for Medical
3.3. Copper
3.3.1. Copper: Mechanism of Action
3.3.2. Copper: Efficacy
3.3.3. Copper: Potential for Resistance
3.3.4. Copper: Comparison with Silver
3.3.5. Copper: SWOT Analysis
3.3.6. Copper: Players
3.3.7. Aereus Technologies: CuVerro Shield
3.3.8. CleanCU: K COPPER PLUS
3.3.9. Copptech
3.3.10. Cupron
3.3.11. Nanosafe Solutions: AqCure and NSafe+
3.3.12. Antimicrobial Copper
3.4. Zinc
3.4.1. Zinc: Mechanism of Action
3.4.2. Zinc: Efficacy
3.4.3. Zinc: Potential for Resistance
3.4.4. Zinc: SWOT Analysis
3.4.5. Zinc: Players
3.4.6. Ascend Performance Materials: Acteev Protect
3.4.7. Microban: ZPTech
3.4.8. Thomson Research Associates: Ultra-Fresh
3.4.9. Parx Materials
3.4.10. Sonovia
3.5. Silane Quaternary Ammonium Compounds (Silane Quat)
3.5.1. Silane Quat: Mechanism of Action
3.5.2. Silane Quat: Efficacy
3.5.3. Silane Quat: SWOT Analysis
3.5.4. Silane Quat: Players
3.5.5. Goldshield Technologies: GS5 and GS75
3.5.6. Microban: AEGIS MicrobeShield
3.6. Titanium Dioxide
3.6.1. Titanium Dioxide: Mechanism of Action
3.6.2. Titanium Dioxide: Efficacy
3.6.3. Titanium Dioxide: SWOT Analysis
3.6.4. Titanium Dioxide: Players
3.6.5. Kastus
3.7. Others
3.7.1. Other Antimicrobial Technologies
3.7.2. PolyDADMAC
3.7.3. Quick-Med Technologies: Nimbus
3.7.4. Polyhexamethylene biguanide (PHMB)
3.7.5. BioInteractions: AvertPlus
3.7.6. Calcium Hydroxide
3.7.7. Alistagen: Caliwel
3.7.8. Hydrogen Peroxide: Quick-Med Technologies
3.7.9. Photosensitizing Chemicals

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(その他)の最新刊レポート

本レポートと同じKEY WORD(action)の最新刊レポート


よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/07/01 10:26

162.23 円

174.76 円

207.97 円

ページTOPに戻る