世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

量子テクノロジーの世界市場 2025-2035年

量子テクノロジーの世界市場 2025-2035年


The Global Quantum Technology Market 2025-2035

世界の量子テクノロジー市場は、コンピューティング、暗号、センシング、イメージング、通信に革命を起こす可能性を秘めた新興産業である。政府、大手ハイテク企業、ベンチャーキャピタルからの大きな関心を反映... もっと見る

 

 

出版社 出版年月 電子版価格 納期 ページ数 図表数 言語
Future Markets, inc.
フューチャーマーケッツインク
2024年8月20日 GBP1,000
ベーシックライセンス (PDF)
ライセンス・価格情報
注文方法はこちら
お問合わせください 409 171 英語

 

サマリー

世界の量子テクノロジー市場は、コンピューティング、暗号、センシング、イメージング、通信に革命を起こす可能性を秘めた新興産業である。政府、大手ハイテク企業、ベンチャーキャピタルからの大きな関心を反映し、これまでに数十億ドルが投資されている。 

世界の量子技術市場 2025-2035』は、急速に進化する量子技術の状況を詳細に分析し、市場動向、技術の進歩、2025-2035年の成長予測に関する戦略的洞察を提供します。量子技術が研究所から商用アプリケーションへと移行する中、本レポートは、この変革期を迎える分野をナビゲートする投資家、政策立案者、業界関係者にとって不可欠なガイドとなります。レポートの内容

  • 市場規模と成長予測:量子コンピューティング、量子通信、量子センシングなど主要分野別に世界の量子技術市場を詳細に予測。
  • 技術分析:超伝導量子ビット、トラップドイオン、シリコンスピンクォビット、フォトニック量子ビット、トポロジカル量子コンピューティングのような新しいアプローチなど、様々な量子技術を徹底的に検証。
  • アプリケーションの展望製薬、金融、サイバーセキュリティ、材料科学などの業界における量子テクノロジーアプリケーションの包括的な概要。
  • 競争環境:量子技術エコシステムを形成する、ハイテク大手から革新的新興企業まで265社以上の主要プレイヤーを分析。掲載企業:Diraq、LQUOM、memQ、Nanofiber Quantum Technologies、Nomad Atomics、Oxford Ionics、PASQAL、Planckian、Polaris Quantum Biotech (POLARISqb)、PsiQuantum、Quantum Bridge、Quantum Circuits, Inc、 QUANTier、Quantum Brilliance、Quantum Motion、Quantinuum、Quside Technologies S.L.、 Quobly、Riverlane、SemiQon、Silicon Extreme、Silicon Quantum Computing(SQC)、Sparrow Quantum。
  • 投資動向:量子セクターの成長を牽引するベンチャーキャピタル、企業投資、政府資金に関する洞察。
  • 規制環境:量子技術の開発と導入に影響を与える世界的な政府の取り組みと規制の枠組みを概観する。
  • 量子コンピューティング:ハードウェア(様々な量子ビット技術を含む)、ソフトウェア・プラットフォーム、量子アズ・ア・サービスの分析。
  • 量子通信:量子鍵分散(QKD)システム、ポスト量子暗号、量子インターネットの検討。
  • 量子センシングナビゲーション、医療画像、科学研究への応用を目指した量子センサーの洞察。
  • 量子技術のための材料:量子デバイスを可能にする重要な材料とコンポーネントの概要。
  • 様々な分野での量子技術の応用:
    • 医薬品とヘルスケア創薬、タンパク質フォールディングシミュレーション
    • ファイナンスポートフォリオ最適化、リスク分析、不正検知
    • サイバーセキュリティポスト量子暗号、安全な通信
    • 材料科学新素材開発のための量子化学シミュレーション
    • 物流と輸送ルート最適化、交通流管理
  • 2035年までの長期市場予測
  • 破壊的技術の可能性とその影響
  • 量子至上主義のシナリオと産業界への影響

 

この市場レポートは、次のような場合に不可欠な情報源となる:

  • 量子テクノロジー企業および新興企業
  • 投資家およびベンチャーキャピタル
  • 政府機関および政策立案者
  • 研究機関および大学
  • 技術コンサルタントおよびアナリスト
  • 量子応用を模索するエンドユーザー産業

 



ページTOPに戻る


目次

1 エグゼクティブ・サマリー 21

  • 1.1 第1、第2量子革命 21
  • 1.2 量子テクノロジー市場の現状 22
    • 1.2.1 主な進展 22
  • 1.3 投資環境 23
  • 1.4 世界政府の取り組み 24
  • 1.5 2020-2024年の業界動向 26
  • 1.6 量子技術導入の課題 35

 

2 量子コンピューティング 37

  • 2.1 量子コンピューティングとは何か?37
    • 2.1.1 動作原理 38
    • 2.1.2 古典コンピューティングと量子コンピューティング 39
    • 2.1.3 量子コンピューティング技術 41
      • 2.1.3.1 量子エミュレーター 44
      • 2.1.3.2 量子コンピューティング 44
      • 2.1.3.3 量子アニーリング計算機 44
      • 2.1.3.4 量子シミュレーター 44
      • 2.1.3.5 デジタル量子コンピュータ 44
      • 2.1.3.6 連続変数量子コンピュータ 45
      • 2.1.3.7 計測に基づく量子コンピューティング(MBQC) 45
      • 2.1.3.8 トポロジカル量子コンピューティング 45
      • 2.1.3.9 量子加速器 45
    • 2.1.4 他の技術との競争 46
      • 2.1.5 量子アルゴリズム 48
      • 2.1.5.1 Quantum Software Stack 49
      • 2.1.5.2 量子機械学習 50
      • 2.1.5.3 量子シミュレーション 50
      • 2.1.5.4 量子最適化 51
      • 2.1.5.5 量子暗号 51
        • 2.1.5.5.1 量子鍵配布(QKD) 51
        • 2.1.5.5.2 ポスト量子暗号 52
    • 2.1.6 ハードウェア 53
      • 2.1.6.1 キュービット・テクノロジーズ 54
        • 2.1.6.1.1 超伝導キュービット 55
          • 2.1.6.1.1.1 技術の説明 55
          • 2.1.6.1.1.2 材料 56
          • 2.1.6.1.1.3 市場プレーヤー 58
          • 2.1.6.1.1.4 スウォット分析 59
        • 2.1.6.1.2 トラップされたイオン・キュービット 60
          • 2.1.6.1.2.1 技術の説明 60
          • 2.1.6.1.2.2 材料 62
            • 2.1.6.1.2.2.1 光学部品の統合 62
            • 2.1.6.1.2.2.2 高品質ミラーと光キャビティの組み込み 62
            • 2.1.6.1.2.2.3 真空包装とカプセル化のエンジニアリング 63
            • 2.1.6.1.2.2.4 廃熱の除去 63
          • 2.1.6.1.2.3 市場プレーヤー 64
          • 2.1.6.1.2.4 スウォット分析 64
        • 2.1.6.1.3 シリコン・スピン・キュービット 65
          • 2.1.6.1.3.1 技術の説明 65
          • 2.1.6.1.3.2 量子ドット 66
          • 2.1.6.1.3.3 市場プレーヤー 68
          • 2.1.6.1.3.4 SWOT分析 69
        • 2.1.6.1.4 トポロジカルキュービット 70
          • 2.1.6.1.4.1 技術の説明 70
            • 2.1.6.1.4.1.1 極低温冷却 71
          • 2.1.6.1.4.2 市場プレーヤー 71
          • 2.1.6.1.4.3 SWOT分析 72
        • 2.1.6.1.5 フォトニックキュービット 72
          • 2.1.6.1.5.1 技術の説明 72
          • 2.1.6.1.5.2 市場プレイヤー 75
          • 2.1.6.1.5.3 スウォット分析 76
        • 2.1.6.1.6 中性原子(コールド・アトム)量子ビット 77
          • 2.1.6.1.6.1 技術の説明 77
          • 2.1.6.1.6.2 市場プレーヤー 79
          • 2.1.6.1.6.3 スウォット分析 79
        • 2.1.6.1.7 ダイヤモンド欠陥量子ビット 80
          • 2.1.6.1.7.1 技術の説明 80
          • 2.1.6.1.7.2 SWOT分析 83
          • 2.1.6.1.7.3 市場プレーヤー 84
        • 2.1.6.1.8 量子アニール装置 84
          • 2.1.6.1.8.1 技術の説明 84
          • 2.1.6.1.8.2 SWOT分析 86
          • 2.1.6.1.8.3 市場プレーヤー 87
      • 2.1.6.2 アーキテクチャーのアプローチ 87
    • 2.1.7 ソフトウェア 88
      • 2.1.7.1 技術の説明 89
      • 2.1.7.2 クラウドベースのサービス-QCaaS(Quantum Computing as a Service)。89
      • 2.1.7.3 市場プレイヤー 90
  • 2.2 市場の課題 93
  • 2.3 SWOT分析 94
  • 2.4 量子コンピューティングのバリューチェーン 95
  • 2.5 量子コンピューターの市場と応用 96
    • 2.5.1 医薬品 96
      • 2.5.1.1 市場概要 96
        • 2.5.1.1.1 創薬 97
        • 2.5.1.1.2 診断 97
        • 2.5.1.1.3 分子シミュレーション 97
        • 2.5.1.1.4 ゲノミクス 98
        • 2.5.1.1.5 タンパク質とRNAのフォールディング 98
      • 2.5.1.2 市場プレーヤー 99
    • 2.5.2 化学製品 100
      • 2.5.2.1 市場概要 100
      • 2.5.2.2 市場プレーヤー 100
    • 2.5.3 交通 101
      • 2.5.3.1 市場概要 101
      • 2.5.3.2 市場プレーヤー 103
    • 2.5.4 金融サービス 104
      • 2.5.4.1 市場概要 104
      • 2.5.4.2 市場プレーヤー 104

 

3 量子化学と人工知能(AI) 106

  • 3.1 技術解説 106
  • 3.2 アプリケーション 106
  • 3.3 SWOT分析 107
  • 3.4 市場の課題 108
  • 3.5 市場のプレーヤー 108

 

4 量子通信 110

  • 4.1 技術解説 110
  • 4.2タイプ 110
  • 4.3 アプリケーション 111
  • 4.4 量子乱数生成器(QRNG) 111
    • 4.4.1 概要 111
    • 4.4.2 用途 113
      • 4.4.2.1 データセンターの暗号化 114
      • 4.4.2.2 コンシューマー・エレクトロニクス 114
      • 4.4.2.3 自動車/コネクテッド・ビークル 115
      • 4.4.2.4 ギャンブルとゲーミング 116
      • 4.4.2.5 モンテカルロ・シミュレーション 117
    • 4.4.3 メリット 118
    • 4.4.4 光QRNG技術の動作原理 119
    • 4.4.5 QRNG技術への非光学的アプローチ 121
    • 4.4.6 SWOT分析 121
  • 4.5 量子鍵配布(QKD) 122
    • 4.5.1 概要 122
    • 4.5.2 非対称鍵と対称鍵 122
    • 4.5.3 QKD の原理 124
    • 4.5.4 なぜ QKD は他の鍵交換メカニズムよりも安全なのか?125
    • 4.5.5 離散変数と連続変数のQKDプロトコル 126
    • 4.5.6 主要プレーヤー 127
    • 4.5.7 課題 128
    • 4.5.8 SWOT分析 130
  • 4.6 ポスト量子暗号(PQC) 131
    • 4.6.1 概要 131
    • 4.6.2 セキュリティ・システムの統合 131
    • 4.6.3 PQCの標準化 132
    • 4.6.4 暗号システムのPQCへの移行 132
    • 4.6.5 市場プレーヤー 134
    • 4.6.6 SWOT分析 135
  • 4.7 量子同型暗号 136
  • 4.8 量子テレポーテーション 137
  • 4.9 量子ネットワーク 137
    • 4.9.1 概要 137
    • 4.9.2 メリット 137
    • 4.9.3 信頼できるノードと信頼できるリレーの役割 138
    • 4.9.4 エンタングルメント・スワッピングと光スイッチ 138
    • 4.9.5 Oバンドにおける量子信号と古典チャネルの多重化 139
      • 4.9.5.1 波長分割多重(WDM)と時分割多重(TDM) 140
    • 4.9.6 ツインフィールド量子鍵配布(TF-QKD) 140
    • 4.9.7 世界規模の量子通信の実現 141
    • 4.9.8 先進光ファイバーと相互接続 142
    • 4.9.9 量子ネットワークにおける光検出器 143
      • 4.9.9.1 アバランシェ光検出器(APD) 143
      • 4.9.9.2 単光子アバランシェ・ダイオード(SPAD) 143
      • 4.9.9.3 シリコン光電子増倍管(SiPM) 144
    • 4.9.10 クライオスタット 144
      • 4.9.10.1 クライオスタット・アーキテクチャー 145
    • 4.9.11 インフラ要件 148
    • 4.9.12 グローバル活動 150
      • 4.9.12.1 中国 150
      • 4.9.12.2 ヨーロッパ 151
      • 4.9.12.3 オランダ 151
      • 4.9.12.4 イギリス 152
      • 4.9.12.5 米国 152
      • 4.9.12.6 日本 153
    • 4.9.13 SWOT分析 154
  • 4.10 量子メモリー 155
  • 4.11 量子インターネット 155
  • 4.12 市場の課題 155
  • 4.13 市場プレーヤー 156

 

5 量子センシング 160

  • 5.1 技術説明 160
    • 5.1.1 量子センシング原理 161
    • 5.1.2 SWOT分析 164
    • 5.1.3 原子時計 165
      • 5.1.3.1 高周波発振器 166
        • 5.1.3.1.1 新興の発振器 166
      • 5.1.3.2 セシウム原子 166
      • 5.1.3.3 セルフ・キャリブレーション 166
      • 5.1.3.4 光原子時計 167
        • 5.1.3.4.1 チップスケール光クロック 168
      • 5.1.3.5 企業 169
      • 5.1.3.6 SWOT分析 169
    • 5.1.4 量子磁場センサー 171
      • 5.1.4.1 はじめに 171
      • 5.1.4.2 利用動機 171
      • 5.1.4.3 市場機会 173
      • 5.1.4.4 超伝導量子干渉デバイス(Squids) 173
        • 5.1.4.4.1 用途 173
        • 5.1.4.4.2 主要プレーヤー 176
        • 5.1.4.4.3 SWOT分析 176
      • 5.1.4.5 光励起磁力計(OPM) 177
        • 5.1.4.5.1 用途 177
        • 5.1.4.5.2 主要プレーヤー 178
        • 5.1.4.5.3 SWOT分析 179
      • 5.1.4.6 トンネリング磁気抵抗センサー(TMR) 180
        • 5.1.4.6.1 用途 180
        • 5.1.4.6.2 主要プレーヤー 181
        • 5.1.4.6.3 SWOT分析 181
      • 5.1.4.7 窒素空孔センター(N-Vセンター) 182
        • 5.1.4.7.1 用途 183
        • 5.1.4.7.2 主要プレーヤー 183
        • 5.1.4.7.3 SWOT分析 184
    • 5.1.5 量子重力計 185
      • 5.1.5.1 技術の説明 185
      • 5.1.5.2 用途 186
      • 5.1.5.3 主要プレーヤー 188
      • 5.1.5.4 SWOT分析 189
    • 5.1.6 量子ジャイロスコープ 190
      • 5.1.6.1 技術の説明 190
        • 5.1.6.1.1 慣性測定ユニット(IMU) 191
        • 5.1.6.1.2 原子量子ジャイロスコープ 191
      • 5.1.6.2 アプリケーション 192
      • 5.1.6.3 主要プレーヤー 193
      • 5.1.6.4 SWOT分析 194
    • 5.1.7 量子イメージセンサー 195
      • 5.1.7.1 技術の説明 195
      • 5.1.7.2 用途 196
      • 5.1.7.3 SWOT分析 197
      • 5.1.7.4 主要プレーヤー 198
    • 5.1.8 量子レーダー 199
      • 5.1.8.1 技術の説明 199
      • 5.1.8.2 用途 200
    • 5.1.9 量子化学センサー 201
      • 5.1.10 量子NEMとMEM 202
        • 5.1.10.1 技術の説明 202
  • 5.2 市場と技術の課題 202

 

量子電池 6個 204

  • 6.1 技術解説 204
  • 6.2タイプ 205
  • 6.3 アプリケーション 206
  • 6.4 SWOT分析 206
  • 6.5 市場の課題 207
  • 6.6 市場プレーヤー 208

 

7 量子技術用材料 209

  • 7.1 超伝導体 209
    • 7.1.1 概要 209
    • 7.1.2 タイプと特性 210
    • 7.1.3 機会 210
  • 7.2 フォトニクス、シリコンフォトニクス、光部品 211
    • 7.2.1 概要 211
    • 7.2.2 タイプと特性 211
    • 7.2.3 機会 212
  • 7.3 ナノマテリアル 213
    • 7.3.1 概要 213
    • 7.3.2 タイプと特性 213
    • 7.3.3 機会 213

 

8 市場分析 215

  • 8.1 マーケットマップ 215
  • 8.2 主要業界プレーヤー 216
    • 8.2.1 スタートアップ企業 217
    • 8.2.2 テックジャイアンツ 217
    • 8.2.3 国の取り組み 218
  • 8.3 投資資金 218
    • 8.3.1 ベンチャーキャピタル 220
    • 8.3.2 M&A 220
    • 8.3.3 企業投資 221
    • 8.3.4 政府資金 221
  • 8.4 世界市場の収益 2018-2035 223
    • 8.4.1 量子コンピューティング 223
    • 8.4.2 その他のセグメント 225
      • 8.4.2.1 量子センサー 225
      • 8.4.2.2 QKDシステム 227

 

9 会社概要 229

  • 9.1 A* 量子229
  • 9.2 AbaQus 229
  • 9.3 アブソリュート・システム 230
  • 9.4 アダプティブ・ファイナンス・テクノロジーズ 230
  • 9.5 エージック 230
  • 9.6 アグノスティク社 231
  • 9.7 Algorithmiq Oy 232
  • 9.8 エアバス 233
  • 9.9 アレア・クォンタム 233
  • 9.10 アルパイン・クォンタム・テクノロジーズ社(AQT) 234
  • 9.11 アリス&ボブ 235
  • 9.12 アリロ クァンタム 236
  • 9.13 アナメトリック社 237
  • 9.14 アニヨンシステムズ 237
  • 9.15 Aqarios GmbH 238
  • 9.16 アクアーク・テクノロジーズ 238
  • 9.17 アーチャー・マテリアル 239
  • 9.18 アークライト・クァンタム240
  • 9.19 アルキット・クァンタム社 240
  • 9.20 アーク・システムズ社 241
  • 9.21 人工頭脳 242
  • 9.22 アトランティック・クァンタム242
  • 9.23 原子コンピューティング 243
  • 9.24 原子量子研究所 243
  • 9.25 アトミオニクス 244
  • 9.26 アトス・クァンタム 245
  • 9.27 百度(バイドゥ245
  • 9.28 BEIT 246
  • 9.29 ブレクシモ 246
  • 9.30 BlueQubit 247
  • 9.31 ボーアの量子技術 247
  • 9.32 ボッシュ・クォンタム・センシング 248
  • 9.33 BosonQ Ps 249
  • 9.34 C12 量子エレクトロニクス 249
  • 9.35 ケンブリッジ量子コンピューティング(CQC) 250
  • 9.36 CAS コールド・アトム250
  • 9.37 CEWシステムズ・カナダ 251
  • 9.38 シロン251
  • 9.39 キラルナノAG 252
  • 9.40 ColibriTD 252
  • 9.41 クラシク・テクノロジーズ 253
  • 9.42 クリプタ・ラボ社254
  • 9.43 クリプトネクスト・セキュリティ 254
  • 9.44 水晶量子コンピューティング 255
  • 9.45 ディーウェーブ・システムズ 255
  • 9.46 ディラック 256
  • 9.47 ディラク 256
  • 9.48 デルフト・サーキット 257
  • 9.49 デルタ g 258
  • 9.50 デュアリティ量子フォトニクス 258
  • 9.51 EeroQ 258
  • 9.52 エレクトロン 259
  • 9.53 エレメント6 260
  • 9.54 エリヤ260
  • 9.55 エントロピカ・ラボ 261
  • 9.56 Equal1.labs 262
  • 9.57 エボリューションQ 262
  • 9.58 エグザイル量子センサー 263
  • 9.59 EYL 263
  • 9.60 ファースト・クァンタム 264
  • 9.61 富士通 265
  • 9.62 ジェネシス量子テクノロジー 265
  • 9.63 グッドケミストリー 266
  • 9.64 グーグル量子AI 266
  • 9.65 g2-ゼロ 267
  • 9.66 ハイキュー268
  • 9.67 合肥万正量子科技有限公司 268
  • 9.68 ハイキューテクノロジーズ 269
  • 9.69 ホライゾン量子コンピューティング 269
  • 9.70 HQS量子シミュレーション 270
  • 9.71 HRL 271
  • 9.72 華為量子 271
  • 9.73 IBM 272
  • 9.74 イカロス量子 273
  • 9.75 イコサ・コンピューティング 274
  • 9.76 クォンタムID 274
  • 9.77 インフィニティQ 275
  • 9.78 インフィニオン・テクノロジーズAG 276
  • 9.79 インフレクション 276
  • 9.80 インテル 277
  • 9.81 イオンQ 278
  • 9.82 ISARA株式会社 280
  • 9.83 IQM量子コンピューター 280
  • 9.84 JiJ 282
  • 9.85 ジョース・クアンタム社 282
  • 9.86 KEEQuant GmbH 283
  • 9.87 KETS Quantum Security 283
  • 9.88 Ki3フォトニクス 284
  • 9.89 キプ・クァンタム 284
  • 9.90 キウトラGmbH 285
  • 9.91 有限会社クアノ 285
  • 9.92 クヴァンティファイ 286
  • 9.93レベル量子 287
  • 9.94 リジェンテック287
  • 9.95 LQUOM 288
  • 9.96 ルクス・クアンタ288
  • 9.97 Mスクエア・レーザー 289
  • 9.98 マテリアル・ネクサス 290
  • 9.99 メイベル・クォンタム・インダストリー 290
  • 9.100 memQ 291
  • 9.101 メンロ・システムズGmbH 292
  • 9.102 メンテンAI 292
  • 9.103 マイクロソフト 293
  • 9.104 ミラエックス293
  • 9.105 分子量子溶液 294
  • 9.106 モンタナ・インストルメンツ 295
  • 9.107 マルチバース・コンピューティング 295
  • 9.108 マイクリオファーム 296
  • 9.109 ナノファイバー量子テクノロジー 296
  • 9.110 日本電気株式会社 297
  • 9.111 次世代量子298
  • 9.112 ノマド・アトミクス 298
  • 9.113 クァンタム・ノース 299
  • 9.114 Nordic Quantum Computing Group AS 299
  • 9.115 NTT 300
  • 9.116 νクァンタム300
  • 9.117 NVision 301
  • 9.118 1Qbit 302
  • 9.119 ORCAコンピューティング 302
  • 9.120 オレンジ・クァンタム・システムズ 303
  • 9.121 起源 量子コンピューティング技術 304
  • 9.122 オックスフォード・アイオニクス 305
  • 9.123 オックスフォード量子回路(OQC) 305
  • 9.124 パケットライト・ネットワークス 307
  • 9.125 ParityQC 307
  • 9.126 パスカル 308
  • 9.127 ペプトン 309
  • 9.128 フェーズクラフト 309
  • 9.129 フォトニック社 310
  • 9.130 ピクセル・フォトニクス 311
  • 9.131 Planqc GmbH 311
  • 9.132 プランキアン312
  • 9.133 プラシス313
  • 9.134 ポラリス・クオンタム・バイオテック(POLARISqb) 313
  • 9.135 ポスト量子 314
  • 9.136 PQSecure 314
  • 9.137 PQシールド315
  • 9.138 プロテインキュア315
  • 9.139 PsiQuantum 316
  • 9.140 Q.ANT 317
  • 9.141 Q* バード 318
  • 9.142 カイセック 318
  • 9.143 カスキー(安徽文田量子科技) 319
  • 9.144 QBoson 319
  • 9.145 Qblox 320
  • 9.146 qBraid 320
  • 9.147 Q-CTRL 321
  • 9.148 QCデザイン 322
  • 9.149 QCウェア 322
  • 9.150 QC82 323
  • 9.151 クァンタム・ダイヤモンド・テクノロジーズ(QDTI) 324
  • 9.152 QEDMA 324
  • 9.153 キリマンジャロ クァンタム・テック 325
  • 9.154 キンドム 326
  • 9.155 QLMテクノロジー 326
  • 9.156 QMware 327
  • 9.157 Qnami 328
  • 9.158 QphoX 328
  • 9.159 QpiAI 329
  • 9.160 Qレート量子通信 330
  • 9.161 Qパーパス330
  • 9.162 量子抵抗暗号(QRC) 330
  • 9.163 クルーズ 331
  • 9.164 qsimplus 331
  • 9.165 QSimulate 332
  • 9.166 QTI s.r.l. 333
  • 9.167 クアンデラ 333
  • 9.168 クアンシエント社 334
  • 9.169 クアンタゴニア335
  • 9.170 クアンタマップ335
  • 9.171 QuantCAD LLC 336
  • 9.172 QuantiCor Security GmbH 336
  • 9.173 クナシス 337
  • 9.174 クアンティエ 338
  • 9.175 クァンティヌム 338
  • 9.176 クアントロロックス 339
  • 9.177 クアントロペス 340
  • 9.178 クォンタムベンチマーク 341
  • 9.179 クォンタム・ブリッジ・テクノロジーズ 341
  • 9.180 クォンタム・ブリリアンス 342
  • 9.181 クォンタムコンピューティング343
  • 9.182 クァンタム・サーキッツ 344
  • 9.183 QuantumCTek 344
  • 9.184 クァンタム・ダイヤモンド・テクノロジーズ345
  • 9.185 クォンタムダイヤモンド社 346
  • 9.186 量子サイコロ 346
  • 9.187 クォンタム・フライトラップ 347
  • 9.188 Quantum Generative Materials LLC 347
  • 9.189 量子マシン 348
  • 9.190 クォンタム・マッズ 349
  • 9.191 クォンタム・モーション・テクノロジー 349
  • 9.192 クァンタムオプティクス・イエナ社 350
  • 9.193 量子ソース 351
  • 9.194 クァンタム・サウス 351
  • 9.195 量子システム 352
  • 9.196 量子トランジスタ 352
  • 9.197 クォンタム・エクスチェンジ 353
  • 9.198 クアントロロックス 353
  • 9.199 クオンツX 354
  • 9.200 キュービテック 354
  • 9.201 キュービット・ファーマシューティカルズ 355
  • 9.202 キューブリッドLLC 355
  • 9.203 QUDOOR 356
  • 9.204 QUDORAテクノロジーズ 356
  • 9.205 クエル社 357
  • 9.206 QuEra Computing 357
  • 9.207 クインテッセンス・ラボ 358
  • 9.208 クァントゲート 358
  • 9.209 クオンツウェア 358
  • 9.210 クオブライ 359
  • 9.211 クオヒレント360
  • 9.212 QuiX Quantum 360
  • 9.213 キューナシス 361
  • 9.214 QNuラボ 362
  • 9.215 QuantLR 363
  • 9.216 クァントウェア 363
  • 9.217 クノバ・コンピューティング 364
  • 9.218 Qunnect 364
  • 9.219 QuSecure 365
  • 9.220 Quside Technologies S.L. 365
  • 9.221 クトロニクス 366
  • 9.222 ランダエモン 366
  • 9.223 レスクワント 367
  • 9.224 リジェクトの計算 367
  • 9.リバーレーン368
  • 9.226 ロトニウム 369
  • 9.227 サフラン 369
  • 9.228 サンドボックス AQ 370
  • 9.229 サクソンQ 370
  • 9.230 SBQuantum 371
  • 9.231 スカリンク 372
  • 9.232 SDT, Inc.
  • 9.233 Seeqc 374
  • 9.234 センコーアドバンスコンポーネンツ 37
  • 9.235 セミクォン・テクノロジーズ社 375
  • 9.236 セミワイズ 376
  • 9.237 サイレント・ウェイブス 377
  • 9.238 シリコン・エクストリーム 377
  • 9.239 シリコン量子コンピューティング 378
  • 9.240 ソリッド・ステートAI 379
  • 9.241 ソフトウエアQ 379
  • 9.242 スパロー・クォンタム社 380
  • 9.243 スペシャル380
  • 9.244 SpinQテクノロジー 381
  • 9.245 スタフォード・コンピューティング 381
  • 9.246 ストラングワークス382
  • 9.247 Supracon AG 382
  • 9.248 sureCore Ltd.383
  • 9.249 シナジー・クァンタム SA 383
  • 9.250 テラ・クァンタム 38
  • 9.251 ThinkQuantum 385
  • 9.252 t0.テクノロジー 385
  • 9.253 東京量子コンピューティング 386
  • 9.254 東芝デジタルソリューションズ 386
  • 9.255 チューリングQ 388
  • 9.256 ユニバーサル・クァンタム 389
  • 9.257 蒸気電池技術 390
  • 9.258 ベリクラウド 391
  • 9.259 ヴェクスラム社 391
  • 9.260 ヴィクトール 392
  • 9.261 ウェーブ・フォトニクス 393
  • 9.262 ウェリンク 393
  • 9.263 ザナドゥ394
  • 9.264 XeedQ GmbH 395
  • 9.265 ゾフィア 396
  • 9.266 XT クァンテック396
  • 9.267 サパタ・コンピューティング 397
  • 9.268 ゼロ点極低温 398
  • 9.269 中外大新科技 398

 

ページTOPに戻る



図表リスト

10 研究方法論 397

11 用語と定義 398

参考文献12件 401

テーブル一覧

  • 表1.第1回と第2回の量子革命21
  • 表2.量子技術における世界政府の取り組み。25
  • 表3.2020-2024年の量子テクノロジー産業の発展。26
  • 表4.量子技術導入の課題35
  • 表 5.量子コンピューターの応用 39
  • 表6.古典コンピューティングと量子コンピューティングの比較。40
  • 表7.量子コンピュータで利用される主要な量子力学的現象。41
  • 表8.量子コンピューターの種類。41
  • 表9.量子コンピューティングと古典コンピューティング、量子インスパイアード・コンピューティング、ニューロモーフィック・コンピューティングとの比較分析。46
  • 表 10.従来のCMOSを超えるさまざまなコンピューティング・パラダイム。47
  • 表11.量子アルゴリズムの応用49
  • 表12.QMLのアプローチ50
  • 表13.異なる量子ビット実装のコヒーレンス時間。54
  • 表14.超電導量子ビット市場のプレーヤー58
  • 表15.捕捉イオン量子コンピューターの初期化、操作、読み出し。61
  • 表16.イオントラップ市場のプレーヤー64
  • 表17.シリコン・スピン量子ビットの初期化、操作、読み出し方法。68
  • 表18.シリコンスピンクォビット市場のプレーヤー68
  • 表19.トポロジカル量子ビットの初期化、操作、読み出し。70
  • 表20.トポロジカル・クビット市場のプレーヤー71
  • 表21.光子量子ビットの長所と短所。73
  • 表22.光子偏光とスクイーズ状態の比較。73
  • 表23.フォトニックプラットフォーム量子コンピューターの初期化、操作、読み出し。74
  • 表24.フォトニック量子ビット市場のプレーヤー75
  • 表25.中性原子量子コンピューターの初期化、操作、読み出し。78
  • 表26.冷原子量子コンピューターとシミュレーターの長所と短所 79
  • 表27.神経原子量子ビット市場のプレーヤー79
  • 表28.ダイヤモンド欠陥スピンベース・コンピューティングの初期化、操作、読み出し。81
  • 表29.ダイヤモンド欠陥スピンベースの量子コンピューター開発のための主要材料。82
  • 表30.ダイヤモンド欠陥量子ビット市場のプレーヤー84
  • 表31.量子アニーラーの長所と短所。85
  • 表32.量子アニーラー市場のプレーヤー87
  • 表33.量子コンピューティング・ソフトウェア市場のプレーヤー90
  • 表34.量子コンピューティングにおける市場の課題。93
  • 表 35.量子コンピューティングのバリューチェーン。95
  • 表36.量子コンピューティングの市場と応用。96
  • 表37.医薬品向け量子技術の市場プレイヤー。99
  • 表38.化学向け量子コンピューティングの市場プレイヤー100
  • 表39.量子コンピューターの自動車への応用、101
  • 表40.輸送向け量子コンピューティングの市場プレイヤー。103
  • 表 41.金融サービス向け量子コンピューティングの市場プレイヤー 104
  • 表42.量子化学と人工知能(AI)への応用。106
  • 表43.量子化学と人工知能(AI)の市場課題。108
  • 表44.量子化学とAIの市場プレイヤー108
  • 表45.量子通信の主な種類。110
  • 表46.量子通信への応用。111
  • 表47.QRNGアプリケーション。113
  • 表 48.QRNG製品を開発する主要企業。118
  • 表49.企業別の光QRNG。120
  • 表50.ポスト量子暗号の市場プレイヤー。134
  • 表51.量子通信における市場の課題。155
  • 表52.量子通信の市場プレイヤー156
  • 表53.古典センサーと量子センサーの比較。160
  • 表 54.量子センサーへの応用。161
  • 表55.量子センシングを可能にする技術アプローチ 162
  • 表56.量子センサーの価値提案。163
  • 表 57.水晶振動子時計と原子時計の主な課題と限界。165
  • 表58.原子時計の分数不確かさを改善するために研究されている新しい方法。167
  • 表59.高精度量子時間測定を開発中の企業 169
  • 表60.原子時計の主要プレーヤー170
  • 表61.磁界センサーの主要性能パラメーターと測定基準の比較分析。171
  • 表62.磁界センサーの種類172
  • 表63.さまざまなタイプの量子磁場センサーの市場機会。173
  • 表64.SQUID の応用例。173
  • 表65.SQUID(超伝導量子干渉素子)の市場機会。175
  • 表66.SQUIDの主要プレーヤー176
  • 表67.光励起磁力計(OPM)の用途。177
  • 表 68.光励起型磁力計(OPM)の主要プレーヤー。178
  • 表69.TMR(トンネル磁気抵抗)センサーの用途。180
  • 表70.TMR(トンネル磁気抵抗)センサーの市場プレーヤー。181
  • 表71.N-Vセンター磁場センターの用途 183
  • 表 72.N-Vセンター磁界センサーの主要プレーヤー183
  • 表73.量子重力計の応用 186
  • 表74.量子重力センシングと地下マッピングに一般的に使用される他のいくつかの技術との比較表。186
  • 表75.量子重力計の主要プレーヤー188
  • 表76.量子ジャイロスコープとMEMsジャイロスコープおよび光学ジャイロスコープとの比較。190
  • 表77.量子ジャイロスコープの市場と用途。193
  • 表78.量子ジャイロの主要プレーヤー193
  • 表79.量子イメージセンサーの種類と主な特徴/.195
  • 表80.量子イメージセンサーの応用。196
  • 表81.量子イメージセンサーの主要企業198
  • 表82.量子レーダーと従来のレーダーおよびライダー技術の比較。200
  • 表83.量子レーダーの応用201
  • 表84.量子センシングにおける市場と技術の課題。202
  • 表85.量子電池と他の従来型電池との比較。204
  • 表86.量子電池の種類205
  • 表87.量子電池の応用206
  • 表88.量子電池の市場課題。207
  • 表89.量子電池の市場プレーヤー208
  • 表 90.量子技術における材料。209
  • 表 91.量子テクノロジーにおける超伝導体。210
  • 表 92.量子テクノロジーにおけるフォトニクス、シリコンフォトニクス、光学。211
  • 表93.量子テクノロジーにおけるナノ材料。213
  • 表94.量子技術への投資資金219
  • 表95.量子テクノロジー関連企業220
  • 表96.量子コンピューティングの世界市場-ハードウェア、ソフトウェア、サービス、2023~2035年(10億米ドル)。223
  • 表 97.量子センサーの種類別市場、2018~2035年(百万米ドル)。225
  • 表 98.QKD システムの市場、2018~2035 年(百万米ドル)。227

図表一覧

  • 図1.量子コンピューターの開発年表。22
  • 図2.2012~2023年の量子投資額(百万米ドル)。24
  • 図3.各国の量子イニシアティブと資金調達25
  • 図4.量子コンピューティングアーキテクチャ。37
  • 図5.超伝導技術に基づくIBM製7量子ビットチップの初期設計。38
  • 図6.様々な2Dから3Dチップへのチップ統合技術。40
  • 図7.IBM Q System One量子コンピューター。43
  • 図8.従来にないコンピューティング・アプローチ。48
  • 図9.53量子ビットSycamoreプロセッサー。51
  • 図10.IBM量子コンピューティング・システムの内部。量子チップは中央下の小さな暗い四角の中にある。53
  • 図11.超伝導量子コンピューター。56
  • 図12.超伝導量子コンピューターの概略図。57
  • 図13.超伝導量子ビットに使用される部品と材料。58
  • 図14.超伝導量子コンピューターのSWOT分析:。60
  • 図15.イオントラップ量子コンピューター。60
  • 図16.イオンをトラップする様々な方法 61
  • 図17.Universal Quantum社のペニングトラップにおけるシャトリングイオン構造。62
  • 図18.トラップドイオン量子コンピューティングのSWOT分析。65
  • 図19 CMOSシリコンスピンクビット。66
  • 図20 シリコン量子ドット量子ビット。67
  • 図21.シリコンスピン量子コンピューターのSWOT分析。70
  • 図22.トポロジカル量子ビットのSWOT分析 72
  • 図23.フォトニック量子コンピュータのSWOT分析77
  • 図24.様々な配置で配置された中性原子(緑色の点) 77
  • 図25.中性原子量子コンピューターのSWOT分析。80
  • 図26.NVセンターのコンポーネント。81
  • 図27.ダイヤモンド欠陥量子コンピューターのSWOT分析。83
  • 図28.D-Wave量子アニーラー。86
  • 図29.量子アニーラーのSWOT分析。87
  • 図30.量子ソフトウェア開発プラットフォーム。88
  • 図31.量子コンピューティングのSWOT分析。95
  • 図32.量子化学とAIのSWOT分析。108
  • 図33.IDQ量子数発生器。112
  • 図34.量子乱数生成技術のSWOT分析。122
  • 図35.量子鍵配布技術のSWOT分析。131
  • 図36.SWOT分析:ポスト量子暗号(PQC)。136
  • 図37.ネットワークのSWOT分析。154
  • 図38.Q.ANT量子粒子センサー。164
  • 図39.量子センサー市場のSWOT分析。165
  • 図40.NISTの小型光クロック。168
  • 図41.原子時計のSWOT分析。170
  • 図42.SQUID磁力計の原理。175
  • 図43.スクイズのSWOT分析。177
  • 図44.OPMのSWOT分析 179
  • 図45.トンネル磁気抵抗機構とTMR比のフォーマット。180
  • 図46.TMR(トンネル磁気抵抗)センサーのSWOT分析。182
  • 図47.N-Vセンター磁界センサーのSWOT分析。184
  • 図48.量子重力計。185
  • 図49.量子重力計のSWOT分析。190
  • 図50.量子ジャイロスコープのSWOT分析。195
  • 図51.量子画像センシングのSWOT分析。197
  • 図52.量子レーダーの原理。199
  • 図53.量子レーダーのプロトタイプ。200
  • 図54.電源から複数のセルで構成されるバッテリーへのエネルギー(青)の流れの概略図。(左)205
  • 図55.量子電池のSWOT分析。207
  • 図56.量子テクノロジー産業のマーケットマップ。216
  • 図57.テックジャイアンツの量子テクノロジー活動217
  • 図58.量子テクノロジー分野別投資額(2023年218
  • 図59.2023年半ばまでの量子コンピューティングの公的資金と産業界からの資金(百万米ドル)。222
  • 図60.量子コンピューティングの世界市場-ハードウェア、ソフトウェア、サービス(2023~2035年)(10億米ドル)。224
  • 図61.量子センサーの種類別市場、2018~2035年(百万米ドル)。226
  • 図62.QKD システムの市場、2018~2035 年(百万米ドル)。228
  • 図63.アーチャー-EPFLスピン共鳴回路。239
  • 図64.IBM Q System One量子コンピューター。272
  • 図65.ColdQuanta 量子コア(左)、物理ステーション(中央)、原子制御チップ(右)。276
  • 図66.インテル・トンネル・フォールズ12量子ビット・チップ。277
  • 図67.IonQのイオントラップ278
  • 図68.20量子ビットの量子コンピューター。280
  • 図69.メイベルの大型冷蔵庫。290
  • 図70.PsiQuantum社のモジュール化された量子コンピューティング・システム・ネットワーク。316
  • 図71.SemiQ初のチッププロトタイプ。374
  • 図72.東芝QKD開発年表。385
  • 図73.東芝の量子鍵配布技術。386

 

ページTOPに戻る


 

Summary

The global quantum technology market is an emerging industry with the potential to revolutionize computing, cryptography, sensing, imaging, and communications. Billions of dollars have been invested so far, reflecting the massive interest from governments, established tech giants, and venture capitalists. 

The Global Quantum Technology Market 2025-2035 provides an in-depth analysis of the rapidly evolving quantum technology landscape, offering strategic insights into market trends, technological advancements, and growth projections for the period 2025-2035. As quantum technologies transition from research labs to commercial applications, this report serves as an essential guide for investors, policymakers, and industry stakeholders navigating this transformative field. Report contents include:

  • Market Size and Growth Projections: Detailed forecasts for the global quantum technology market, segmented by key sectors including quantum computing, quantum communications, and quantum sensing.
  • Technology Analysis: In-depth examination of various quantum technologies, including superconducting qubits, trapped ions, silicon spin qubits, photonic qubits, and emerging approaches like topological quantum computing.
  • Application Landscape: Comprehensive overview of quantum technology applications across industries such as pharmaceuticals, finance, cybersecurity, and materials science.
  • Competitive Landscape: Analysis of over 265 key players, from tech giants to innovative startups, shaping the quantum technology ecosystem. Companies profiled include Diraq, LQUOM, memQ, Nanofiber Quantum Technologies, Nomad Atomics, Oxford Ionics, PASQAL, Planckian, Polaris Quantum Biotech (POLARISqb), PsiQuantum, Quantum Bridge, Quantum Circuits, Inc.,  QUANTier, Quantum Brilliance, Quantum Motion, Quantinuum, Quside Technologies S.L.,  Quobly, Riverlane, SemiQon, Silicon Extreme, Silicon Quantum Computing (SQC) and Sparrow Quantum.
  • Investment Trends: Insights into venture capital, corporate investments, and government funding driving the quantum sector's growth.
  • Regulatory Environment: Overview of global government initiatives and regulatory frameworks influencing quantum technology development and adoption.
  • Quantum Computing: Analysis of hardware (including various qubit technologies), software platforms, and quantum-as-a-service offerings.
  • Quantum Communications: Examination of quantum key distribution (QKD) systems, post-quantum cryptography, and the emerging quantum internet.
  • Quantum Sensing: Insights into quantum sensors for applications in navigation, medical imaging, and scientific research.
  • Materials for Quantum Technology: Overview of critical materials and components enabling quantum devices.
  • Quantum technology applications across various sectors:
    • Pharmaceuticals and Healthcare: Drug discovery, protein folding simulations
    • Finance: Portfolio optimization, risk analysis, fraud detection
    • Cybersecurity: Post-quantum cryptography, secure communications
    • Materials Science: Quantum chemistry simulations for new materials development
    • Logistics and Transportation: Route optimization, traffic flow management
  • Long-term market projections to 2035
  • Potential disruptive technologies and their impact
  • Scenarios for quantum supremacy and its implications across industries

 

This market report is an indispensable resource for:

  • Quantum technology companies and start-ups
  • Investors and venture capitalists
  • Government agencies and policymakers
  • Research institutions and universities
  • Technology consultants and analysts
  • End-user industries exploring quantum applications

 



ページTOPに戻る


Table of Contents

1 EXECUTIVE SUMMARY 21

  • 1.1 First and second quantum revolutions 21
  • 1.2 Current quantum technology market landscape 22
    • 1.2.1 Key developments 22
  • 1.3 Investment Landscape 23
  • 1.4 Global government initiatives 24
  • 1.5 Industry developments 2020-2024 26
  • 1.6 Challenges for quantum technologies adoption 35

2 QUANTUM COMPUTING 37

  • 2.1 What is quantum computing? 37
    • 2.1.1 Operating principle 38
    • 2.1.2 Classical vs quantum computing 39
    • 2.1.3 Quantum computing technology 41
      • 2.1.3.1 Quantum emulators 44
      • 2.1.3.2 Quantum inspired computing 44
      • 2.1.3.3 Quantum annealing computers 44
      • 2.1.3.4 Quantum simulators 44
      • 2.1.3.5 Digital quantum computers 44
      • 2.1.3.6 Continuous variables quantum computers 45
      • 2.1.3.7 Measurement Based Quantum Computing (MBQC) 45
      • 2.1.3.8 Topological quantum computing 45
      • 2.1.3.9 Quantum Accelerator 45
    • 2.1.4 Competition from other technologies 46
      • 2.1.5 Quantum algorithms 48
      • 2.1.5.1 Quantum Software Stack 49
      • 2.1.5.2 Quantum Machine Learning 50
      • 2.1.5.3 Quantum Simulation 50
      • 2.1.5.4 Quantum Optimization 51
      • 2.1.5.5 Quantum Cryptography 51
        • 2.1.5.5.1 Quantum Key Distribution (QKD) 51
        • 2.1.5.5.2 Post-Quantum Cryptography 52
    • 2.1.6 Hardware 53
      • 2.1.6.1 Qubit Technologies 54
        • 2.1.6.1.1 Superconducting Qubits 55
          • 2.1.6.1.1.1 Technology description 55
          • 2.1.6.1.1.2 Materials 56
          • 2.1.6.1.1.3 Market players 58
          • 2.1.6.1.1.4 Swot analysis 59
        • 2.1.6.1.2 Trapped Ion Qubits 60
          • 2.1.6.1.2.1 Technology description 60
          • 2.1.6.1.2.2 Materials 62
            • 2.1.6.1.2.2.1 Integrating optical components 62
            • 2.1.6.1.2.2.2 Incorporating high-quality mirrors and optical cavities 62
            • 2.1.6.1.2.2.3 Engineering the vacuum packaging and encapsulation 63
            • 2.1.6.1.2.2.4 Removal of waste heat 63
          • 2.1.6.1.2.3 Market players 64
          • 2.1.6.1.2.4 Swot analysis 64
        • 2.1.6.1.3 Silicon Spin Qubits 65
          • 2.1.6.1.3.1 Technology description 65
          • 2.1.6.1.3.2 Quantum dots 66
          • 2.1.6.1.3.3 Market players 68
          • 2.1.6.1.3.4 SWOT analysis 69
        • 2.1.6.1.4 Topological Qubits 70
          • 2.1.6.1.4.1 Technology description 70
            • 2.1.6.1.4.1.1 Cryogenic cooling 71
          • 2.1.6.1.4.2 Market players 71
          • 2.1.6.1.4.3 SWOT analysis 72
        • 2.1.6.1.5 Photonic Qubits 72
          • 2.1.6.1.5.1 Technology description 72
          • 2.1.6.1.5.2 Market players 75
          • 2.1.6.1.5.3 Swot analysis 76
        • 2.1.6.1.6 Neutral atom (cold atom) qubits 77
          • 2.1.6.1.6.1 Technology description 77
          • 2.1.6.1.6.2 Market players 79
          • 2.1.6.1.6.3 Swot analysis 79
        • 2.1.6.1.7 Diamond-defect qubits 80
          • 2.1.6.1.7.1 Technology description 80
          • 2.1.6.1.7.2 SWOT analysis 83
          • 2.1.6.1.7.3 Market players 84
        • 2.1.6.1.8 Quantum annealers 84
          • 2.1.6.1.8.1 Technology description 84
          • 2.1.6.1.8.2 SWOT analysis 86
          • 2.1.6.1.8.3 Market players 87
      • 2.1.6.2 Architectural Approaches 87
    • 2.1.7 Software 88
      • 2.1.7.1 Technology description 89
      • 2.1.7.2 Cloud-based services- QCaaS (Quantum Computing as a Service). 89
      • 2.1.7.3 Market players 90
  • 2.2 Market challenges 93
  • 2.3 SWOT analysis 94
  • 2.4 Quantum computing value chain 95
  • 2.5 Markets and applications for quantum computing 96
    • 2.5.1 Pharmaceuticals 96
      • 2.5.1.1 Market overview 96
        • 2.5.1.1.1 Drug discovery 97
        • 2.5.1.1.2 Diagnostics 97
        • 2.5.1.1.3 Molecular simulations 97
        • 2.5.1.1.4 Genomics 98
        • 2.5.1.1.5 Proteins and RNA folding 98
      • 2.5.1.2 Market players 99
    • 2.5.2 Chemicals 100
      • 2.5.2.1 Market overview 100
      • 2.5.2.2 Market players 100
    • 2.5.3 Transportation 101
      • 2.5.3.1 Market overview 101
      • 2.5.3.2 Market players 103
    • 2.5.4 Financial services 104
      • 2.5.4.1 Market overview 104
      • 2.5.4.2 Market players 104

3 QUANTUM CHEMISTRY AND ARTIFICAL INTELLIGENCE (AI) 106

  • 3.1 Technology description 106
  • 3.2 Applications 106
  • 3.3 SWOT analysis 107
  • 3.4 Market challenges 108
  • 3.5 Market players 108

4 QUANTUM COMMUNICATIONS 110

  • 4.1 Technology description 110
  • 4.2 Types 110
  • 4.3 Applications 111
  • 4.4 Quantum Random Numbers Generators (QRNG) 111
    • 4.4.1 Overview 111
    • 4.4.2 Applications 113
      • 4.4.2.1 Encryption for Data Centers 114
      • 4.4.2.2 Consumer Electronics 114
      • 4.4.2.3 Automotive/Connected Vehicle 115
      • 4.4.2.4 Gambling and Gaming 116
      • 4.4.2.5 Monte Carlo Simulations 117
    • 4.4.3 Advantages 118
    • 4.4.4 Principle of Operation of Optical QRNG Technology 119
    • 4.4.5 Non-optical approaches to QRNG technology 121
    • 4.4.6 SWOT Analysis 121
  • 4.5 Quantum Key Distribution (QKD) 122
    • 4.5.1 Overview 122
    • 4.5.2 Asymmetric and Symmetric Keys 122
    • 4.5.3 Principle behind QKD 124
    • 4.5.4 Why is QKD More Secure Than Other Key Exchange Mechanisms? 125
    • 4.5.5 Discrete Variable vs. Continuous Variable QKD Protocols 126
    • 4.5.6 Key Players 127
    • 4.5.7 Challenges 128
    • 4.5.8 SWOT Analysis 130
  • 4.6 Post-quantum cryptography (PQC) 131
    • 4.6.1 Overview 131
    • 4.6.2 Security systems integration 131
    • 4.6.3 PQC standardization 132
    • 4.6.4 Transitioning cryptographic systems to PQC 132
    • 4.6.5 Market players 134
    • 4.6.6 SWOT Analysis 135
  • 4.7 Quantum homomorphic cryptography 136
  • 4.8 Quantum Teleportation 137
  • 4.9 Quantum Networks 137
    • 4.9.1 Overview 137
    • 4.9.2 Advantages 137
    • 4.9.3 Role of Trusted Nodes and Trusted Relays 138
    • 4.9.4 Entanglement Swapping and Optical Switches 138
    • 4.9.5 Multiplexing quantum signals with classical channels in the O-band 139
      • 4.9.5.1 Wavelength-division multiplexing (WDM) and time-division multiplexing (TDM) 140
    • 4.9.6 Twin-Field Quantum Key Distribution (TF-QKD) 140
    • 4.9.7 Enabling global-scale quantum communication 141
    • 4.9.8 Advanced optical fibers and interconnects 142
    • 4.9.9 Photodetectors in quantum networks 143
      • 4.9.9.1 Avalanche photodetectors (APDs) 143
      • 4.9.9.2 Single-photon avalanche diodes (SPADs) 143
      • 4.9.9.3 Silicon Photomultipliers (SiPMs) 144
    • 4.9.10 Cryostats 144
      • 4.9.10.1 Cryostat architectures 145
    • 4.9.11 Infrastructure requirements 148
    • 4.9.12 Global activity 150
      • 4.9.12.1 China 150
      • 4.9.12.2 Europe 151
      • 4.9.12.3 The Netherlands 151
      • 4.9.12.4 The United Kingdom 152
      • 4.9.12.5 US 152
      • 4.9.12.6 Japan 153
    • 4.9.13 SWOT analysis 154
  • 4.10 Quantum Memory 155
  • 4.11 Quantum Internet 155
  • 4.12 Market challenges 155
  • 4.13 Market players 156

5 QUANTUM SENSING 160

  • 5.1 Technology description 160
    • 5.1.1 Quantum Sensing Principles 161
    • 5.1.2 SWOT analysis 164
    • 5.1.3 Atomic Clocks 165
      • 5.1.3.1 High frequency oscillators 166
        • 5.1.3.1.1 Emerging oscillators 166
      • 5.1.3.2 Caesium atoms 166
      • 5.1.3.3 Self-calibration 166
      • 5.1.3.4 Optical atomic clocks 167
        • 5.1.3.4.1 Chip-scale optical clocks 168
      • 5.1.3.5 Companies 169
      • 5.1.3.6 SWOT analysis 169
    • 5.1.4 Quantum Magnetic Field Sensors 171
      • 5.1.4.1 Introduction 171
      • 5.1.4.2 Motivation for use 171
      • 5.1.4.3 Market opportunity 173
      • 5.1.4.4 Superconducting Quantum Interference Devices (Squids) 173
        • 5.1.4.4.1 Applications 173
        • 5.1.4.4.2 Key players 176
        • 5.1.4.4.3 SWOT analysis 176
      • 5.1.4.5 Optically Pumped Magnetometers (OPMs) 177
        • 5.1.4.5.1 Applications 177
        • 5.1.4.5.2 Key players 178
        • 5.1.4.5.3 SWOT analysis 179
      • 5.1.4.6 Tunneling Magneto Resistance Sensors (TMRs) 180
        • 5.1.4.6.1 Applications 180
        • 5.1.4.6.2 Key players 181
        • 5.1.4.6.3 SWOT analysis 181
      • 5.1.4.7 Nitrogen Vacancy Centers (N-V Centers) 182
        • 5.1.4.7.1 Applications 183
        • 5.1.4.7.2 Key players 183
        • 5.1.4.7.3 SWOT analysis 184
    • 5.1.5 Quantum Gravimeters 185
      • 5.1.5.1 Technology description 185
      • 5.1.5.2 Applications 186
      • 5.1.5.3 Key players 188
      • 5.1.5.4 SWOT analysis 189
    • 5.1.6 Quantum Gyroscopes 190
      • 5.1.6.1 Technology description 190
        • 5.1.6.1.1 Inertial Measurement Units (IMUs) 191
        • 5.1.6.1.2 Atomic quantum gyroscopes 191
      • 5.1.6.2 Applications 192
      • 5.1.6.3 Key players 193
      • 5.1.6.4 SWOT analysis 194
    • 5.1.7 Quantum Image Sensors 195
      • 5.1.7.1 Technology description 195
      • 5.1.7.2 Applications 196
      • 5.1.7.3 SWOT analysis 197
      • 5.1.7.4 Key players 198
    • 5.1.8 Quantum Radar 199
      • 5.1.8.1 Technology description 199
      • 5.1.8.2 Applications 200
    • 5.1.9 Quantum chemical sensors 201
      • 5.1.10 Quantum NEM and MEMs 202
        • 5.1.10.1 Technology description 202
  • 5.2 Market and technology challenges 202

6 QUANTUM BATTERIES 204

  • 6.1 Technology description 204
  • 6.2 Types 205
  • 6.3 Applications 206
  • 6.4 SWOT analysis 206
  • 6.5 Market challenges 207
  • 6.6 Market players 208

7 MATERIALS FOR QUANTUM TECHNOLOGY 209

  • 7.1 Superconductors 209
    • 7.1.1 Overview 209
    • 7.1.2 Types and Properties 210
    • 7.1.3 Opportunities 210
  • 7.2 Photonics, Silicon Photonics and Optical Components 211
    • 7.2.1 Overview 211
    • 7.2.2 Types and Properties 211
    • 7.2.3 Opportunities 212
  • 7.3 Nanomaterials 213
    • 7.3.1 Overview 213
    • 7.3.2 Types and Properties 213
    • 7.3.3 Opportunities 213

8 MARKET ANALYSIS 215

  • 8.1 Market map 215
  • 8.2 Key industry players 216
    • 8.2.1 Start-ups 217
    • 8.2.2 Tech Giants 217
    • 8.2.3 National Initiatives 218
  • 8.3 Investment funding 218
    • 8.3.1 Venture Capital 220
    • 8.3.2 M&A 220
    • 8.3.3 Corporate Investment 221
    • 8.3.4 Government Funding 221
  • 8.4 Global market revenues 2018-2035 223
    • 8.4.1 Quantum computing 223
    • 8.4.2 Other segments 225
      • 8.4.2.1 Quantum sensors 225
      • 8.4.2.2 QKD systems 227

9 COMPANY PROFILES 229

  • 9.1 A* Quantum 229
  • 9.2 AbaQus 229
  • 9.3 Absolut System 230
  • 9.4 Adaptive Finance Technologies 230
  • 9.5 Aegiq 230
  • 9.6 Agnostiq GmbH 231
  • 9.7 Algorithmiq Oy 232
  • 9.8 Airbus 233
  • 9.9 Alea Quantum 233
  • 9.10 Alpine Quantum Technologies GmbH (AQT) 234
  • 9.11 Alice&Bob 235
  • 9.12 Aliro Quantum 236
  • 9.13 Anametric, Inc. 237
  • 9.14 Anyon Systems Inc. 237
  • 9.15 Aqarios GmbH 238
  • 9.16 Aquark Technologies 238
  • 9.17 Archer Materials 239
  • 9.18 Arclight Quantum 240
  • 9.19 Arqit Quantum Inc. 240
  • 9.20 ARQUE Systems GmbH 241
  • 9.21 Artificial Brain 242
  • 9.22 Atlantic Quantum 242
  • 9.23 Atom Computing 243
  • 9.24 Atom Quantum Labs 243
  • 9.25 Atomionics 244
  • 9.26 Atos Quantum 245
  • 9.27 Baidu, Inc. 245
  • 9.28 BEIT 246
  • 9.29 Bleximo 246
  • 9.30 BlueQubit 247
  • 9.31 Bohr Quantum Technology 247
  • 9.32 Bosch Quantum Sensing 248
  • 9.33 BosonQ Ps 249
  • 9.34 C12 Quantum Electronics 249
  • 9.35 Cambridge Quantum Computing (CQC) 250
  • 9.36 CAS Cold Atom 250
  • 9.37 CEW Systems Canada Inc. 251
  • 9.38 Chipiron 251
  • 9.39 Chiral Nano AG 252
  • 9.40 ColibriTD 252
  • 9.41 Classiq Technologies 253
  • 9.42 Crypta Labs Ltd. 254
  • 9.43 CryptoNext Security 254
  • 9.44 Crystal Quantum Computing 255
  • 9.45 D-Wave Systems 255
  • 9.46 Dirac 256
  • 9.47 Diraq 256
  • 9.48 Delft Circuits 257
  • 9.49 Delta g 258
  • 9.50 Duality Quantum Photonics 258
  • 9.51 EeroQ 258
  • 9.52 eleQtron 259
  • 9.53 Element Six 260
  • 9.54 Elyah 260
  • 9.55 Entropica Labs 261
  • 9.56 Equal1.labs 262
  • 9.57 EvolutionQ 262
  • 9.58 Exail Quantum Sensors 263
  • 9.59 EYL 263
  • 9.60 First Quantum, Inc. 264
  • 9.61 Fujitsu 265
  • 9.62 Genesis Quantum Technology 265
  • 9.63 Good Chemistry 266
  • 9.64 Google Quantum AI 266
  • 9.65 g2-Zero 267
  • 9.66 Haiqu 268
  • 9.67 Hefei Wanzheng Quantum Technology Co., Ltd. 268
  • 9.68 High Q Technologies Inc. 269
  • 9.69 Horizon Quantum Computing 269
  • 9.70 HQS Quantum Simulations 270
  • 9.71 HRL 271
  • 9.72 Huayi Quantum 271
  • 9.73 IBM 272
  • 9.74 Icarus Quantum 273
  • 9.75 Icosa Computing 274
  • 9.76 ID Quantique 274
  • 9.77 InfinityQ 275
  • 9.78 Infineon Technologies AG 276
  • 9.79 Infleqtion 276
  • 9.80 Intel 277
  • 9.81 IonQ 278
  • 9.82 ISARA Corporation 280
  • 9.83 IQM Quantum Computers 280
  • 9.84 JiJ 282
  • 9.85 JoS QUANTUM GmbH 282
  • 9.86 KEEQuant GmbH 283
  • 9.87 KETS Quantum Security 283
  • 9.88 Ki3 Photonics 284
  • 9.89 Kipu Quantum 284
  • 9.90 Kiutra GmbH 285
  • 9.91 Kuano Limited 285
  • 9.92 Kvantify 286
  • 9.93 levelQuantum 287
  • 9.94 Ligentec 287
  • 9.95 LQUOM 288
  • 9.96 Lux Quanta 288
  • 9.97 M Squared Lasers 289
  • 9.98 Materials Nexus 290
  • 9.99 Maybell Quantum Industries 290
  • 9.100 memQ 291
  • 9.101 Menlo Systems GmbH 292
  • 9.102 Menten AI 292
  • 9.103 Microsoft 293
  • 9.104 Miraex 293
  • 9.105 Molecular Quantum Solutions 294
  • 9.106 Montana Instruments 295
  • 9.107 Multiverse Computing 295
  • 9.108 Mycryofirm 296
  • 9.109 Nanofiber Quantum Technologies 296
  • 9.110 NEC Corporation 297
  • 9.111 Next Generation Quantum 298
  • 9.112 Nomad Atomics 298
  • 9.113 Nord Quantique 299
  • 9.114 Nordic Quantum Computing Group AS 299
  • 9.115 NTT 300
  • 9.116 Nu Quantum 300
  • 9.117 NVision 301
  • 9.118 1Qbit 302
  • 9.119 ORCA Computing 302
  • 9.120 Orange Quantum Systems 303
  • 9.121 Origin Quantum Computing Technology 304
  • 9.122 Oxford Ionics 305
  • 9.123 Oxford Quantum Circuits (OQC) 305
  • 9.124 PacketLight Networks 307
  • 9.125 ParityQC 307
  • 9.126 Pasqal 308
  • 9.127 Peptone 309
  • 9.128 Phasecraft 309
  • 9.129 Photonic, Inc. 310
  • 9.130 Pixel Photonics 311
  • 9.131 Planqc GmbH 311
  • 9.132 Planckian 312
  • 9.133 Plassys 313
  • 9.134 Polaris Quantum Biotech (POLARISqb) 313
  • 9.135 Post Quantum 314
  • 9.136 PQSecure 314
  • 9.137 PQShield 315
  • 9.138 ProteinQure 315
  • 9.139 PsiQuantum 316
  • 9.140 Q.ANT 317
  • 9.141 Q* Bird 318
  • 9.142 Qaisec 318
  • 9.143 Qasky (Anhui Wentian Quantum Technology) 319
  • 9.144 QBoson 319
  • 9.145 Qblox 320
  • 9.146 qBraid 320
  • 9.147 Q-CTRL 321
  • 9.148 QC Design 322
  • 9.149 QC Ware 322
  • 9.150 QC82 323
  • 9.151 Quantum Diamond Technologies Inc. (QDTI) 324
  • 9.152 QEDMA 324
  • 9.153 Qilimanjaro Quantum Tech 325
  • 9.154 Qindom 326
  • 9.155 QLM Technology 326
  • 9.156 QMware 327
  • 9.157 Qnami 328
  • 9.158 QphoX 328
  • 9.159 QpiAI 329
  • 9.160 Qrate Quantum Communications 330
  • 9.161 Qpurpose 330
  • 9.162 Quantum Resistant Cryptography (QRC) 330
  • 9.163 Qruise 331
  • 9.164 QSIMPLUS 331
  • 9.165 QSimulate 332
  • 9.166 QTI s.r.l. 333
  • 9.167 Quandela 333
  • 9.168 Quanscient Oy 334
  • 9.169 Quantagonia 335
  • 9.170 QuantaMap 335
  • 9.171 QuantCAD LLC 336
  • 9.172 QuantiCor Security GmbH 336
  • 9.173 Qunasys 337
  • 9.174 QUANTier 338
  • 9.175 Quantinuum 338
  • 9.176 QuantrolOx 339
  • 9.177 Quantropi 340
  • 9.178 Quantum Benchmark 341
  • 9.179 Quantum Bridge Technologies 341
  • 9.180 Quantum Brilliance 342
  • 9.181 Quantum Computing Inc. 343
  • 9.182 Quantum Circuits Inc 344
  • 9.183 QuantumCTek 344
  • 9.184 Quantum Diamond Technologies, Inc. 345
  • 9.185 QuantumDiamonds GmbH 346
  • 9.186 Quantum Dice 346
  • 9.187 Quantum Flytrap 347
  • 9.188 Quantum Generative Materials LLC 347
  • 9.189 Quantum Machines 348
  • 9.190 Quantum Mads 349
  • 9.191 Quantum Motion Technology 349
  • 9.192 Quantum Optics Jena GmbH 350
  • 9.193 Quantum Source 351
  • 9.194 Quantum South 351
  • 9.195 Quantum Systems 352
  • 9.196 Quantum Transistors 352
  • 9.197 Quantum Xchange 353
  • 9.198 QuantrolOx 353
  • 9.199 QuantX 354
  • 9.200 Qubitekk 354
  • 9.201 Qubit Pharmaceuticals 355
  • 9.202 Qubrid LLC 355
  • 9.203 QUDOOR 356
  • 9.204 QUDORA Technologies 356
  • 9.205 QuEL, Inc. 357
  • 9.206 QuEra Computing 357
  • 9.207 Quintessence Labs 358
  • 9.208 QuantGates 358
  • 9.209 QuantWare 358
  • 9.210 Quobly 359
  • 9.211 Quoherent 360
  • 9.212 QuiX Quantum 360
  • 9.213 QunaSys 361
  • 9.214 QNu Labs 362
  • 9.215 QuantLR 363
  • 9.216 QuantWare 363
  • 9.217 Qunova Computing 364
  • 9.218 Qunnect 364
  • 9.219 QuSecure 365
  • 9.220 Quside Technologies S.L. 365
  • 9.221 Qutronix 366
  • 9.222 Randaemon 366
  • 9.223 Resquant 367
  • 9.224 Rigetti Computing 367
  • 9.225 Riverlane 368
  • 9.226 Rotonium 369
  • 9.227 Safran 369
  • 9.228 Sandbox AQ 370
  • 9.229 SaxonQ 370
  • 9.230 SBQuantum 371
  • 9.231 SCALINQ 372
  • 9.232 SDT, Inc. 372
  • 9.233 Seeqc 374
  • 9.234 Senko Advance Components Ltd 37
  • 9.235 SemiQon Technologies Oy 375
  • 9.236 SemiWise 376
  • 9.237 Silent Waves 377
  • 9.238 Silicon Extreme 377
  • 9.239 Silicon Quantum Computing 378
  • 9.240 Solid State AI 379
  • 9.241 softwareQ 379
  • 9.242 Sparrow Quantum ApS 380
  • 9.243 SpeQtral 380
  • 9.244 SpinQ Technology 381
  • 9.245 Stafford Computing 381
  • 9.246 Strangeworks, Inc. 382
  • 9.247 Supracon AG 382
  • 9.248 sureCore Ltd. 383
  • 9.249 Synergy Quantum SA 383
  • 9.250 Terra Quantum 38
  • 9.251 ThinkQuantum 385
  • 9.252 t0.technology 385
  • 9.253 Tokyo Quantum Computing 386
  • 9.254 Toshiba Digital Solutions 386
  • 9.255 TuringQ 388
  • 9.256 Universal Quantum 389
  • 9.257 Vapor Cell Technologies 390
  • 9.258 VeriQloud 391
  • 9.259 Vexlum Oy 391
  • 9.260 Viqthor 392
  • 9.261 Wave Photonics 393
  • 9.262 Welinq 393
  • 9.263 Xanadu 394
  • 9.264 XeedQ GmbH 395
  • 9.265 Xofia 396
  • 9.266 XT Quantech 396
  • 9.267 Zapata Computing 397
  • 9.268 Zero Point Cryogenics 398
  • 9.269 Zhongwei Daxin Technology 398

ページTOPに戻る



List of Tables/Graphs

10 RESEARCH METHODOLOGY 397

11 TERMS AND DEFINITIONS 398

12 REFERENCES 401

List of Tables

  • Table 1. First and second quantum revolutions. 21
  • Table 2. Global government initiatives in quantum technologies. 25
  • Table 3. Quantum technologies industry developments 2020-2024. 26
  • Table 4. Challenges for quantum technologies adoption. 35
  • Table 5. Applications for quantum computing 39
  • Table 6. Comparison of classical versus quantum computing. 40
  • Table 7. Key quantum mechanical phenomena utilized in quantum computing. 41
  • Table 8. Types of quantum computers. 41
  • Table 9. Comparative analysis of quantum computing with classical computing, quantum-inspired computing, and neuromorphic computing. 46
  • Table 10. Different computing paradigms beyond conventional CMOS. 47
  • Table 11. Applications of quantum algorithms. 49
  • Table 12. QML approaches. 50
  • Table 13. Coherence times for different qubit implementations. 54
  • Table 14. Superconducting qubit market players. 58
  • Table 15. Initialization, manipulation and readout for trapped ion quantum computers. 61
  • Table 16. Ion trap market players. 64
  • Table 17. Initialization, manipulation, and readout methods for silicon-spin qubits. 68
  • Table 18. Silicon spin qubits market players. 68
  • Table 19. Initialization, manipulation and readout of topological qubits. 70
  • Table 20. Topological qubits market players. 71
  • Table 21. Pros and cons of photon qubits. 73
  • Table 22. Comparison of photon polarization and squeezed states. 73
  • Table 23. Initialization, manipulation and readout of photonic platform quantum computers. 74
  • Table 24. Photonic qubit market players. 75
  • Table 25. Initialization, manipulation and readout for neutral-atom quantum computers. 78
  • Table 26. Pros and cons of cold atoms quantum computers and simulators 79
  • Table 27. Neural atom qubit market players. 79
  • Table 28. Initialization, manipulation and readout of Diamond-Defect Spin-Based Computing. 81
  • Table 29. Key materials for developing diamond-defect spin-based quantum computers. 82
  • Table 30. Diamond-defect qubits market players. 84
  • Table 31. Pros and cons of quantum annealers. 85
  • Table 32. Quantum annealers market players. 87
  • Table 33. Quantum computing software market players. 90
  • Table 34. Market challenges in quantum computing. 93
  • Table 35. Quantum computing value chain. 95
  • Table 36. Markets and applications for quantum computing. 96
  • Table 37. Market players in quantum technologies for pharmaceuticals. 99
  • Table 38. Market players in quantum computing for chemicals. 100
  • Table 39. Automotive applications of quantum computing, 101
  • Table 40. Market players in quantum computing for transportation. 103
  • Table 41. Market players in quantum computing for financial services 104
  • Table 42. Applications in quantum chemistry and artificial intelligence (AI). 106
  • Table 43. Market challenges in quantum chemistry and Artificial Intelligence (AI). 108
  • Table 44. Market players in quantum chemistry and AI. 108
  • Table 45. Main types of quantum communications. 110
  • Table 46. Applications in quantum communications. 111
  • Table 47. QRNG applications. 113
  • Table 48. Key Players Developing QRNG Products. 118
  • Table 49. Optical QRNG by company. 120
  • Table 50. Market players in post-quantum cryptography. 134
  • Table 51. Market challenges in quantum communications. 155
  • Table 52. Market players in quantum communications. 156
  • Table 53. Comparison between classical and quantum sensors. 160
  • Table 54. Applications in quantum sensors. 161
  • Table 55. Technology approaches for enabling quantum sensing 162
  • Table 56. Value proposition for quantum sensors. 163
  • Table 57. Key challenges and limitations of quartz crystal clocks vs. atomic clocks. 165
  • Table 58. New modalities being researched to improve the fractional uncertainty of atomic clocks. 167
  • Table 59. Companies developing high-precision quantum time measurement 169
  • Table 60. Key players in atomic clocks. 170
  • Table 61. Comparative analysis of key performance parameters and metrics of magnetic field sensors. 171
  • Table 62. Types of magnetic field sensors. 172
  • Table 63. Market opportunity for different types of quantum magnetic field sensors. 173
  • Table 64. Applications of SQUIDs. 173
  • Table 65. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices). 175
  • Table 66. Key players in SQUIDs. 176
  • Table 67. Applications of optically pumped magnetometers (OPMs). 177
  • Table 68. Key players in Optically Pumped Magnetometers (OPMs). 178
  • Table 69. Applications for TMR (Tunneling Magnetoresistance) sensors. 180
  • Table 70. Market players in TMR (Tunneling Magnetoresistance) sensors. 181
  • Table 71. Applications of N-V center magnetic field centers 183
  • Table 72. Key players in N-V center magnetic field sensors. 183
  • Table 73. Applications of quantum gravimeters 186
  • Table 74. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping. 186
  • Table 75. Key players in quantum gravimeters. 188
  • Table 76. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes. 190
  • Table 77. Markets and applications for quantum gyroscopes. 193
  • Table 78. Key players in quantum gyroscopes. 193
  • Table 79. Types of quantum image sensors and their key features/. 195
  • Table 80. Applications of quantum image sensors. 196
  • Table 81. Key players in quantum image sensors. 198
  • Table 82. Comparison of quantum radar versus conventional radar and lidar technologies. 200
  • Table 83. Applications of quantum radar. 201
  • Table 84. Market and technology challenges in quantum sensing. 202
  • Table 85. Comparison between quantum batteries and other conventional battery types. 204
  • Table 86. Types of quantum batteries. 205
  • Table 87. Applications of quantum batteries. 206
  • Table 88. Market challenges in quantum batteries. 207
  • Table 89. Market players in quantum batteries. 208
  • Table 90. Materials in Quantum Technology. 209
  • Table 91. Superconductors in quantum technology. 210
  • Table 92. Photonics, silicon photonics and optics in quantum technology. 211
  • Table 93. Nanomaterials in quantum technology. 213
  • Table 94. Quantum technologies investment funding. 219
  • Table 95. Top funded quantum technology companies. 220
  • Table 96. Global market for quantum computing-Hardware, Software & Services, 2023-2035 (billions USD). 223
  • Table 97. Markets for quantum sensors, by types, 2018-2035 (Millions USD). 225
  • Table 98. Markets for QKD systems, 2018-2035 (Millions USD). 227

List of Figures

  • Figure 1. Quantum computing development timeline. 22
  • Figure 2.Quantum investments 2012-2023 (millions USD). 24
  • Figure 3. National quantum initiatives and funding. 25
  • Figure 4. Quantum computing architectures. 37
  • Figure 5. An early design of an IBM 7-qubit chip based on superconducting technology. 38
  • Figure 6. Various 2D to 3D chips integration techniques into chiplets. 40
  • Figure 7. IBM Q System One quantum computer. 43
  • Figure 8. Unconventional computing approaches. 48
  • Figure 9. 53-qubit Sycamore processor. 51
  • Figure 10. Interior of IBM quantum computing system. The quantum chip is located in the small dark square at center bottom. 53
  • Figure 11. Superconducting quantum computer. 56
  • Figure 12. Superconducting quantum computer schematic. 57
  • Figure 13. Components and materials used in a superconducting qubit. 58
  • Figure 14. SWOT analysis for superconducting quantum computers:. 60
  • Figure 15. Ion-trap quantum computer. 60
  • Figure 16. Various ways to trap ions 61
  • Figure 17. Universal Quantum’s shuttling ion architecture in their Penning traps. 62
  • Figure 18. SWOT analysis for trapped-ion quantum computing. 65
  • Figure 19. CMOS silicon spin qubit. 66
  • Figure 20. Silicon quantum dot qubits. 67
  • Figure 21. SWOT analysis for silicon spin quantum computers. 70
  • Figure 22. SWOT analysis for topological qubits 72
  • Figure 23 . SWOT analysis for photonic quantum computers. 77
  • Figure 24. Neutral atoms (green dots) arranged in various configurations 77
  • Figure 25. SWOT analysis for neutral-atom quantum computers. 80
  • Figure 26. NV center components. 81
  • Figure 27. SWOT analysis for diamond-defect quantum computers. 83
  • Figure 28. D-Wave quantum annealer. 86
  • Figure 29. SWOT analysis for quantum annealers. 87
  • Figure 30. Quantum software development platforms. 88
  • Figure 31. SWOT analysis for quantum computing. 95
  • Figure 32. SWOT analysis for quantum chemistry and AI. 108
  • Figure 33. IDQ quantum number generators. 112
  • Figure 34. SWOT Analysis of Quantum Random Number Generator Technology. 122
  • Figure 35. SWOT Analysis of Quantum Key Distribution Technology. 131
  • Figure 36. SWOT Analysis: Post Quantum Cryptography (PQC). 136
  • Figure 37. SWOT analysis for networks. 154
  • Figure 38. Q.ANT quantum particle sensor. 164
  • Figure 39. SWOT analysis for quantum sensors market. 165
  • Figure 40. NIST's compact optical clock. 168
  • Figure 41. SWOT analysis for atomic clocks. 170
  • Figure 42.Principle of SQUID magnetometer. 175
  • Figure 43. SWOT analysis for SQUIDS. 177
  • Figure 44. SWOT analysis for OPMs 179
  • Figure 45. Tunneling magnetoresistance mechanism and TMR ratio formats. 180
  • Figure 46. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors. 182
  • Figure 47. SWOT analysis for N-V Center Magnetic Field Sensors. 184
  • Figure 48. Quantum Gravimeter. 185
  • Figure 49. SWOT analysis for Quantum Gravimeters. 190
  • Figure 50. SWOT analysis for Quantum Gyroscopes. 195
  • Figure 51. SWOT analysis for Quantum image sensing. 197
  • Figure 52. Principle of quantum radar. 199
  • Figure 53. Illustration of a quantum radar prototype. 200
  • Figure 54. Schematic of the flow of energy (blue) from a source to a battery made up of multiple cells. (left) 205
  • Figure 55. SWOT analysis for quantum batteries. 207
  • Figure 56. Market map for quantum technologies industry. 216
  • Figure 57. Tech Giants quantum technologies activities. 217
  • Figure 58. Quantum Technology investment by sector, 2023. 218
  • Figure 59. Quantum computing public and industry funding to mid-2023, millions USD. 222
  • Figure 60. Global market for quantum computing-Hardware, Software & Services, 2023-2035 (billions USD). 224
  • Figure 61. Markets for quantum sensors, by types, 2018-2035 (Millions USD). 226
  • Figure 62. Markets for QKD systems, 2018-2035 (Millions USD). 228
  • Figure 63. Archer-EPFL spin-resonance circuit. 239
  • Figure 64. IBM Q System One quantum computer. 272
  • Figure 65. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right). 276
  • Figure 66. Intel Tunnel Falls 12-qubit chip. 277
  • Figure 67. IonQ's ion trap 278
  • Figure 68. 20-qubit quantum computer. 280
  • Figure 69. Maybell Big Fridge. 290
  • Figure 70. PsiQuantum’s modularized quantum computing system networks. 316
  • Figure 71. SemiQ first chip prototype. 374
  • Figure 72. Toshiba QKD Development Timeline. 385
  • Figure 73. Toshiba Quantum Key Distribution technology. 386

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(ケミカル)の最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


Future Markets, inc.社はどのような調査会社ですか?


Future Markets, inc.は先端技術に焦点をあてたスウェーデンの調査会社です。 2009年設立のFMi社は先端素材、バイオ由来の素材、ナノマテリアルの市場をトラッキングし、企業や学... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/01/21 10:26

157.10 円

163.44 円

195.63 円

ページTOPに戻る