アドバンスドケミカルのリサイクル:世界市場 2025-2040
The Global Market for Advanced Chemical Recycling 2025-2040
世界のプラスチック産業は、プラスチック廃棄物が環境に与える影響に対処する必要性という、増大する課題に直面している。従来の廃棄物管理手法では追いつかない中、先進的なケミカルリサイクルと溶解技術は、業... もっと見る
Summary The global plastics industry is facing a growing challenge - the need to address the environmental impact of plastic waste. As traditional waste management methods struggle to keep pace, advanced chemical recycling and dissolution technologies have emerged as a crucial solution to transform the industry towards a more sustainable, circular model. This The Global Market for Advanced Chemical Recycling 2025-2040 provides an in-depth analysis of the rapidly evolving landscape of chemical recycling and dissolution.
Report contents include:
-
Market Forecasts and Capacity Projections (2025-2040)
-
Detailed global and regional market size projections
-
Capacity forecasts by technology type (pyrolysis, gasification, depolymerization, dissolution)
-
Polymer-specific demand forecasts for PE, PP, PET, PS, Nylon, and others
-
Analysis of market penetration rates and adoption curves
-
Comprehensive overview of advanced chemical recycling processes
-
In-depth analysis of pyrolysis (catalytic and non-catalytic)
-
Gasification technologies and syngas utilization pathways
-
Depolymerization methods (hydrolysis, glycolysis, methanolysis, aminolysis)
-
Dissolution and solvent-based purification techniques
-
Emerging technologies: hydrothermal cracking, microwave-assisted pyrolysis, plasma processes
-
Carbon fiber recycling technologies and market
-
Regional Market Analysis
-
Industry Developments and Competitive Landscape:
-
Comprehensive overview of industry news, partnerships, and acquisitions (2020-2024)
-
Analysis of funding trends and investment patterns
-
Profiles of 170+ companies shaping the advanced chemical recycling landscape. Companies profiled include Agilyx, APK AG, Aquafil, Carbios, Eastman, Extracthive, Fych Technologies, Garbo, gr3n SA, Hyundai Chemical Ioniqa, Itero, Licella, Mura Technology, revalyu Resources GmbH, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, RePEaT Co., Ltd., Synova and SABIC.
-
Assessment of competitive strategies and market positioning
-
Value Chain Analysis:
-
Detailed examination of the advanced chemical recycling value chain
-
Key players at each stage: waste collection, sorting, pre-treatment, recycling, and end-use markets
-
Analysis of integration strategies and emerging business models
-
End-Use Markets and Applications
-
Sustainability Metrics and Life Cycle Assessments:
-
Comparative LCAs of advanced chemical recycling vs. mechanical recycling and virgin plastic production
-
Environmental impact analysis: energy use, greenhouse gas emissions, and resource efficiency
-
Discussion of carbon footprint reduction potential and circular economy benefits
-
Insights into recycling yields for different technologies and polymer types
-
Cost structures and economies of scale in advanced recycling processes
-
Market pricing trends for chemically recycled plastics and competitive positioning
-
Regulatory Landscape and Policy Drivers
-
Market Drivers and Challenges
This comprehensive report is an indispensable tool for:
-
Plastic manufacturers and processors looking to incorporate recycled content
-
Waste management companies exploring advanced recycling opportunities
-
Chemical and petrochemical companies entering the circular economy space
-
Technology developers and equipment manufacturers in the recycling sector
-
Investors and financial institutions assessing market potential and risks
-
Policymakers and regulators shaping the future of plastic waste management
-
Sustainability professionals and environmental organizations tracking industry progress
-
Researchers and academics studying circular economy solutions
ページTOPに戻る
Table of Contents
1 CLASSIFICATION OF RECYCLING TECHNOLOGIES 16
2 RESEARCH METHODOLOGY 17
3 INTRODUCTION 18
-
3.1 Global production of plastics 18
-
3.2 The importance of plastic 19
-
3.3 Issues with plastics use 19
-
3.4 Bio-based or renewable plastics 20
-
3.4.1 Drop-in bio-based plastics 20
-
3.4.2 Novel bio-based plastics 21
-
3.5 Biodegradable and compostable plastics 22
-
3.5.1 Biodegradability 22
-
3.5.2 Compostability 23
-
3.6 Plastic pollution 23
-
3.7 Policy and regulations 24
-
3.8 The circular economy 25
-
3.9 Plastic recycling 27
-
3.9.1 Mechanical recycling 30
-
3.9.1.1 Closed-loop mechanical recycling 30
-
3.9.1.2 Open-loop mechanical recycling 30
-
3.9.1.3 Polymer types, use, and recovery 31
-
3.9.2 Advanced recycling (molecular recycling, chemical recycling) 32
-
3.9.2.1 Main streams of plastic waste 32
-
3.9.2.2 Comparison of mechanical and advanced chemical recycling 33
-
3.10 Life cycle assessment 33
4 THE ADVANCED CHEMICAL RECYCLING MARKET 35
-
4.1 Market drivers and trends 35
-
4.2 Industry news, funding and developments 2020-2024 36
-
4.3 Capacities 46
-
4.4 Global polymer demand 2022-2040, segmented by recycling technology 49
-
4.4.1 PE 49
-
4.4.2 PP 50
-
4.4.3 PET 52
-
4.4.4 PS 53
-
4.4.5 Nylon 54
-
4.4.6 Others 56
-
4.5 Global polymer demand 2022-2040, segmented by recycling technology, by region 57
-
4.5.1 Europe 57
-
4.5.2 North America 59
-
4.5.3 South America 60
-
4.5.4 Asia 62
-
4.5.5 Oceania 63
-
4.5.6 Africa 65
-
4.6 Chemically recycled plastic products 67
-
4.7 Market map 69
-
4.8 Value chain 70
-
4.9 Life Cycle Assessments (LCA) of advanced plastics recycling processes 71
-
4.9.1 PE 72
-
4.9.2 PP 72
-
4.9.3 PET 73
-
4.10 Recycled plastic yield and cost 73
-
4.10.1 Plastic yield of each chemical recycling technologies 73
-
4.10.2 Prices 74
-
4.11 Market challenges 74
5 ADVANCED RECYCLING TECHNOLOGIES 76
-
5.1 Applications 76
-
5.2 Pyrolysis 77
-
5.2.1 Non-catalytic 78
-
5.2.2 Catalytic 79
-
5.2.2.1 Polystyrene pyrolysis 81
-
5.2.2.2 Pyrolysis for production of bio fuel 81
-
5.2.2.3 Used tires pyrolysis 85
-
5.2.2.3.1 Conversion to biofuel 86
-
5.2.2.4 Co-pyrolysis of biomass and plastic wastes 87
-
5.2.3 SWOT analysis 88
-
5.2.4 Companies and capacities 89
-
5.3 Gasification 91
-
5.3.1 Technology overview 91
-
5.3.1.1 Syngas conversion to methanol 92
-
5.3.1.2 Biomass gasification and syngas fermentation 96
-
5.3.1.3 Biomass gasification and syngas thermochemical conversion 96
-
5.3.2 SWOT analysis 97
-
5.3.3 Companies and capacities (current and planned) 98
-
5.4 Dissolution 99
-
5.4.1 Technology overview 99
-
5.4.2 SWOT analysis 100
-
5.4.3 Companies and capacities (current and planned) 101
-
5.5 Depolymerisation 102
-
5.5.1 Hydrolysis 104
-
5.5.1.1 Technology overview 104
-
5.5.1.2 SWOT analysis 105
-
5.5.2 Enzymolysis 106
-
5.5.2.1 Technology overview 106
-
5.5.2.2 SWOT analysis 107
-
5.5.3 Methanolysis 108
-
5.5.3.1 Technology overview 108
-
5.5.3.2 SWOT analysis 109
-
5.5.4 Glycolysis 110
-
5.5.4.1 Technology overview 110
-
5.5.4.2 SWOT analysis 112
-
5.5.5 Aminolysis 113
-
5.5.5.1 Technology overview 113
-
5.5.5.2 SWOT analysis 113
-
5.5.6 Companies and capacities (current and planned) 114
-
5.6 Other advanced chemical recycling technologies 115
-
5.6.1 Hydrothermal cracking 115
-
5.6.2 Pyrolysis with in-line reforming 116
-
5.6.3 Microwave-assisted pyrolysis 116
-
5.6.4 Plasma pyrolysis 117
-
5.6.5 Plasma gasification 118
-
5.6.6 Supercritical fluids 118
-
5.6.7 Carbon fiber recycling 119
-
5.6.7.1 Processes 119
-
5.6.7.2 Companies 122
-
5.7 Advanced recycling of thermoset materials 123
-
5.7.1 Thermal recycling 124
-
5.7.1.1 Energy Recovery Combustion 124
-
5.7.1.2 Anaerobic Digestion 124
-
5.7.1.3 Pyrolysis Processing 125
-
5.7.1.4 Microwave Pyrolysis 126
-
5.7.2 Solvolysis 127
-
5.7.3 Catalyzed Glycolysis 128
-
5.7.4 Alcoholysis and Hydrolysis 129
-
5.7.5 Ionic liquids 130
-
5.7.6 Supercritical fluids 130
-
5.7.7 Plasma 131
-
5.7.8 Companies 132
6 COMPANY PROFILES 134 (170 company profiles)
7 GLOSSARY OF TERMS 276
8 REFERENCES 278
ページTOPに戻る
List of Tables/Graphs
List of Tables
-
Table 1. Types of recycling. 16
-
Table 2. Issues related to the use of plastics. 19
-
Table 3. Type of biodegradation. 23
-
Table 4. Overview of the recycling technologies. 29
-
Table 5. Polymer types, use, and recovery. 31
-
Table 6. Composition of plastic waste streams. 32
-
Table 7. Comparison of mechanical and advanced chemical recycling. 33
-
Table 8. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling. 33
-
Table 9. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution). 34
-
Table 10. Market drivers and trends in the advanced chemical recycling market. 35
-
Table 11. Advanced chemical recycling industry news, funding and developments 2020-2024. 36
-
Table 12. Advanced plastics recycling capacities, by technology. 46
-
Table 13. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes). 49
-
Table 14. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes). 50
-
Table 15. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes). 52
-
Table 16. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes). 53
-
Table 17. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes). 54
-
Table 18. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).* 56
-
Table 19. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes). 57
-
Table 20. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes). 59
-
Table 21. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes). 60
-
Table 22. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes). 62
-
Table 23. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes). 63
-
Table 24. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes). 65
-
Table 25. Example chemically recycled plastic products. 67
-
Table 26. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes. 71
-
Table 27. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE). 72
-
Table 28. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP). 72
-
Table 29. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET). 73
-
Table 30. Plastic yield of each chemical recycling technologies. 73
-
Table 31. Chemically recycled plastics prices in USD. 74
-
Table 32. Challenges in the advanced chemical recycling market. 74
-
Table 33. Applications of chemically recycled materials. 76
-
Table 34. Summary of non-catalytic pyrolysis technologies. 78
-
Table 35. Summary of catalytic pyrolysis technologies. 79
-
Table 36. Summary of pyrolysis technique under different operating conditions. 83
-
Table 37. Biomass materials and their bio-oil yield. 84
-
Table 38. Biofuel production cost from the biomass pyrolysis process. 85
-
Table 39. Pyrolysis companies and plant capacities, current and planned. 89
-
Table 40. Summary of gasification technologies. 91
-
Table 41. Advanced recycling (Gasification) companies. 98
-
Table 42. Summary of dissolution technologies. 99
-
Table 43. Advanced recycling (Dissolution) companies 101
-
Table 44. Depolymerisation processes for PET, PU, PC and PA, products and yields. 103
-
Table 45. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 104
-
Table 46. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 106
-
Table 47. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 108
-
Table 48. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 110
-
Table 49. Summary of aminolysis technologies. 113
-
Table 50. Advanced recycling (Depolymerisation) companies and capacities (current and planned). 114
-
Table 51. Overview of hydrothermal cracking for advanced chemical recycling. 115
-
Table 52. Overview of Pyrolysis with in-line reforming for advanced chemical recycling. 116
-
Table 53. Overview of microwave-assisted pyrolysis for advanced chemical recycling. 116
-
Table 54. Overview of plasma pyrolysis for advanced chemical recycling. 117
-
Table 55. Overview of plasma gasification for advanced chemical recycling. 118
-
Table 56. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages. 120
-
Table 57. Retention rate of tensile properties of recovered carbon fibres by different recycling processes. 121
-
Table 58. Recycled carbon fiber producers, technology and capacity. 122
-
Table 59. Current thermoset recycling routes. 123
-
Table 60. Companies developing advanced thermoset recycing routes. 132
List of Figures
-
Figure 1. Global plastics production 1950-2021, millions of tonnes. 18
-
Figure 2. Coca-Cola PlantBottle®. 21
-
Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics. 21
-
Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives. 24
-
Figure 5. The circular plastic economy. 26
-
Figure 6. Current management systems for waste plastics. 27
-
Figure 7. Overview of the different circular pathways for plastics. 29
-
Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes). 50
-
Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes). 51
-
Figure 10. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes). 53
-
Figure 11. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes). 54
-
Figure 12. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes). 55
-
Figure 13. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes). 57
-
Figure 14. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes). 58
-
Figure 15. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes). 60
-
Figure 16. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes). 61
-
Figure 17. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes). 63
-
Figure 18. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes). 64
-
Figure 19. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes). 66
-
Figure 20. Market map for advanced plastics recycling. 70
-
Figure 21. Value chain for advanced plastics recycling market. 71
-
Figure 22. Schematic layout of a pyrolysis plant. 77
-
Figure 23. Waste plastic production pathways to (A) diesel and (B) gasoline 82
-
Figure 24. Schematic for Pyrolysis of Scrap Tires. 86
-
Figure 25. Used tires conversion process. 87
-
Figure 26. SWOT analysis-pyrolysis for advanced recycling. 88
-
Figure 27. Total syngas market by product in MM Nm³/h of Syngas, 2021. 92
-
Figure 28. Overview of biogas utilization. 94
-
Figure 29. Biogas and biomethane pathways. 95
-
Figure 30. SWOT analysis-gasification for advanced recycling. 97
-
Figure 31. SWOT analysis-dissoluton for advanced recycling. 100
-
Figure 32. Products obtained through the different solvolysis pathways of PET, PU, and PA. 102
-
Figure 33. SWOT analysis-Hydrolysis for advanced chemical recycling. 105
-
Figure 34. SWOT analysis-Enzymolysis for advanced chemical recycling. 107
-
Figure 35. SWOT analysis-Methanolysis for advanced chemical recycling. 109
-
Figure 36. SWOT analysis-Glycolysis for advanced chemical recycling. 112
-
Figure 37. SWOT analysis-Aminolysis for advanced chemical recycling. 113
-
Figure 38. NewCycling process. 142
-
Figure 39. ChemCyclingTM prototypes. 146
-
Figure 40. ChemCycling circle by BASF. 146
-
Figure 41. Recycled carbon fibers obtained through the R3FIBER process. 148
-
Figure 42. Cassandra Oil process. 159
-
Figure 43. CuRe Technology process. 167
-
Figure 44. MoReTec. 208
-
Figure 45. Chemical decomposition process of polyurethane foam. 211
-
Figure 46. OMV ReOil process. 223
-
Figure 47. Schematic Process of Plastic Energy’s TAC Chemical Recycling. 227
-
Figure 48. Easy-tear film material from recycled material. 245
-
Figure 49. Polyester fabric made from recycled monomers. 249
-
Figure 50. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right). 260
-
Figure 51. Teijin Frontier Co., Ltd. Depolymerisation process. 265
-
Figure 52. The Velocys process. 271
-
Figure 53. The Proesa® Process. 272
-
Figure 54. Worn Again products. 274
ページTOPに戻る
本レポートと同分野(ケミカル)の最新刊レポート
- Titanium Dioxide Market by Grade (Rutile, Anatase), Process (Sulfate, Chloride), Application (Paints & Coating, Plastics, Paper, Inks), & Region (North America, Europe, Asia Pacific, MEA, South America) - Global Forecasts Up to 2029
- Ammonia Market by Type (Anhydrous, Aqueous), Sales Channel (Direct and Indirect), End-use Industry (Agriculture, Textile, Refrigeration, Mining, and Pharmaceutical), and Region - Global Forecast to 2029
- Microplastic Detection Market by Type (Polyethylene, Polytetrafluoroethylene), technology (Micro-Raman Spectroscopy, Ftir Spectroscopy), Medium (Water, Soil), Size ( < 1mm, 1-3mm), End-Use Industry (Water Treatment, FnB) - Global Forecast to 2029
- Tire Recycling Market by Product (Rubber, TDF, TDA, Carbon Black), Process (Mechanical Shredding, Ambient Grinding, Pyrolysis), Type (Service, Material), End-use Industry (Automotive, Construction, Manufacturing) and Region - Global Forecast to 2029
- Plastic Injection Molding Machine Market by Machine Type (Hydraulic, All-Electric, Hybrid), Clamping Force (0-200, 201-500, Above 500), End-Use Industry (Packaging, Automotive, Consumer Goods, Packaging, Healthcare), and Region - Global Forecast to 2030
- Coating Resins Market by Resin Type (Acrylic, Alkyd, Epoxy, Polyurethane, Vinyl), Technology (Waterborne, Solventborne, Powder), Application (Architectural, Protective, General Industrial, Automotive, Wood, Packaging), & Region - Global Forecast to 2029
- Biodegradable Plastics Market by Type (PLA, Starch Blends, PBAT, PHA, PBS), End-Use Industry (Packaging, Consumer Goods, Textiles, Agriculture & Horticulture), and Region- Global Forecast to 2029
- Anti-Graffiti Coatings Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2031 - By Product, Technology, Grade, Application, End-user, Region: (North America, Europe, Asia Pacific, Latin America and Middle East and Africa)
- Latin America Industrial Explosives Market - Industry Analysis, Size, Share, Growth, Trends, and Forecast 2031 - By Product, Technology, Grade, Application, End-user, Region: (Latin America)
- Isostearyl Alcohol Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2031 - By Product, Technology, Grade, Application, End-user, Region: (North America, Europe, Asia Pacific, Latin America and Middle East and Africa)
Future Markets, inc.社のアドバンスドマテリアル分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
Future Markets, inc.社はどのような調査会社ですか?
Future Markets, inc.は先端技術に焦点をあてたスウェーデンの調査会社です。
2009年設立のFMi社は先端素材、バイオ由来の素材、ナノマテリアルの市場をトラッキングし、企業や学... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|