世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

ヒューマノイドロボットの世界市場 2025-2035年:技術、市場、企業


Humanoid Robots Global Market 2025-2035: Technologies, Markets and Companies

製造ロボットは世界中のほとんどの工場に導入され、急速に増加している。中国のテスラ・ギガファクトリーでは、製造の95%を自動化が占めている。人型ロボットは、AIの進歩と部品コストの削減により、ますます... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 図表数 言語
Future Markets, inc.
フューチャーマーケッツインク
2024年9月2日 GBP1,000
PDF版
ライセンス・価格情報
注文方法はこちら
270 127 英語

ご希望によりPDF+冊子体のご案内も可能です。冊子体のご納品は1カ月程度お時間をいただいております。


 

サマリー

製造ロボットは世界中のほとんどの工場に導入され、急速に増加している。中国のテスラ・ギガファクトリーでは、製造の95%を自動化が占めている。人型ロボットは、AIの進歩と部品コストの削減により、ますます導入が進むだろう。AIの活用により、人型ロボットにタスクを学習させることが可能になった。労働力供給の問題や医療分野でのビジネスチャンスも、関心を高めている。 

ヒューマノイドロボットの世界市場2024-2035レポート内容は以下の通りです:

  • ヒューマノイドロボット分類の詳細検討。
  • 市場の促進要因、課題、規制の状況。
  • 市場の変遷、現状、将来の軌道。
  • ヒューマノイドロボットの一覧と開発段階。
  • 投資と資金調達
  • 2022-2034年の市場ニュースと動向
  • エレクトロニクスとセンサー、アクチュエーターとモーター、バッテリーとパワーシステム、素材、ソフトウェアとAIを含むサプライチェーンの分析。
  • コスト分析
  • メカトロニクス、AIと機械学習、センサー技術、人間とロボットの相互作用(HRI)、クラウドロボティクス、バイオミメティックデザイン、皮膚組織の結合を含む、ヒューマノイドロボットデザインの進歩を評価。
  • 2024年から2035年までの世界のヒューマノイドロボット市場の市場規模と収益予測(タイプ別、地域別、最終用途市場別)。
  • 以下のような最終用途市場での応用:
    • 医療と援助
    • 教育・研究
    • カスタマーサービスとホスピタリティ
    • 娯楽とレジャー
    • 製造業と工業
    • 軍事・防衛
    • 個人および家庭用
  • 業界リーダー、ディスラプター、新興イノベーターを含む52の主要プレーヤーの詳細なプロフィール。 
    • アジリティ・ロボティクス
    • アプトロニック
    • バイドゥ
    • ボストン・ダイナミクス
    • チュンミ
    • ドリーム・テクノロジー
    • エンボディド
    • エンジニアード・アーツ
    • EXロボッツ
    • フィギュアAI
    • フーリエ・インテリジェンス
    • ハンソン・ロボティクス
    • ホンダ
    •  IHMC
    • 川崎重工業
    • Kepler
    • Leju Robot
    • LimX Dynamics
    • Macco Robotics
    • MagicLab
    • Mentee Robotics
    • 1X Technologies
    • Oversonic
    • PAL Robotics
    • Rainbow Robotics
    • Robotis
    • Sanctuary AI
    • SoftBank Robotics
    • Tesla
    • トヨタ自動車
    • UBTECH
    • Unitree
    • Xioami
    • XPENGロボティクス 
  • アカデミックな展開。

 



ページTOPに戻る


目次

1 イントロダクション 14

  • 1.1 人型ロボット:定義と特徴 14
  • 1.2 歴史的概観と進化 16
  • 1.3 2024年におけるヒューマノイドロボットの現状 17
  • 1.4 人型ロボットの重要性 18
  • 1.5 市場と応用(TRL) 19
  • 1.6 モデルと商業的発展段階 20
  • 1.7 投資と資金調達 23
  • 1.8 市場ニュースと商業的展開 2023-2034 24
  • 1.9 費用 25
    • 1.9.1 タイプ25
    • 1.9.2 コンポーネント 26
  • 1.10 市場の促進要因 27
    • 1.10.1 人工知能(AI)と機械学習(ML)の進歩 28
    • 1.10.2 労働力不足 28
    • 1.10.3 労働力の代替 29
    • 1.10.4 個人的援助と同伴の必要性 29
    • 1.10.5 危険な極限環境の探査 30
  • 1.11 市場の課題 30
  • 1.12 技術的課題 32
  • 1.13 世界の規制 34
  • 1.14 日本市場 36
  • 1.15 米国市場 37
  • 1.16 中国市場 38

 

2 技術分析 41

  • 2.1 ヒューマノイドロボット設計の進歩 41
  • 2.2 インテリジェント制御システムと最適化 44
  • 2.3 先端ロボット工学とオートメーション 46
  • 2.4 インテリジェント・マニュファクチャリング 46
    • 2.4.1 デザインとプロトタイプ 47
    • 2.4.2 コンポーネント製造 47
    • 2.4.3 組立と統合 48
    • 2.4.4 ソフトウェアの統合とテスト 48
    • 2.4.5 品質保証と性能検証 49
  • 2.5 脳コンピューター・インターフェース 50
  • 2.6 ロボット工学とインテリジェント・ヘルス 51
    • 2.6.1 ロボット手術と低侵襲手術 51
    • 2.6.2 リハビリテーションと支援ロボット 51
    • 2.6.3 介護支援ロボット 52
    • 2.6.4 インテリジェント・ヘルス・モニタリングと診断 52
    • 2.6.5 遠隔医療と遠隔健康管理 52
    • 2.6.6 メンタルヘルスにおけるロボット工学 53
  • 2.7 マイクロ・ナノロボット 53
  • 2.8 医療・リハビリ用ロボット 55
  • 2.9 メカトロニクスとロボット工学 57
  • 2.10 画像処理、ロボット工学、インテリジェント・ビジョン 58
  • 2.11 人工知能と機械学習 58
    • 2.11.1 人工知能とロボット工学 59
    • 2.11.2 エンド・ツー・エンドAI 59
    • 2.11.3 マルチモーダルAIアルゴリズム 60
  • 2.12 センサーと知覚技術 60
    • 2.12.1 ビジョン・システム 61
    • 2.12.1.1 カメラ(RGB、深度、サーマル、イベントベース) 61
    • 2.12.1.2 ステレオ視覚と3D知覚 63
    • 2.12.1.3 光学式文字認識(OCR) 64
    • 2.12.1.4 顔認識とトラッキング 65
    • 2.12.1.5 ジェスチャー認識 65
    • 2.12.2 触覚センサーと力センサー 67
      • 2.12.2.1 触覚センサー(ピエゾ抵抗、静電容量、圧電) 67
      • 2.12.2.2 力/トルクセンサ(ひずみゲージ、ロードセル) 68
      • 2.12.2.3 触覚フィードバックセンサー 69
      • 2.12.2.4 皮膚のようなセンサーアレイ 71
    • 2.12.3 聴覚センサー 73
      • 2.12.3.1 マイクロフォン(アレイ型、指向性、両耳型) 73
      • 2.12.3.2 音源定位と音源分離 75
      • 2.12.3.3 音声認識と合成 77
      • 2.12.3.4 音響イベント検出 79
    • 2.12.4 慣性測定ユニット(IMU) 81
      • 2.12.4.1 加速度計 82
      • 2.12.4.2 ジャイロスコープ 83
      • 2.12.4.3 磁力計 85
      • 2.12.4.4 姿勢・方位基準システム(AHRS) 87
    • 2.12.5 近接センサーと距離センサー 89
      • 2.12.5.1 超音波センサー 90
      • 2.12.5.2 レーザー距離計(LiDAR) 90
      • 2.12.5.3 レーダーセンサー 91
      • 2.12.5.4 飛行時間(ToF)センサー 91
    • 2.12.6 環境センサー 92
      • 2.12.6.1 温度センサー 93
      • 2.12.6.2 湿度センサー 94
      • 2.12.6.3 ガスおよび化学センサー 95
      • 2.12.6.4 圧力センサー 96
    • 2.12.7 生体認証センサー 97
      • 2.12.7.1 心拍センサー 98
      • 2.12.7.2 呼吸センサー 99
      • 2.12.7.3 筋電図(EMG)センサー 100
      • 2.12.7.4 脳電図(EEG)センサー 101
    • 2.12.8 センサー・フュージョン 102
      • 2.12.8.1 カルマンフィルター 103
      • 2.12.8.2 粒子フィルター 103
      • 2.12.8.3 同時定位マッピング(SLAM) 104
      • 2.12.8.4 物体の検出と認識 105
      • 2.12.8.5 セマンティック・セグメンテーション 105
      • 2.12.8.6 シーン理解 106
  • 2.13 電力とエネルギー管理 107
    • 2.13.1 バッテリー技術 107
    • 2.13.2 エネルギーハーベスティングと再生システム 109
      • 2.13.2.1 エネルギーハーベスティング技術 110
      • 2.13.2.2 回生ブレーキシステム 111
      • 2.13.2.3 ハイブリッド・パワーシステム 111
    • 2.13.3 配電と送電 112
      • 2.13.3.1 効率的な配電アーキテクチャ 112
      • 2.13.3.2 先進パワーエレクトロニクスとモーター・ドライブ・システム 112
      • 2.13.3.3 分散型電源システムとインテリジェントな負荷管理 113
    • 2.13.4 熱管理 115
      • 2.13.4.1 冷却システム 115
      • 2.13.4.2 熱モデリングとシミュレーション技術 115
      • 2.13.4.3 先進素材とコーティング 116
    • 2.13.5 エネルギー効率の高いコンピューティングと通信 118
      • 2.13.5.1 低消費電力コンピューティング・アーキテクチャ 118
      • 2.13.5.2 エネルギー効率の高い通信プロトコルと無線技術 119
      • 2.13.5.3 インテリジェント電力管理戦略 119
    • 2.13.6 ワイヤレス給電と充電
    • 2.13.7 エネルギー最適化と機械学習 124
  • 2.14 ヒューマノイド・ロボティクス向けSoC 125
  • 2.15 クラウド・ロボティクスとモノのインターネット(IoRT) 126
  • 2.16 人間とロボットの相互作用(HRI)とソーシャル・ロボティクス 128
  • 2.17 バイオミメティック・デザインとバイオインスパイアード・デザイン 129
  • 2.18 ヒューマノイド・ロボットの素材 131
    • 2.18.1 新素材開発 131
    • 2.18.2 金属 131
    • 2.18.3 プラスティックとポリマー 132
    • 2.18.4 コンポジット 134
    • 2.18.5 エラストマー 135
    • 2.18.6 スマート素材 137
    • 2.18.7 テキスタイル 139
    • 2.18.8 セラミックス 141
    • 2.18.9 バイオマテリアル 143
    • 2.18.10 ナノマテリアル 146
    • 2.18.11 コーティング 149
    • 2.18.11.1 自己修復コーティング 151
    • 2.18.11.2 導電性コーティング 152
  • 2.19 皮膚組織の結合 152

 

 

3 最終用途市場 154

  • 3.1 市場サプライチェーン 154
  • 3.2 ヘルスケアとアシスタンス 155
  • 3.3 教育と研究 159
  • 3.4 カスタマー・サービスとホスピタリティ 164
  • 3.5 エンターテインメントとレジャー 168
  • 3.6 製造業と産業 171
    • 3.6.1 組立と生産 173
    • 3.6.2 品質検査 174
    • 3.6.3 倉庫支援 175
  • 3.7 軍事・防衛 178
  • 3.8 個人使用と家庭内環境 182

 

4 2024-2035 年の世界市場規模(台数および売上高) 188

  • 4.1 世界出荷台数(合計) 188
  • 4.2 ロボットのタイプ別台数 191
  • 4.3 地域別台数 193
  • 4.4 収益(合計) 195
  • 4.5 収益(最終用途市場別) 197

 

5 COMPANY PROFILES 201(52社のプロファイル)

アカデミアが開発した6台のヒューマノイドロボット 263

7 研究方法 266

参考文献8件 267

ページTOPに戻る



図表リスト

テーブル一覧

  • 表1.ヒューマノイド・ロボットのコア・コンポーネント。14
  • 表2.ヒューマノイドロボットの分類16
  • 表3.人型ロボットの歴史的概観と進化。17
  • 表4.最終用途別ヒューマノイドロボットの重要性。18
  • 表5.ヒューマノイド・ロボットの市場と用途とTRL。20
  • 表6.商業開発中のヒューマノイドロボット。20
  • 表7.主なヒューマノイド・ロボットのプロトタイプの比較。22
  • 表8.ヒューマノイド・ロボットの投資 2022-2024 年。23
  • 表9.2023-2034年の市場ニュースと商業的展開。24
  • 表10.ヒューマノイドロボットのコスト26
  • 表11.ヒューマノイド・ロボットのコンポーネント別推定コスト。27
  • 表12.2023-2035年におけるヒューマノイド・ロボット1台当たりの推定コスト。27
  • 表13.ヒューマノイド・ロボットの市場促進要因。28
  • 表14.ヒューマノイド・ロボットの市場課題32
  • 表15.ヒューマノイド・ロボットの技術的課題34
  • 表16.ヒューマノイドロボットに関する世界の規制状況。36
  • 表17.人型ロボットの性能パラメータ。42
  • 表18.ヒューマノイド・ロボティクスにおける一般的なアクチュエータ。57
  • 表19.ヒューマノイド・ロボットのためのセンサーと知覚技術。60
  • 表20.ヒューマノイド・ロボットの触覚センサーと力覚センサー, 67
  • 表21.ヒューマノイド・ロボットの聴覚センサー。73
  • 表22.ヒューマノイド・ロボットのための慣性計測ユニット(IMU)。82
  • 表23.ヒューマノイド・ロボットで一般的に使用されている近接センサーと距離センサーの主な特性。89
  • 表24.ヒューマノイド・ロボットの環境センサー92
  • 表25.ヒューマノイド・ロボットで一般的に使われている生体センサー:97
  • 表26.ヒューマノイド・ロボットのバッテリー技術。107
  • 表27.ヒューマノイドロボットにおけるエネルギーハーベスティングと回生システム。109
  • 表28.ヒューマノイドロボットにおける配電と送電技術 113
  • 表29.人型ロボットの熱管理技術 117
  • 表30.人型ロボットのためのエネルギー効率の良いコンピューティングと通信技術 120
  • 表 31.人型ロボットのワイヤレス給電と充電。123
  • 表32.ヒューマノイド・ロボットのためのクラウド・ロボティクスとモノのインターネット(IoRT)の主な側面。127
  • 表33.人型ロボットのバイオミメティック・デザインの例。130
  • 表34.人型ロボットのバイオインスパイアード・デザインの例。130
  • 表35.人型ロボットによく使われる金属の種類。131
  • 表36.人型ロボットによく使われるプラスチックとポリマーの種類。133
  • 表37.ヒューマノイドによく使われる複合材料の種類。134
  • 表38.ヒューマノイド・ロボットによく使われるエラストマーの種類。136
  • 表39.人型ロボットにおけるスマート素材の種類。138
  • 表40.人型ロボットによく使われる繊維製品の種類。140
  • 表41.人型ロボットによく使われるセラミックの種類。142
  • 表42.ヒューマノイド・ロボットによく使用される生体材料。144
  • 表43.ヒューマノイド・ロボットに使用されるナノ材料の種類。147
  • 表44.ヒューマノイド・ロボットに使用されるコーティングの種類。149
  • 表45.ヘルスケアとアシスタンスにおける市場促進要因。155
  • 表46.ヘルスケアとアシスタンスにおけるヒューマノイド・ロボットの応用。156
  • 表47.ヘルスケアとアシスタンスにおけるヒューマノイドロボット。156
  • 表48.教育・研究分野の市場ドライバー159
  • 表49.ヒューマノイドロボットの教育・研究への応用。160
  • 表50.教育・研究におけるヒューマノイド・ロボットの技術準備レベル(TRL)。161
  • 表 51.カスタマーサービスとホスピタリティにおける市場促進要因。164
  • 表52.カスタマーサービスとホスピタリティにおけるヒューマノイド・ロボットの技術成熟度(TRL)。166
  • 表53.エンターテインメントとレジャーにおける市場促進要因。168
  • 表54.エンターテインメントとレジャーにおけるヒューマノイド・ロボットの用途。169
  • 表55.エンターテインメントとレジャーにおけるヒューマノイド・ロボットの技術成熟度(TRL)。170
  • 表56.市場を牽引する製造業と工業172
  • 表57.製造業と産業におけるヒューマノイド・ロボットの用途。173
  • 表58.軍事・防衛における市場促進要因。178
  • 表59.軍事・防衛分野におけるヒューマノイド・ロボットの用途。179
  • 表60.軍事・防衛分野におけるヒューマノイド・ロボットの技術成熟度(TRL)。180
  • 表61.個人使用と家庭内環境における市場促進要因。183
  • 表62.パーソナルユースと家庭内でのヒューマノイド・ロボットの用途。183
  • 表63.個人使用と家庭内環境における技術準備レベル(TRL)の人型ロボット。184
  • 表64.世界のヒューマノイドロボット出荷台数(1,000台)2024~2035年、保守的予測。188
  • 表65.世界のヒューマノイドロボット出荷台数(百万台)2024-2035年、楽観的予測。189
  • 表66.ヒューマノイドロボット世界タイプ別出荷台数(百万台)2024~2035年、保守的予測。191
  • 表67.ヒューマノイドロボット世界タイプ別出荷台数(百万台)2024~2035年、楽観的予測。192
  • 表68.ヒューマノイドロボット世界地域別出荷台数(百万台)2024~2035年、保守的予測。193
  • 表69.ヒューマノイドロボット世界地域別出荷台数(百万台)2024-2035年、楽観的予測。194
  • 表70.ヒューマノイドロボットの世界出荷台数(百万ドル)2024~2035年、保守的予測。195
  • 表71.世界のヒューマノイドロボット出荷台数(百万ドル)2024-2035年、楽観的予測。196
  • 表72.世界のヒューマノイドロボット出荷台数(エンドユース市場別)(百万ドル)2024-2035年、保守的予測。197
  • 表73.世界のヒューマノイドロボット出荷台数(エンドユース市場別)(百万ドル)2024-2035年、楽観的予測。199
  • 表74.アカデミアが開発したヒューマノイドロボット。264

 

図表一覧

  • 図1.ヒューマノイドロボットのコア・コンポーネント。15
  • 図2.ヒューマノイドロボットの現状18
  • 図3.2020-2024年のヒューマノイドロボット投資資金。24
  • 図4.JR西日本が導入予定の鉄道保守用ヒューマノイドロボット 30
  • 図5.ヒューマノイド・ロボットの歴史的変遷。41
  • 図6.イベントベースのカメラ。63
  • 図7.人型ロボット市場のサプライチェーン155
  • 図8.世界のヒューマノイドロボット出荷台数(1,000台)2024-2035年、保守的予測。189
  • 図9.世界のヒューマノイドロボット出荷台数(1,000台)2024~2035年、楽観的予測。190
  • 図10.ヒューマノイドロボット世界タイプ別出荷台数(百万台)2024-2035年、保守的予測。191
  • 図11.ヒューマノイドロボット世界タイプ別出荷台数(百万台)2024-2035年、楽観的予測。192
  • 図12.ヒューマノイドロボット世界地域別出荷台数(百万台)2024-2035年、保守的予測。193
  • 図13.ヒューマノイドロボット世界地域別出荷台数(百万台)2024-2035年、楽観的予測。194
  • 図14.ヒューマノイドロボットの世界出荷台数(百万ドル)2024-2035年、保守的予測。195
  • 図15.世界のヒューマノイドロボット出荷台数(百万ドル)2024-2035年、楽観的予測。196
  • 図16.ヒューマノイドロボット世界出荷台数(エンドユース市場別)(百万米ドル)2024-2035年、保守的予測。198
  • 図17.世界のヒューマノイドロボット出荷台数(エンドユース市場別)(百万米ドル)2024-2035年、楽観的予測。200
  • 図18.RAISE-A1.
  • 図19.デジットの人型ロボット。202
  • 図20.アプトロニック・アポロ204
  • 図21.アレックス207
  • 図22 BR002.
  • 図23 アトラス210
  • 図24 XR-4.215
  • 図25.Dreame Technology社の第2世代バイオニックロボット犬と汎用ヒューマノイドロボット。216
  • 図26 Mercury X1.
  • 図27.アメカ219
  • 図28.エクスロボットの人型ロボットのプロトタイプ。
  • 図29 Figure.ai 人型ロボット。223
  • 図30 図02 ヒューマノイドロボット223
  • 図31 GR-1.224
  • 図32.ソフィア226
  • 図33.ホンダASIMO。228
  • 図34.カレイド 229
  • 図35.フォアランナー230
  • 図36.Kuafu.232
  • 図37 CL-1.
  • 図38.EVE/NEO。239
  • 図39.トーラーワン243
  • 図40.HUBO2.
  • 図41.XBot-L。
  • 図42.サンクチュアリAIフェニックス250
  • 図43.Pepperヒューマノイドロボット。251
  • 図44.アストリボットS1。252
  • 図45 テスラ・オプティマス第2世代 253
  • 図46.トヨタT-HR3 255
  • 図47.UBTECHウォーカー256
  • 図48.G1折りたたみロボット。257
  • 図49.ユニツリーH1。258
  • 図50 ワンダ 259
  • 図51.サイバーワン260
  • 図52 PX5 262
  • 図53.中国科学院自動化研究所のQファミリーロボット。264

 

 

ページTOPに戻る


 

Summary

Manufacturing robots are in most factories globally and rapidly increasing. At the Tesla Gigafactory in China, automation counts for 95% of manufacturing. Humanoid robots will be increasingly deployed due to advances in AI and reduction in component costs. The use of AI has made it possible to have humanoid robots learn tasks rather than having to programme every single move separately. Issues with labour supply and opportunities in healthcare are also driving interest. 

The Humanoid Robots Global Market 2024-2035 report contents include:

  • Detailed examination of humanoid robot classifications.
  • Market Drivers, Challenges, and Regulatory Landscape.
  • Market evolution, current state, and future trajectory.
  • List of humanoid robots and commercial stage of development.
  • Investments and funding
  • Market news and developments 2022-2034
  • Analysis of supply chain including Electronics and Sensors, Actuators and Motors, Batteries and Power Systems, Materials, Software and AI.
  • Cost analysis
  • Assessment of advancements in humanoid robot design, encompassing mechatronics, AI and machine learning, sensor technologies, human-robot interaction (HRI), cloud robotics, biomimetic design, and binding skin tissue.
  • Market sizing and revenue projections for the global humanoid robots market from 2024 to 2035, segmented by type, region, and end-use market.
  • Application in End-Use Markets including:
    • Healthcare and assistance
    • Education and research
    • Customer service and hospitality
    • Entertainment and leisure
    • Manufacturing and industry
    • Military and defense
    • Personal and domestic use
  • Detailed profiles of 52 key players, including industry leaders, disruptors, and emerging innovators.  Companies profiled include Agility Robotics, Apptronik, Baidu, Boston Dynamics, Chunmi, Dreame Technology, Embodied, Engineered Arts, EX Robots, Figure AI, Fourier Intelligence, Hanson Robotics, Honda,  IHMC, Kawasaki Heavy Industries, Kepler, Leju Robot, LimX Dynamics, Macco Robotics, MagicLab, Mentee Robotics, 1X Technologies, Oversonic, PAL Robotics, Rainbow Robotics, Robotis, Sanctuary AI, SoftBank Robotics, Tesla, Toyota, UBTECH, Unitree, Xioami, and  XPENG Robotics. 
  • Academic developments.

 



ページTOPに戻る


Table of Contents

1 INTRODUCTION 14

  • 1.1 Humanoid Robots: Definition and Characteristics 14
  • 1.2 Historical Overview and Evolution 16
  • 1.3 Current State of Humanoid Robots in 2024 17
  • 1.4 The Importance of Humanoid Robots 18
  • 1.5 Markets and Applications (TRL) 19
  • 1.6 Models and Stage of Commercial Development 20
  • 1.7 Investments and Funding 23
  • 1.8 Market News and Commercial Developments 2023-2034 24
  • 1.9 Costs 25
    • 1.9.1 Type 25
    • 1.9.2 Components 26
  • 1.10 Market Drivers 27
    • 1.10.1 Advancements in Artificial Intelligence (AI) and Machine Learning (ML) 28
    • 1.10.2 Labour force shortages 28
    • 1.10.3 Labour force substitution 29
    • 1.10.4 Need for Personal Assistance and Companionship 29
    • 1.10.5 Exploration of Hazardous and Extreme Environments 30
  • 1.11 Market Challenges 30
  • 1.12 Technical Challenges 32
  • 1.13 Global regulations 34
  • 1.14 Market in Japan 36
  • 1.15 Market in United States 37
  • 1.16 Market in China 38

 

2 TECHNOLOGY ANALYSIS 41

  • 2.1 Advancements in Humanoid Robot Design 41
  • 2.2 Intelligent Control Systems and Optimization 44
  • 2.3 Advanced Robotics and Automation 46
  • 2.4 Intelligent Manufacturing 46
    • 2.4.1 Design and Prototyping 47
    • 2.4.2 Component Manufacturing 47
    • 2.4.3 Assembly and Integration 48
    • 2.4.4 Software Integration and Testing 48
    • 2.4.5 Quality Assurance and Performance Validation 49
  • 2.5 Brain Computer Interfaces 50
  • 2.6 Robotics and Intelligent Health 51
    • 2.6.1 Robotic Surgery and Minimally Invasive Procedures 51
    • 2.6.2 Rehabilitation and Assistive Robotics 51
    • 2.6.3 Caregiving and Assistive Robots 52
    • 2.6.4 Intelligent Health Monitoring and Diagnostics 52
    • 2.6.5 Telemedicine and Remote Health Management 52
    • 2.6.6 Robotics in Mental Health 53
  • 2.7 Micro-nano Robots 53
  • 2.8 Medical and Rehabilitation Robots 55
  • 2.9 Mechatronics and Robotics 57
  • 2.10 Image Processing, Robotics and Intelligent Vision 58
  • 2.11 Artificial Intelligence and Machine Learning 58
    • 2.11.1 Artificial Intelligence and Robotics 59
    • 2.11.2 End-to-end AI 59
    • 2.11.3 Multi-modal AI algorithms 60
  • 2.12 Sensors and Perception Technologies 60

     

    3 END USE MARKETS 154

     

    4 GLOBAL MARKET SIZE (UNITS AND REVENUES) 2024-2035 188

     

    5 COMPANY PROFILES 201 (52 company profiles)

     

    6 HUMANOID ROBOTS DEVELOPED BY ACADEMIA 263

     

    7 RESEARCH METHODOLOGY 266

     

    8 REFERENCES 267

     

    • 2.12.1 Vision Systems 61
      • 2.12.1.1 Cameras (RGB, depth, thermal, event-based) 61
      • 2.12.1.2 Stereo vision and 3D perception 63
      • 2.12.1.3 Optical character recognition (OCR) 64
      • 2.12.1.4 Facial recognition and tracking 65
      • 2.12.1.5 Gesture recognition 65
      • 2.12.2 Tactile and Force Sensors 67
        • 2.12.2.1 Tactile sensors (piezoresistive, capacitive, piezoelectric) 67
        • 2.12.2.2 Force/torque sensors (strain gauges, load cells) 68
        • 2.12.2.3 Haptic feedback sensors 69
        • 2.12.2.4 Skin-like sensor arrays 71
      • 2.12.3 Auditory Sensors 73
        • 2.12.3.1 Microphones (array, directional, binaural) 73
        • 2.12.3.2 Sound Localization and Source Separation 75
        • 2.12.3.3 Speech Recognition and Synthesis 77
        • 2.12.3.4 Acoustic Event Detection 79
      • 2.12.4 Inertial Measurement Units (IMUs) 81
        • 2.12.4.1 Accelerometers 82
        • 2.12.4.2 Gyroscopes 83
        • 2.12.4.3 Magnetometers 85
        • 2.12.4.4 Attitude and Heading Reference Systems (AHRS) 87
      • 2.12.5 Proximity and Range Sensors 89
        • 2.12.5.1 Ultrasonic sensors 90
        • 2.12.5.2 Laser range finders (LiDAR) 90
        • 2.12.5.3 Radar sensors 91
        • 2.12.5.4 Time-of-Flight (ToF) sensors 91
      • 2.12.6 Environmental Sensors 92
        • 2.12.6.1 Temperature sensors 93
        • 2.12.6.2 Humidity sensors 94
        • 2.12.6.3 Gas and chemical sensors 95
        • 2.12.6.4 Pressure sensors 96
      • 2.12.7 Biometric Sensors 97
        • 2.12.7.1 Heart rate sensors 98
        • 2.12.7.2 Respiration sensors 99
        • 2.12.7.3 Electromyography (EMG) sensors 100
        • 2.12.7.4 Electroencephalography (EEG) sensors 101
      • 2.12.8 Sensor Fusion 102
        • 2.12.8.1 Kalman Filters 103
        • 2.12.8.2 Particle Filters 103
        • 2.12.8.3 Simultaneous Localization and Mapping (SLAM) 104
        • 2.12.8.4 Object Detection and Recognition 105
        • 2.12.8.5 Semantic Segmentation 105
        • 2.12.8.6 Scene Understanding 106
      • 2.13 Power and Energy Management 107
        • 2.13.1 Battery Technologies 107
        • 2.13.2 Energy Harvesting and Regenerative Systems 109
          • 2.13.2.1 Energy Harvesting Techniques 110
          • 2.13.2.2 Regenerative Braking Systems 111
          • 2.13.2.3 Hybrid Power Systems 111
        • 2.13.3 Power Distribution and Transmission 112
          • 2.13.3.1 Efficient Power Distribution Architectures 112
          • 2.13.3.2 Advanced Power Electronics and Motor Drive Systems 112
          • 2.13.3.3 Distributed Power Systems and Intelligent Load Management 113
        • 2.13.4 Thermal Management 115
          • 2.13.4.1 Cooling Systems 115
          • 2.13.4.2 Thermal Modeling and Simulation Techniques 115
          • 2.13.4.3 Advanced Materials and Coatings 116
        • 2.13.5 Energy-Efficient Computing and Communication 118
          • 2.13.5.1 Low-Power Computing Architectures 118
          • 2.13.5.2 Energy-Efficient Communication Protocols and Wireless Technologies 119
          • 2.13.5.3 Intelligent Power Management Strategies 119
        • 2.13.6 Wireless Power Transfer and Charging 121
        • 2.13.7 Energy Optimization and Machine Learning 124
      • 2.14 SoCs for Humanoid Robotics 125
      • 2.15 Cloud Robotics and Internet of Robotic Things (IoRT) 126
      • 2.16 Human-Robot Interaction (HRI) and Social Robotics 128
      • 2.17 Biomimetic and Bioinspired Design 129
      • 2.18 Materials for Humanoid Robots 131
        • 2.18.1 New materials development 131
        • 2.18.2 Metals 131
        • 2.18.3 Plastics and Polymers 132
        • 2.18.4 Composites 134
        • 2.18.5 Elastomers 135
        • 2.18.6 Smart Materials 137
        • 2.18.7 Textiles 139
        • 2.18.8 Ceramics 141
        • 2.18.9 Biomaterials 143
        • 2.18.10 Nanomaterials 146
        • 2.18.11 Coatings 149
        • 2.18.11.1 Self-healing coatings 151
        • 2.18.11.2 Conductive coatings 152
      • 2.19 Binding Skin Tissue 152
      • 3.1 Market supply chain 154
      • 3.2 Healthcare and Assistance 155
      • 3.3 Education and Research 159
      • 3.4 Customer Service and Hospitality 164
      • 3.5 Entertainment and Leisure 168
      • 3.6 Manufacturing and Industry 171
        • 3.6.1 Assembly and Production 173
        • 3.6.2 Quality Inspection 174
        • 3.6.3 Warehouse Assistance 175
      • 3.7 Military and Defense 178
      • 3.8 Personal Use and Domestic Settings 182
      • 4.1 Global shipments in units (Total) 188
      • 4.2 By type of robot in units 191
      • 4.3 By region in units 193
      • 4.4 Revenues (Total) 195
      • 4.5 Revenues (By end use market) 197

ページTOPに戻る



List of Tables/Graphs

List of Tables

  • Table 1. Core Components of Humanoid Robots. 14
  • Table 2. Classification of Humanoid Robots. 16
  • Table 3. Historical Overview and Evolution of Humanoid Robots. 17
  • Table 4. Importance of humanoid robots by end use. 18
  • Table 5. Markets and applications for humanoid robots and TRL. 20
  • Table 6. Humanoid Robots under commercial development. 20
  • Table 7. Comparison of major humanoid robot prototypes. 22
  • Table 8. Humanoid Robot investments 2022-2024. 23
  • Table 9. Market News and Commercial Developments 2023-2034. 24
  • Table 10. Humanoid robot costs. 26
  • Table 11. Estimated costs for humanoid robots by components. 27
  • Table 12. Estimated humanoid robot cost per unit 2023-2035. 27
  • Table 13. Market drivers for humanoid robots. 28
  • Table 14. Market challenges for humanoid robots. 32
  • Table 15. Technical challenges for humanoid robots. 34
  • Table 16. Global regulatory landscape for humanoid robots. 36
  • Table 17. Performance Parameters of Humanoid Robots. 42
  • Table 18. Common Actuators in Humanoid Robotics. 57
  • Table 19. Sensors and Perception Technologies for humanoid robotics. 60
  • Table 20. Tactile and force sensors for humanoid robots, 67
  • Table 21. Auditory sensors for humanoid robots. 73
  • Table 22. Inertial Measurement Units (IMUs) for humanoid robots. 82
  • Table 23. Key characteristics of proximity and range sensors commonly used in humanoid robots. 89
  • Table 24. Environmental Sensors for humanoid robots. 92
  • Table 25. Biometric sensors commonly used in humanoid robots: 97
  • Table 26. Battery technologies for humanoid robotics. 107
  • Table 27. Energy Harvesting and Regenerative Systems in Humanoid Robots. 109
  • Table 28.Power Distribution and Transmission Techniques in Humanoid Robots 113
  • Table 29. Thermal Management Techniques for Humanoid Robots 117
  • Table 30. Energy-Efficient Computing and Communication Techniques for Humanoid Robots 120
  • Table 31. Wireless Power Transfer and Charging for Humanoid Robots. 123
  • Table 32. Key aspects of Cloud Robotics and Internet of Robotic Things (IoRT) for humanoid robotics. 127
  • Table 33. Examples of Biomimetic Design for Humanoid Robots. 130
  • Table 34. Examples of Bioinspired Design for Humanoid Robots. 130
  • Table 35. Types of metals commonly used in humanoid robots. 131
  • Table 36. Types of plastics and polymers commonly used in humanoid robots. 133
  • Table 37. Types of composites commonly used in humanoid. 134
  • Table 38. Types of elastomers commonly used in humanoid robots. 136
  • Table 39. Types of smart materials in humanoid robotics. 138
  • Table 40. Types of textiles commonly used in humanoid robots. 140
  • Table 41. Types of ceramics commonly used in humanoid robots. 142
  • Table 42. Biomaterials commonly used in humanoid robotics. 144
  • Table 43. Types of nanomaterials used in humanoid robotics. 147
  • Table 44. Types of coatings used in humanoid robotics. 149
  • Table 45. Market Drivers in healthcare and assistance. 155
  • Table 46. Applications of humanoid robots in healthcare and assistance. 156
  • Table 47. Technology Readiness Level (TRL) Table; humanoid robots in healthcare and assistance. 156
  • Table 48. Market Drivers in education and research. 159
  • Table 49. Applications of humanoid robots in education and research. 160
  • Table 50. Technology Readiness Level (TRL) for humanoid robots in education and research. 161
  • Table 51. Market Drivers in Customer Service and Hospitality. 164
  • Table 52. Technology Readiness Level (TRL) for humanoid robots in Customer Service and Hospitality. 166
  • Table 53. Market Drivers in Entertainment and Leisure. 168
  • Table 54. Applications of humanoid robots in Entertainment and Leisure. 169
  • Table 55. Technology Readiness Level (TRL) for humanoid robots in Entertainment and Leisure. 170
  • Table 56. Market Drivers manufacturing and industry. 172
  • Table 57. Applications for humanoid robots in manufacturing and industry. 173
  • Table 58. Market Drivers in Military and Defense. 178
  • Table 59. Applications for humanoid robots in Military and Defense. 179
  • Table 60. Technology Readiness Level (TRL) for humanoid robots in Military and Defense. 180
  • Table 61. Market Drivers in Personal Use and Domestic Settings. 183
  • Table 62. Applications in humanoid robots in Personal Use and Domestic Settings. 183
  • Table 63. Technology Readiness Level (TRL) humanoid robots in Personal Use and Domestic Settings. 184
  • Table 64. Global humanoid robot shipments (1,000 units) 2024-2035, conservative estimate. 188
  • Table 65. Global humanoid robot shipments (Millions units) 2024-2035, optimistic estimate. 189
  • Table 66. Global humanoid robot shipments by type (Million units) 2024-2035, conservative estimate. 191
  • Table 67. Global humanoid robot shipments by type (Million units) 2024-2035, optimistic estimate. 192
  • Table 68. Global humanoid robot shipments by region (Million units) 2024-2035, conservative estimate. 193
  • Table 69. Global humanoid robot shipments by region (Million units) 2024-2035, optimistic estimate. 194
  • Table 70. Global humanoid robot shipments (Millions USD) 2024-2035, conservative estimate. 195
  • Table 71. Global humanoid robot shipments (Millions USD) 2024-2035, optimistic estimate. 196
  • Table 72. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, conservative estimate. 197
  • Table 73. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, optimistic estimate. 199
  • Table 74. Humanoid Robots Developed by Academia. 264

 

List of Figures

  • Figure 1. Core components of a humanoid robot. 15
  • Figure 2. Status of humanoid robots. 18
  • Figure 3. Humanoid robots investment funding 2020-2024. 24
  • Figure 4. Humanoid robot for railroad maintenance to be implemented by West Japan Railway Co. 30
  • Figure 5. Historical progression of humanoid robots. 41
  • Figure 6. Event-based cameras. 63
  • Figure 7. Humanoid Robots Market Supply Chain. 155
  • Figure 8. Global humanoid robot shipments (1,000 units) 2024-2035, conservative estimate. 189
  • Figure 9. Global humanoid robot shipments (1,000 units) 2024-2035, optimistic estimate. 190
  • Figure 10. Global humanoid robot shipments by type (Million units) 2024-2035, conservative estimate. 191
  • Figure 11. Global humanoid robot shipments by type (Million units) 2024-2035, optimistic estimate. 192
  • Figure 12. Global humanoid robot shipments by region (Million units) 2024-2035, conservative estimate. 193
  • Figure 13. Global humanoid robot shipments by region (Million units) 2024-2035, optimistic estimate. 194
  • Figure 14. Global humanoid robot shipments (Millions USD) 2024-2035, conservative estimate. 195
  • Figure 15. Global humanoid robot shipments (Millions USD) 2024-2035, optimistic estimate. 196
  • Figure 16. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, conservative estimate. 198
  • Figure 17. Global humanoid robot shipments by end use market (Millions USD) 2024-2035, optimistic estimate. 200
  • Figure 18. RAISE-A1. 201
  • Figure 19. Digit humanoid robot. 202
  • Figure 20. Apptronick Apollo. 204
  • Figure 21. Alex. 207
  • Figure 22. BR002. 208
  • Figure 23. Atlas. 210
  • Figure 24. XR-4. 215
  • Figure 25. Dreame Technology's second-generation bionic robot dog and general-purpose humanoid robot. 216
  • Figure 26. Mercury X1. 218
  • Figure 27. Ameca. 219
  • Figure 28. Prototype Ex-Robots humanoid robots. 220
  • Figure 29. Figure.ai humanoid robot. 223
  • Figure 30. Figure 02 humanoid robot. 223
  • Figure 31. GR-1. 224
  • Figure 32. Sophia. 226
  • Figure 33. Honda ASIMO. 228
  • Figure 34. Kaleido. 229
  • Figure 35. Forerunner. 230
  • Figure 36. Kuafu. 232
  • Figure 37. CL-1. 234
  • Figure 38. EVE/NEO. 239
  • Figure 39. Tora-One. 243
  • Figure 40. HUBO2. 245
  • Figure 41. XBot-L. 247
  • Figure 42. Sanctuary AI Phoenix. 250
  • Figure 43. Pepper Humanoid Robot. 251
  • Figure 44. Astribot S1. 252
  • Figure 45. Tesla Optimus Gen 2. 253
  • Figure 46. Toyota T-HR3 255
  • Figure 47. UBTECH Walker. 256
  • Figure 48. G1 foldable robot. 257
  • Figure 49. Unitree H1. 258
  • Figure 50. WANDA. 259
  • Figure 51. CyberOne. 260
  • Figure 52. PX5. 262
  • Figure 53. Q Family robots from the Institute of Automation, Chinese Academy of Sciences. 264

 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(ケミカル)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


Future Markets, inc.社はどのような調査会社ですか?


Future Markets, inc.は先端技術に焦点をあてたスウェーデンの調査会社です。 2009年設立のFMi社は先端素材、バイオ由来の素材、ナノマテリアルの市場をトラッキングし、企業や学... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/21 10:26

156.13 円

165.08 円

200.38 円

ページTOPに戻る