世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Fire Protection Materials for EV Batteries 2024-2034: Markets, Trends, and Forecasts


EVバッテリー用防火材料 2024-2034:市場、動向、予測

この調査レポートは、バッテリー設計のトレンド、安全規制、これらが防火材料にどのような影響を与えるかについて詳細に調査・分析しています。   主な掲載内容(目次より抜粋) ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2024年1月31日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
311 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。


 

Summary

この調査レポートは、バッテリー設計のトレンド、安全規制、これらが防火材料にどのような影響を与えるかについて詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • セルとパックの設計
  • 防火材料
  • 液浸冷却
  • バスバーとケーブル
 
Report Summary
Electric vehicle (EV) fire safety continues to be a critical topic. Data continues to support the fact that EVs are less likely to catch fire than internal combustion engine vehicles. However, as a new technology, EVs get more press, and besides, even a very low occurrence rate still poses significant risks to vehicle occupants and surroundings. Effective thermal management, quality control, and battery management systems minimize the risk of thermal runaway occurring, but fire protection materials are the primary method of either preventing the propagation of thermal runaway or delaying its progression long enough to meet regulations and provide safety for occupants.
 
IDTechEx's report on Fire Protection Materials for Electric Vehicle Batteries analyzes trends in battery design, safety regulations, and how these will impact fire protection materials. The report benchmarks materials directly and in application within EV battery packs. The materials covered include ceramic blankets/sheets (and other non-wovens), mica, aerogels, coatings (intumescent and other), encapsulants, encapsulating foams, compression pads, phase change materials, and several other materials. 10-year market forecasts are included by material and vehicle category.
 
Whilst automotive markets provide the largest battery demand, there are large opportunities for material suppliers in other vehicle segments such as buses, trucks, vans, 2-wheelers, 3-wheelers, and microcars. Some of these smaller vehicle sectors present an even greater risk to owners, as they are often charged or kept inside the home.
 
Variety in battery design and evolution
Various cell formats and battery structures are used in the EV market. In 2022, 55% of new electric cars sold used prismatic battery cells, with pouch cells accounting for 24% and the rest using cylindrical. Each of these cell formats has different needs in terms of inter-cell materials which has led to trends in fire protection material adoption. For example, cylindrical systems have largely used encapsulating foams, whereas prismatic systems typically use materials in sheet format such as mica.
 
Many manufacturers are also moving towards a cell-to-pack design where module housings (and a host of other materials) are removed, leading to improved energy density, but potentially more challenging thermal runaway propagation prevention. These design choices all greatly impact the choice and deployment of fire protection materials and hence are covered in IDTechEx's report to aid in determining material demands.
 
Many materials are applicable for fire protection in EV batteries. Source: IDTechEx - "Fire Protection Materials for EV Batteries 2024-2034: Markets, Trends, and Forecasts"
 
Ceramic blankets have been a common choice to provide protection above the cells and below the lid and to delay the propagation of fire outside the pack. Mica sheets are another popular choice with excellent dielectric performance at thin thicknesses between cells but are often used in thicker sheets above modules. Aerogels are continuing to see market progress with significant adoption in China, but also now globally with adoption from GM, Toyota, and Audi to name a few.
 
The use of encapsulating foams has also seen significant adoption for cylindrical cell battery packs with the likes of Tesla, to provide lightweight thermal insulation and structure. For pouch cells, compression pads are commonplace to accommodate cell swelling and several material suppliers are starting to combine this functionality with fire protection to provide a multifunctional solution.
 
There are many material options in addition to the ones discussed above, and polymer suppliers are making a big push to provide major components of the battery pack with fire-retardant polymers or even polymers with intumescent properties. These have the potential to be lighter, more customizable in geometry, and lower cost that metals and fire protection materials combined. However, there are still significant challenges here, such as integrating EMI shielding and providing the necessary crash performance.
 
Developments in safety regulations
Many will be aware that China was an early adopter of thermal runaway specific regulations, with, among other requirements, a need to prevent fire or smoke exiting the battery pack for 5 minutes after the event occurs.
 
The regulations in other regions are getting closer to being formalized with the UN ECE regulation continuing to be revised. Whilst the specific targets are still in flux, it is very likely that detection of thermal runaway will be required, followed by an "escape time" for vehicle occupants. The 5-minute escape time is unlikely to be sufficient for future regulations and more effective thermal runaway propagation measures will be necessary. Therefore OEMs have started to target longer escape times in order to pre-empt future regulations and improve overall safety.
 
IDTechEx's report discusses the regulations that are currently in place and those being discussed. These feed into IDTechEx's market forecasts showing a greater adoption of fire protection materials per vehicle. However, this must be paired with trends around battery development that can often reduce material use per vehicle. The variety of battery designs and material solutions presents a large opportunity across several markets and suppliers. IDTechEx predicts this market will grow at 16.3% CAGR from 2023 to 2034.
 
Key aspects of this report
Overview and evolution of:
  • Electric vehicle fires and thermal runaway
  • Electric vehicle recalls related to fires
  • Regulations in different global regions
 
Material analysis and trends including thermal conductivity, dielectric strength, density, and more for:
  • Ceramics (and other non-wovens)
  • Mica
  • Aerogels
  • Coatings (intumescent and other)
  • Encapsulants
  • Encapsulating foams
  • Compression pads (with fire protection properties)
  • Phase change materials
  • Polymers as fire protection materials
  • Other material categories
 
10 year market forecasts & analysis:
  • EV battery demand for cars, buses, trucks, vans, scooters, and motorcycles (GWh)
  • Cell-to-cell protection by material (kg)
  • Pack-level protection by material (kg)
  • Total fire protection by material (kg)
  • Total fire protection by material (US$)
  • Total fire protection by vehicle category (kg)
  • Total fire protection by vehicle category (US$)


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Thermal Runaway and Fires in EVs
1.2. Battery Fires and Related Recalls (automotive)
1.3. Automotive Fire Incidents: OEMs and Situations
1.4. EV Fires: When do They Happen?
1.5. Conclusions on Solid-state Battery Safety
1.6. Summary of Na-ion Safety
1.7. Regulations
1.8. Cell Format Market Share
1.9. Drivers and Challenges for Cell-to-pack
1.10. Thermal Runaway in Cell-to-pack
1.11. Fire Protection Materials: Main Categories
1.12. Material Comparison
1.13. Market Shares in 2023 and 2034
1.14. Density vs Thermal Conductivity - Thermally Insulating
1.15. Material Intensity (kg/kWh)
1.16. Pricing Comparison in a Cylindrical Cell Battery (inter-cell)
1.17. Pricing Comparison in a Pouch Cell Battery (inter-cell)
1.18. Pricing Comparison in a Prismatic Cell Battery (inter-cell)
1.19. Pricing Comparison in a Battery (pack-level)
1.20. Cell-level Fire Protection Materials Forecast (mass)
1.21. Pack-level Fire Protection Materials Forecast (mass)
1.22. Total Fire Protection Materials Forecast (mass)
1.23. Total Fire Protection Materials Forecast (value)
1.24. Total Fire Protection Materials by Vehicle (value)
2. INTRODUCTION
2.1. Overview
2.1.1. Thermal Runaway and Fires in EVs
2.2. Fires and Recalls in EVs
2.2.1. Battery Fires and Related Recalls (automotive)
2.2.2. GM's Bolt Recall
2.2.3. Hyundai Kona Recall
2.2.4. VW PHEV Recall
2.2.5. Ford Kuga PHEV Recall
2.2.6. Automotive Fire Incidents: OEMs and Situations
2.2.7. Electric Scooter Fires in India
2.2.8. Electric Bus Fires
2.2.9. EV Fires Compared to ICEs (1)
2.2.10. EV Fires Compared to ICEs (2)
2.2.11. Issues with EV and ICE Fire Comparisons
2.2.12. Severity of EV Fires
2.2.13. EV Fires: When do They Happen?
2.3. Causes and Stages of Thermal Runaway
2.3.1. Causes of Failure
2.3.2. The Nail Penetration test
2.3.3. Stages of Thermal Runaway (1)
2.3.4. Stages of Thermal Runaway (2)
2.3.5. LiB Cell Temperature and Likely Outcome
2.3.6. Cell Chemistry and Stability
2.3.7. Cell Chemistry Impact on Fire Protection
2.3.8. Cathode Market Share for Li-ion in EVs (2015-2034)
2.3.9. Thermal Runaway Propagation
2.3.10. The Impact of Solid-state Batteries
2.3.11. Are Solid-state Batteries Safer?
2.3.12. Conclusions on Solid-state Battery Safety
2.3.13. Na-ion Battery Safety
2.3.14. 0 V Capability of Na-ion Systems
2.3.15. Summary of Na-ion Safety
2.4. Regulations
2.4.1. Regulations
2.4.2. China
2.4.3. Europe
2.4.4. Europe (Revision 3, 2022)
2.4.5. US
2.4.6. UN-GTR20 Phase 2 Standard Act and Beyond
2.4.7. Regulation Landscape
2.4.8. India
2.4.9. What Does it all Mean for EV Battery Design?
3. CELL AND PACK DESIGN
3.1. Introduction
3.1.1. Cell Types
3.1.2. Which Cell Format to Choose?
3.1.3. Cell Format Market Share
3.1.4. Li-ion Batteries: from Cell to Pack
3.1.5. What's in a Battery Module? (pouch/prismatic)
3.1.6. What's in a Battery Module? (cylindrical)
3.1.7. What's in an EV Battery Pack?
3.2. Cell-to-Pack, Cell-to-Chassis, and Large Cell Formats
3.2.1. What is Cell-to-pack?
3.2.2. Drivers and Challenges for Cell-to-pack
3.2.3. What is Cell-to-chassis/body?
3.2.4. Gravimetric Energy Density and Cell-to-pack Ratio
3.2.5. Volumetric Energy Density and Cell-to-pack Ratio
3.2.6. Outlook for Cell-to-pack & Cell-to-body Designs
3.2.7. Thermal Runaway in Cell-to-pack
3.2.8. Material Intensity Changes in Cell-to-pack
4. FIRE PROTECTION MATERIALS
4.1. Introduction
4.1.1. What are Fire Protection Materials?
4.1.2. Thermally Conductive or Thermally Insulating?
4.1.3. Fire Protection Materials: Main Categories
4.1.4. Composition and Application of Each Material Category
4.1.5. Advantages and Disadvantages
4.1.6. Market Maturity, OEM Use-cases, and Suppliers
4.1.7. Material Comparison
4.1.8. Material Market Shares 2023
4.1.9. Market Shares in 2023 and 2034
4.2. Material Testing for Thermal Runaway
4.2.1. How to Screen Materials for Thermal Runaway
4.2.2. UL Torch and Grit Test
4.2.3. UL BETR
4.3. Material Benchmarking: Thermal, Electrical, and Mechanical Properties
4.3.1. Thermal Conductivity Comparison
4.3.2. Density Comparison
4.3.3. Density vs Thermal Conductivity - Thermally Insulating
4.3.4. Density vs Thermal Conductivity - Cylindrical Cell Systems
4.3.5. Dielectric Strength Comparison
4.3.6. Fire Protection Temperature Comparison
4.3.7. Material Intensity (kg/kWh)
4.4. Material Benchmarking: Costs
4.4.1. Pricing Comparison: Volumetric and Gravimetric
4.4.2. Pricing Comparison in a Cylindrical Cell Battery (inter-cell)
4.4.3. Pricing

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(エネルギー貯蔵)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/12/20 10:28

158.95 円

165.20 円

201.28 円

ページTOPに戻る