Summary
Global Cyclic Olefin Copolymer Resins Market was valued at USD 721.11 Million in 2023 and is expected to reach USD 939.66 Million by 2029 with a CAGR of 4.71% during the forecast period. The global Cyclic Olefin Copolymer (COC) resins market has been witnessing significant growth, driven by the increasing demand for high-performance materials across various industries. COC resins, known for their exceptional optical clarity, chemical resistance, and dimensional stability, are becoming increasingly popular in applications ranging from healthcare to electronics.
The rising demand for COC resins is closely linked to their versatile properties, which make them suitable for a wide range of applications. In the healthcare sector, for instance, COC resins are used in the manufacturing of medical devices, diagnostic equipment, and pharmaceutical packaging due to their biocompatibility and resistance to sterilization processes. The growing emphasis on healthcare infrastructure, especially in emerging economies, is expected to further drive the demand for COC resins.
Another key driver is the electronics industry, where COC resins are utilized in optical lenses, displays, and other electronic components. The shift towards miniaturization and the need for materials with high heat resistance and low moisture absorption are pushing manufacturers to adopt COC resins. Additionally, the increasing use of COC resins in packaging, particularly for high-barrier and lightweight solutions, is contributing to market growth.
Despite the promising growth prospects, the COC resins market faces several challenges. One of the primary challenges is the high cost of production. The manufacturing process of COC resins is complex and requires specialized equipment, leading to higher production costs compared to other polymers. This cost factor can limit the adoption of COC resins, particularly in cost-sensitive markets.
Another challenge is the competition from alternative materials. While COC resins offer superior properties, other materials like polyethylene, polypropylene, and polycarbonate are also widely used in similar applications and are available at a lower cost. The market players need to focus on enhancing the cost-effectiveness of COC resins and expanding their applications to maintain a competitive edge.
Key Market Drivers
Growing Demand of Cyclic Olefin Copolymer Resins in Healthcare Industry
COC resins are highly valued in the healthcare industry due to their exceptional properties that align with the stringent requirements of medical applications. These resins exhibit outstanding optical clarity, which is essential for devices that require precise visual inspection, such as diagnostic equipment and drug delivery systems. The high chemical resistance of COC resins also makes them suitable for pharmaceutical packaging, ensuring that medications remain uncontaminated and effective over time.
Moreover, COC resins are biocompatible, meaning they do not induce adverse biological reactions when in contact with human tissues. This makes them ideal for use in medical devices that are inserted or implanted in the body. Additionally, COC resins can withstand various sterilization methods, including gamma radiation, ethylene oxide, and autoclaving, without compromising their mechanical integrity or clarity. These attributes are crucial in maintaining the sterility and safety of medical devices and packaging.
The healthcare industry is experiencing a surge in demand for medical devices, driven by factors such as the aging global population, increasing prevalence of chronic diseases, and advancements in medical technology. COC resins are increasingly being used in the production of these devices due to their lightweight, durable, and versatile nature. For instance, they are utilized in the manufacturing of syringes, inhalers, vials, and blood collection tubes, where precision and safety are paramount.
In May 2023, polySpectra introduced its new COR (Cyclic Olefin Resin) Bio, a biocompatible 3D printing material, at the RAPID + TCT event in Chicago. This release marks polySpectra’s third material and its first biocompatible offering, following the rugged COR Alpha and COR Black resins. The company anticipates that COR Bio will be particularly valuable for end-use applications in healthcare, including medical device components, dental products, surgical tools, as well as consumer items and microfluidic devices. COR Bio is characterized by its high impact strength, elevated working temperature, 100% elongation at break, and a glass transition temperature of 135°C.
Pharmaceutical packaging is another area where COC resins are making significant inroads. The growing complexity of drug formulations and the need for longer shelf life are pushing the industry to adopt materials that offer superior barrier properties. COC resins provide an excellent moisture barrier, protecting sensitive pharmaceutical products from degradation. Additionally, their clarity allows for easy visual inspection of the contents, which is vital for ensuring the correct administration of medications.
The growing demand for COC resins in the healthcare sector is a key factor driving the expansion of the global COC resins market. As healthcare providers continue to seek materials that enhance the safety, efficacy, and reliability of medical devices and packaging, the adoption of COC resins is expected to increase. This trend is particularly evident in regions with advanced healthcare systems, such as North America and Europe, where there is a strong focus on innovation and patient safety.
Advancements in Optical Applications
One of the primary factors driving the demand for COC resins in optical applications is their use in display technologies. In the era of high-definition screens, from smartphones and tablets to large-format displays and augmented reality devices, the need for materials that can provide clarity, precision, and durability is paramount. COC resins offer low birefringence, which minimizes light distortion, thereby enhancing the visual quality of displays. Their superior light transmission capabilities make them ideal for use in optical films, ensuring that the brightness and clarity of screens meet the high standards demanded by consumers.
Moreover, as display technologies evolve, with innovations like foldable and flexible screens entering the market, COC resins' flexibility and thermal stability are becoming increasingly valuable. These properties allow for the development of next-generation displays that are not only clearer but also more robust, catering to the growing consumer demand for cutting-edge technology.
APEL™ is a Cyclo Olefin Copolymer (COC) that combines the attributes of polyolefin resins with those of amorphous resins. Notably, APEL™ boasts the highest refractive index among amorphous polyolefins, exhibiting minimal optical anisotropy and extremely low birefringence, making it highly suitable for optical plastic lenses. Additionally, APEL™ offers excellent moisture resistance, chemical durability, and non-adhesive properties, rendering it ideal for medical packaging applications. Its diverse functionalities and superior properties unlock new possibilities for transparent materials.
COC resins are also playing a pivotal role in the advancement of optical lenses and light guides, which are essential components in numerous industries, including automotive, medical, and consumer electronics. The automotive industry, for example, is seeing a surge in the adoption of advanced driver-assistance systems (ADAS), which rely heavily on high-quality optical lenses. The low density and excellent mechanical properties of COC resins make them an ideal material for these lenses, providing both durability and precision.
In the medical field, the demand for high-performance optical lenses in devices such as endoscopes and diagnostic imaging equipment is driving the adoption of COC resins. The material's clarity and resistance to chemicals make it suitable for medical applications where precision and reliability are critical. Furthermore, COC resins are biocompatible, adding an extra layer of safety in medical environments.
The surge in consumer electronics, particularly wearable devices like smartwatches and augmented reality glasses, is further fueling the demand for COC resins in optical applications. These devices require materials that are not only optically superior but also lightweight and durable. COC resins meet these criteria, providing manufacturers with the flexibility to design innovative products that are both functional and aesthetically pleasing.
Key Market Challenges
High Production Costs
The global Cyclic Olefin Copolymer (COC) resins market, recognized for its unique properties such as high optical clarity, low moisture absorption, and exceptional chemical resistance, is poised for significant growth across various industries. However, the market faces a critical challenge that could impede its expansion: high production costs. This issue is a significant barrier to the widespread adoption of COC resins, particularly in cost-sensitive markets where alternative materials may offer similar functionalities at lower prices.
One of the primary drivers of high production costs in the COC resins market is the expense associated with raw materials. COC resins are synthesized from norbornene and other cycloolefins through a complex polymerization process. Norbornene, a key raw material, is not only expensive but also subject to price volatility due to fluctuations in global petrochemical markets. This volatility can lead to unpredictable production costs, making it difficult for manufacturers to maintain stable pricing for their products.
Furthermore, the reliance on high-cost raw materials limits the ability of COC resin producers to achieve economies of scale. Unlike more common polymers such as polyethylene or polypropylene, which benefit from large-scale production and lower material costs, COC resins remain a niche product with limited production volumes. This lack of scale exacerbates the cost challenges, as fixed costs are spread over a smaller output, resulting in higher per-unit costs.
In addition to raw material costs, the manufacturing process for COC resins is inherently complex and requires specialized equipment and expertise. The polymerization process used to produce COC resins involves metallocene catalysts, which are costly and require precise control over reaction conditions. This complexity not only increases capital expenditure on production facilities but also raises operational costs, including maintenance and quality control.
The need for advanced manufacturing technology also restricts the number of manufacturers capable of producing high-quality COC resins. This limited production capacity further drives up costs as demand for these specialized resins increases, particularly in high-value applications such as medical devices, pharmaceutical packaging, and optical components.
Key Market Trends
Growth in the Automotive Sector
One of the most prominent applications of COC resins in the automotive industry is in advanced lighting systems. As automotive manufacturers focus on enhancing vehicle safety and aesthetics, the adoption of LED and other advanced lighting technologies has surged. COC resins, known for their exceptional optical clarity, low birefringence, and UV resistance, are ideal for these applications. They are used in the production of lenses, light guides, and other optical components that are essential for efficient and durable lighting systems.
The trend towards energy-efficient LED lighting, which offers better illumination and longevity compared to traditional lighting systems, is particularly driving the demand for COC resins. These resins help in achieving the desired optical performance while also contributing to the reduction of energy consumption, aligning with the automotive industry's goals of enhancing fuel efficiency and reducing emissions.
The growing adoption of Advanced Driver-Assistance Systems (ADAS) is another significant trend bolstering the demand for COC resins in the automotive sector. ADAS technologies, which include features such as lane departure warnings, adaptive cruise control, and automated braking, rely heavily on high-performance sensors and cameras. COC resins are increasingly being used in the production of these components due to their low dielectric constant and excellent transparency to infrared light.
These properties make COC resins particularly suitable for applications in infrared sensors and camera lenses, where clarity and signal accuracy are critical. As the automotive industry continues to push towards autonomous driving and enhanced safety features, the demand for reliable, high-performance materials like COC resins is expected to grow, further driving market expansion.
In addition to their optical and electronic applications, COC resins are also contributing to the broader industry trend of lightweighting. Automotive manufacturers are increasingly focusing on reducing vehicle weight to improve fuel efficiency and reduce carbon emissions. COC resins offer a combination of lightweight properties and high mechanical strength, making them suitable for use in various automotive components, including interior and exterior parts.
The shift towards electric vehicles (EVs) is amplifying this trend, as EV manufacturers seek materials that can reduce weight without compromising on performance. COC resins, with their excellent processability and durability, are well-positioned to meet these demands, further establishing their role in the future of automotive manufacturing.
Segmental Insights
Grade Insights
Based on Grade, Film have emerged as the fastest growing segment in the Global Cyclic Olefin Copolymer Resins Market in 2023. COC resins are prized for their exceptional properties, which make them particularly suitable for film applications. One of the key attributes of COC resins is their optical clarity, which is among the highest of any polymer material. This clarity is essential in applications such as packaging, where the visual appeal of the product is critical. COC films offer excellent transparency and gloss, enhancing the presentation of packaged goods, particularly in the food and beverage industry.
Another important property of COC resins is their high moisture barrier performance. This makes COC films ideal for packaging applications where the protection of contents from moisture is paramount. In addition, COC films exhibit strong chemical resistance, low birefringence, and good dimensional stability, making them suitable for use in a wide range of demanding applications, including medical packaging, optics, and electronics.
The packaging industry is one of the largest consumers of COC films, and its growth is a major factor driving the demand for COC resins in film applications. The shift towards more advanced packaging solutions is being fueled by consumer preferences for products with longer shelf life, better protection, and enhanced visual appeal. COC films are increasingly being used in food packaging, where their excellent barrier properties and clarity provide a competitive advantage over traditional materials.
In addition to food packaging, COC films are also gaining popularity in pharmaceutical and medical packaging. The need for packaging materials that can maintain the integrity of sensitive medical and pharmaceutical products is driving the adoption of COC films. These films not only provide a strong barrier against moisture and oxygen but also ensure that the contents are easily visible, which is crucial for quality control and safety.
End User Industry Insights
Based on End User Industry, Medical have emerged as the dominating segment in the Global Cyclic Olefin Copolymer Resins Market during the forecast period. COC resins possess a suite of properties that make them exceptionally suited for medical applications. Their high clarity and low birefringence are critical for producing transparent medical devices, such as diagnostic imaging equipment and endoscopes, where optical clarity is essential. Additionally, COC resins offer excellent chemical resistance and low moisture permeability, which are crucial for ensuring the longevity and performance of medical devices and packaging.
The biocompatibility of COC resins further strengthens their position in the medical sector. Biocompatibility is a critical requirement for materials used in medical devices that come into contact with the human body. COC resins meet these stringent requirements, making them a preferred choice for manufacturers of medical devices and equipment.
The medical sector's rapid growth, particularly in the fields of diagnostics, imaging, and minimally invasive procedures, has significantly driven the demand for COC resins. The expansion of diagnostic technologies, such as lab-on-a-chip devices and point-of-care testing, relies heavily on materials that offer high precision and reliability. COC resins' clarity and dimensional stability ensure that these devices perform optimally, meeting the high standards required for accurate diagnostics.
Minimally invasive surgical procedures, including endoscopic surgeries, also benefit from the use of COC resins. The material's optical clarity is crucial for endoscopic lenses and components, enhancing the precision of surgical procedures. As the demand for less invasive surgical options continues to rise, so does the reliance on COC resins in this segment.
Regional Insights
Based on Region, Asia Pacific have emerged as the dominating region in the Global Cyclic Olefin Copolymer Resins Market in 2023. One of the primary reasons for Asia-Pacific's dominance in the COC resins market is the region's rapid industrialization and economic growth. Countries like China, Japan, South Korea, and India have experienced significant advancements in various high-tech sectors, including automotive, electronics, healthcare, and packaging. This industrial expansion has driven demand for advanced materials like COC resins, which are prized for their high optical clarity, low moisture absorption, and chemical resistance.
The automotive industry, a major consumer of COC resins, is particularly strong in Asia-Pacific, with countries like China and Japan being key players in global automotive manufacturing. As automotive manufacturers in these countries seek lightweight and high-performance materials to enhance vehicle efficiency and safety, the demand for COC resins has surged. Additionally, the growing focus on healthcare and pharmaceutical packaging in the region has further spurred demand for COC resins due to their superior barrier properties and compatibility with medical applications.
Asia-Pacific has also seen substantial investments in technological advancements and infrastructure development, which have bolstered the region's position in the COC resins market. The establishment of state-of-the-art production facilities, coupled with significant investments in research and development (R&D), has enabled local manufacturers to enhance their production capabilities and innovate in resin formulations.
Countries like Japan and South Korea are renowned for their advanced chemical processing technologies and strong R&D infrastructure. These capabilities have allowed companies in the region to develop high-quality COC resins and explore new applications, thereby strengthening their competitive edge. The focus on innovation and technology has also facilitated improvements in production efficiency and cost management, further consolidating the region's market leadership.
Key Market Players
• Mitsui Chemicals, Inc.
• Polyplastics Co., Ltd.
• TOPAS Advanced Polymers GmbH
• Zeon Corporation
• JSR Corporation
• Apex Techno Polymer Pvt. Ltd.
• Asahi Kasei Corporation
• Sumitomo Chemical Co., Ltd.
• Shin-Etsu Chemical Co., Ltd.
• Dow Chemicals Company
Report Scope
In this report, the Global Cyclic Olefin Copolymer Resins Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
• Cyclic Olefin Copolymer Resins Market, By Grade:
o Film
o Laminates
o Others
• Cyclic Olefin Copolymer Resins Market, By End User Industry:
o Medical
o Food & Beverage
o Optics
o Automotive
o Electronics
o Others
• Cyclic Olefin Copolymer Resins Market, By Region:
o North America
§ United States
§ Canada
§ Mexico
o Europe
§ France
§ United Kingdom
§ Italy
§ Germany
§ Spain
o Asia Pacific
§ China
§ India
§ Japan
§ Australia
§ South Korea
o South America
§ Brazil
§ Argentina
§ Colombia
o Middle East & Africa
§ South Africa
§ Saudi Arabia
§ UAE
Competitive Landscape
Company Profiles: Detailed analysis of the major companies present in the Global Cyclic Olefin Copolymer Resins Market.
Available Customizations:
Global Cyclic Olefin Copolymer Resins Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:
Company Information
• Detailed analysis and profiling of additional market players (up to five).
ページTOPに戻る
Table of Contents
1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, and Trends
4. Global Cyclic Olefin Copolymer Resins Market Outlook
4.1. Market Size & Forecast
4.1.1. By Value
4.2. Market Share & Forecast
4.2.1. By Grade (Film, Laminates, Others)
4.2.2. By End User Industry (Medical, Food & Beverage, Optics, Automotive, Electronics, Others)
4.2.3. By Region
4.2.4. By Company (2023)
4.3. Market Map
5. North America Cyclic Olefin Copolymer Resins Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Grade
5.2.2. By End User Industry
5.2.3. By Country
5.3. North America: Country Analysis
5.3.1. United States Cyclic Olefin Copolymer Resins Market Outlook
5.3.1.1. Market Size & Forecast
5.3.1.1.1. By Value
5.3.1.2. Market Share & Forecast
5.3.1.2.1. By Grade
5.3.1.2.2. By End User Industry
5.3.2. Mexico Cyclic Olefin Copolymer Resins Market Outlook
5.3.2.1. Market Size & Forecast
5.3.2.1.1. By Value
5.3.2.2. Market Share & Forecast
5.3.2.2.1. By Grade
5.3.2.2.2. By End User Industry
5.3.3. Canada Cyclic Olefin Copolymer Resins Market Outlook
5.3.3.1. Market Size & Forecast
5.3.3.1.1. By Value
5.3.3.2. Market Share & Forecast
5.3.3.2.1. By Grade
5.3.3.2.2. By End User Industry
6. Europe Cyclic Olefin Copolymer Resins Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Grade
6.2.2. By End User Industry
6.2.3. By Country
6.3. Europe: Country Analysis
6.3.1. France Cyclic Olefin Copolymer Resins Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Grade
6.3.1.2.2. By End User Industry
6.3.2. Germany Cyclic Olefin Copolymer Resins Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Grade
6.3.2.2.2. By End User Industry
6.3.3. United Kingdom Cyclic Olefin Copolymer Resins Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Grade
6.3.3.2.2. By End User Industry
6.3.4. Italy Cyclic Olefin Copolymer Resins Market Outlook
6.3.4.1. Market Size & Forecast
6.3.4.1.1. By Value
6.3.4.2. Market Share & Forecast
6.3.4.2.1. By Grade
6.3.4.2.2. By End User Industry
6.3.5. Spain Cyclic Olefin Copolymer Resins Market Outlook
6.3.5.1. Market Size & Forecast
6.3.5.1.1. By Value
6.3.5.2. Market Share & Forecast
6.3.5.2.1. By Grade
6.3.5.2.2. By End User Industry
7. Asia-Pacific Cyclic Olefin Copolymer Resins Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Grade
7.2.2. By End User Industry
7.2.3. By Country
7.3. Asia-Pacific: Country Analysis
7.3.1. China Cyclic Olefin Copolymer Resins Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Grade
7.3.1.2.2. By End User Industry
7.3.2. India Cyclic Olefin Copolymer Resins Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Grade
7.3.2.2.2. By End User Industry
7.3.3. South Korea Cyclic Olefin Copolymer Resins Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Grade
7.3.3.2.2. By End User Industry
7.3.4. Japan Cyclic Olefin Copolymer Resins Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Grade
7.3.4.2.2. By End User Industry
7.3.5. Australia Cyclic Olefin Copolymer Resins Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Grade
7.3.5.2.2. By End User Industry
8. South America Cyclic Olefin Copolymer Resins Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Grade
8.2.2. By End User Industry
8.2.3. By Country
8.3. South America: Country Analysis
8.3.1. Brazil Cyclic Olefin Copolymer Resins Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Grade
8.3.1.2.2. By End User Industry
8.3.2. Argentina Cyclic Olefin Copolymer Resins Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Grade
8.3.2.2.2. By End User Industry
8.3.3. Colombia Cyclic Olefin Copolymer Resins Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Grade
8.3.3.2.2. By End User Industry
9. Middle East and Africa Cyclic Olefin Copolymer Resins Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Grade
9.2.2. By End User Industry
9.2.3. By Country
9.3. MEA: Country Analysis
9.3.1. South Africa Cyclic Olefin Copolymer Resins Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Grade
9.3.1.2.2. By End User Industry
9.3.2. Saudi Arabia Cyclic Olefin Copolymer Resins Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Grade
9.3.2.2.2. By End User Industry
9.3.3. UAE Cyclic Olefin Copolymer Resins Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Grade
9.3.3.2.2. By End User Industry
10. Market Dynamics
10.1. Drivers
10.2. Challenges
11. Market Trends & Developments
11.1. Merger & Acquisition (If Any)
11.2. Product Launches (If Any)
11.3. Recent Developments
12. Global Cyclic Olefin Copolymer Resins Market: SWOT Analysis
13. Porters Five Forces Analysis
13.1. Competition in the Industry
13.2. Potential of New Entrants
13.3. Power of Suppliers
13.4. Power of Customers
13.5. Threat of Substitute Products
14. Competitive Landscape
14.1. Mitsui Chemicals, Inc.
14.1.1. Business Overview
14.1.2. Company Snapshot
14.1.3. Products & Services
14.1.4. Financials (As Reported)
14.1.5. Recent Developments
14.1.6. Key Personnel Details
14.1.7. Key Geographic Presence
14.1.8. SWOT Analysis
14.2. Polyplastics Co., Ltd.
14.3. TOPAS Advanced Polymers GmbH
14.4. Zeon Corporation
14.5. JSR Corporation
14.6. Apex Techno Polymer Pvt. Ltd.
14.7. Asahi Kasei Corporation
14.8. Sumitomo Chemical Co., Ltd.
14.9. Shin-Etsu Chemical Co., Ltd.
14.10. Dow Chemicals Company
15. Strategic Recommendations
16. About Us & Disclaimer