世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Big Data in Telecom Analytics by Computing Type, Deployment Type, Applications and Services 2020 - 2025


通信解析向けビッグデータ:コンピューティングタイプ、展開タイプ、用途、サービス 2020-2025年

この調査レポートは通信解析向けビッグデータ市場を詳細に調査し、ビッグデータ技術および事例の紹介、主要企業情報、市場予測などを掲載しています。 Target Audience:     &nb... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 図表数 言語
Mind Commerce
マインドコマース
2020年10月21日 US$2,500
シングルユーザライセンス
ライセンス・価格情報
注文方法はこちら
118 48 英語

 

Summary

この調査レポートは通信解析向けビッグデータ市場を詳細に調査し、ビッグデータ技術および事例の紹介、主要企業情報、市場予測などを掲載しています。

Target Audience:             

  • Network service providers
  • Systems integration companies
  • Big Data and Analytics companies
  • Advertising and media companies
  • Enterprise across all industry verticals
  • Cloud and IoT product and service providers

Overview

This report provides an in-depth assessment of the global structured data, big data and telecom analytics markets, including a study of the business drivers, application use cases, vendor landscape, value chain analysis, case studies and a quantitative assessment of the industry from 2020 to 2025.

Big data tools help communications service providers gain deeper insights into customer behavior, including usage patterns, preferences, and interests. While hard to derive quick and meaningful insights, big data solutions provide carriers insights into relationships, family, work patterns and location. This is increasingly achieved in real-time using both structured and unstructured data.
The term big data refers to a massive volume of both structured and unstructured data that is so large that it is difficult to process using traditional database and software techniques. While the presence of such datasets is not something new, the past few years have witnessed immense commercial investments in solutions that address the processing and analysis of big data.

Big data opens a vast array of applications and opportunities in multiple vertical sectors including not limited to retail and hospitality, media, utilities, financial services, healthcare and pharmaceutical, government and homeland security and the emerging industrial internet vertical. With access to vast amounts of datasets, telecom companies are also turning out to be major proponents of the big data movement. big data technologies, and in particular their analytics abilities offer a multitude of benefits to network operators which include improving subscriber experience, building and maintaining smarter networks, reducing churn and even the generation of new revenue streams.

Big data and analytics have emerged as a potential source of revenue for telecom operators, at a time when carriers have been feeling the pressure to generate new sources of revenue. One of those sources comes from their ability to mine the huge amount of data they generate or have access to in both their customer base and their networks. The two have emerged as the tools to help analyze and manage this information. There are now many analytical and intelligence tools that enable mobile operators to understand customer and network behavior.

Communications service providers have a rich stream of data, especially those that offer telephony, TV and Internet services, the triple play operators. The many sources of data is an advantage for telecom companies, but if they want to monetize that data and derive meaningful, actionable analytics it could be challenging due to the complexities of correlation, prediction, and the massive volumes of data from different sources.

Big data helps telecom providers to get deeper insights into customer behavior, their service usage patterns, preferences, and interests. While hard to derive quick and meaningful insights, big data gives telecom companies an idea of relationships, family, work patterns and accurate location data among others. Mind Commerce believes that this will optimally be performed in real-time using both structured and unstructured data.
In general, the data coming into a telecom service provider could be categorized as ‘data’ which is the actual content flowing across the network, and ‘meta-data’, which is the data describing the properties, sources, costs, etc. relating to the content data. In terms of types of data telco data can be divided into two broad categories as structured and unstructured data.
 

 



ページTOPに戻る


Table of Contents

Table of Contents

1.0 Executive Summary

1.1 Topics Covered
1.2 Key Findings
1.3 Target Audience
1.4 Companies Mentioned

2.0 Big Data Technology and Business Case

2.1 Structured vs. Unstructured Data
2.1.1 Structured Database Services in Telecom
2.1.2 Unstructured Data from Apps and Databases in Telecom
2.1.3 Emerging Hybrid (Structured/Unstructured) Database Services
2.2 Defining Big Data
2.3 Key Characteristics of Big Data
2.3.1 Volume
2.3.2 Variety
2.3.3 Velocity
2.3.4 Variability
2.3.5 Complexity
2.4 Capturing Data through Detection and Social Systems
2.4.1 Data in Social Systems
2.4.2 Detection and Sensors
2.4.3 Sensors in the Consumer Sector
2.4.4 Sensors in Industry
2.5 Big Data Technology
2.5.1 Hadoop
2.5.1.1 MapReduce
2.5.1.2 HDFS
2.5.1.3 Other Apache Projects
2.5.2 NoSQL
2.5.2.1 Hbase
2.5.2.2 Cassandra
2.5.2.3 Mongo DB
2.5.2.4 Riak
2.5.2.5 CouchDB
2.5.3 MPP Databases
2.5.4 Others and Emerging Technologies
2.5.4.1 Storm
2.5.4.2 Drill
2.5.4.3 Dremel
2.5.4.4 SAP HANA
2.5.4.5 Gremlin & Giraph
2.6 Business Drivers for Telecom Big Data and Analytics
2.6.1 Continued Growth of Mobile Broadband
2.6.2 Competition from New Types of Service Providers
2.6.3 New Technology Investment
2.6.4 Need for New KPIs
2.6.5 Artificial Intelligence and Machine Learning
2.7 Market Barriers
2.7.1 Privacy and Security: The ‘Big’ Barrier
2.7.2 Workforce Re-skilling and Organizational Resistance
2.7.3 Lack of Clear Big Data Strategies
2.7.4 Technical Challenges: Scalability and Maintenance

3.0 Key Big Data Investment Sectors

3.1 Industrial Internet and M2M
3.1.1 Big Data in M2M
3.1.2 Vertical Opportunities
3.2 Retail and Hospitality
3.2.1 Improving Accuracy of Forecasts and Stock Management
3.2.2 Determining Buying Patterns
3.2.3 Hospitality Use Cases
3.3 Media
3.3.1 Social Media
3.3.2 Social Gaming Analytics
3.3.3 Usage of Social Media Analytics by Other Verticals
3.4 Utilities
3.4.1 Analysis of Operational Data
3.4.2 Application Areas for the Future
3.5 Financial Services
3.5.1 Fraud Analysis & Risk Profiling
3.5.2 Merchant-Funded Reward Programs
3.5.3 Customer Segmentation
3.5.4 Insurance Companies
3.6 Healthcare and Pharmaceutical
3.6.1 Drug Development
3.6.2 Medical Data Analytics
3.6.3 Case Study: Identifying Heartbeat Patterns
3.7 Telecom Companies
3.7.1 Telcom Analytics: Customer/Usage Profiling and Service Optimization
3.7.2 Speech Analytics
3.7.3 Other Use Cases
3.8 Government and Homeland Security
3.8.1 Developing New Applications for the Public
3.8.2 Tracking Crime
3.8.3 Intelligence Gathering
3.8.4 Fraud Detection and Revenue Generation
3.9 Other Sectors
3.9.1 Aviation: Air Traffic Control
3.9.2 Transportation and Logistics: Optimizing Fleet Usage
3.9.3 Sports: Real-Time Processing of Statistics

4.0 The Big Data Value Chain

4.1 Fragmentation in the Big Data Value Chain
4.2 Data Acquisitioning and Provisioning
4.3 Data Warehousing and Business Intelligence
4.4 Analytics and Virtualization
4.5 Actioning and Business Process Management (BPM)
4.6 Data Governance

5.0 Big Data in Telecom Analytics

5.1 Telecom Analytics Market
5.2 Improving Subscriber Experience
5.2.1 Generating a Full Spectrum View of the Subscriber
5.2.2 Creating Customized Experiences and Targeted Promotions
5.2.3 Central Big Data Repository: Key to Customer Satisfaction
5.2.4 Reduce Costs and Increase Market Share
5.3 Building Smarter Networks
5.3.1 Understanding Network Utilization
5.3.2 Improving Network Quality and Coverage
5.3.3 Combining Telecom Data with Public Data Sets: Real-Time Event Management
5.3.4 Leveraging M2M for Telecom Analytics
5.3.5 M2M, Deep Packet Inspection and Big Data: Identifying & Fixing Network Defects
5.4 Churn/Risk Reduction and New Revenue Streams
5.4.1 Predictive Analytics
5.4.2 Identifying Fraud and Bandwidth Theft
5.4.3 Creating New Revenue Streams
5.5 Telecom Analytics Case Studies
5.5.1 T-Mobile USA: Churn Reduction by 50%
5.5.2 Vodafone: Using Telco Analytics to Enable Navigation
5.6 Carriers, Analytics, and Data as a Service (DaaS)
5.6.1 Carrier Data Management Operational Strategies
5.6.2 Network vs. Subscriber Analytics
5.6.3 Data and Analytics Opportunities to Third Parties
5.6.4 Carriers to offer Data as s Service (DaaS) on B2B Basis
5.6.5 DaaS Planning and Strategies
5.6.6 Carrier Monetization of Data with DaaS
5.7 Opportunities for Carriers in Cloud Analytics
5.7.1 Carrier NFV and Cloud Analytics
5.7.2 Carrier Cloud OSS/BSS Analytics
5.7.3 Carrier Cloud Services, Data, and Analytics
5.7.4 Carrier Performance Management and the Cloud Analytics

6.0 Structured Data in Telecom Analytics

6.1 Telecom Data Sources and Repositories
6.1.1 Subscriber Data
6.1.2 Subscriber Presence and Location Data
6.1.3 Business Data: Toll-free and other Directory Services
6.1.4 Network Data: Deriving Data from Network Operations
6.2 Telecom Data Mining
6.2.1 Data Sources: Rating, Charging, and Billing Examples
6.2.2 Privacy Issues
6.3 Telecom Database Services
6.3.1 Calling Name Identity
6.3.2 Subscriber Data Management (SDM) Services
6.3.3 Other Data-intensive Service Areas
6.3.4 Emerging Service Area: Identity Verification
6.4 Structured Telecom Data Analytics
6.4.1 Dealing with Telecom Data Fragmentation
6.4.2 Deep Packet Inspection

7.0 Analysis of Select Big Data Market Players

7.1 Vendor Assessment Matrix
7.2 Apache Software Foundation
7.3 Accenture
7.4 Amazon
7.5 APTEAN (Formerly CDC Software)
7.6 Cisco Systems
7.7 Cloudera
7.8 Dell EMC
7.9 Facebook
7.10 GoodData Corporation
7.11 Google (Alphabet)
7.12 Guavus (Thales Group)
7.13 Hitachi Data Systems
7.14 Hortonworks
7.15 HPE
7.16 IBM
7.17 Informatica
7.18 Intel
7.19 Jaspersoft (TIBCO)
7.20 Microsoft
7.21 MongoDB (Formerly 10Gen)
7.22 MU Sigma
7.23 Netapp
7.24 ElectrifAI (formerly Opera Solutions)
7.25 Oracle
7.26 Pentaho
7.27 Platfora (Workday)
7.28 Qliktech
7.29 Rackspace Technology
7.30 Revolution Analytics (Microsoft)
7.31 Salesforce
7.32 SAP
7.33 SAS Institute
7.34 Sisense
7.35 Splunk
7.36 Sqrrl Data
7.37 Supermicro
7.38 Tableau Software
7.39 Teradata
7.40 Tidemark (Insight Software)
7.41 VMware

8.0 Big Data in Telecom Analytics Forecast 2020 to 2027

8.1 Global Big Data in Telecom Analytics 2020 - 2025
8.2 Big Data in Telecom Analytics by Region 2020 - 2025
8.3 Big Data Products and Services in Telecom Analytics 2020 - 2025
8.4 Big Data Management Platform for Telecom 2020 - 2025
8.4.1 Big Data in Telecom Data Analytics by Compute Type 2020 - 2025
8.4.2 Big Data Compute in Telecom Data Analytics by Cloud Deployment Type 2020 - 2025
8.4.3 Big Data in Telecom Data Analytics by Storage Type 2020 - 2025
8.4.4 Big Data Storage in Telecom Data Analytics by Cloud Deployment Type 2020 - 2025
8.4.5 Big Data in Telecom Analytics by Functions 2020 - 2025
8.4.5.1 Big Data in Network Data Analytics by Functions 2020 - 2025
8.4.6 Big Data in Telecom Analytics by Application Type 2020 - 2025
8.4.6.1 Big Data in Business Specific Applications in Telecom Analytics 2020 - 2025
8.4.6.2 IoT in Telecom Analytics by Consumer, Enterprise, Industrial, and Government Sectors 2020 - 2025
8.5 Big Data Services for Telecom Analytics 2020 - 2025
8.5.1 Big Data Professional Services for Telecom Analytics 2020 - 2025
8.5.2 Big Data Managed Services for Telecom Analytics 2020 - 2025
8.6 Big Data Virtualization Platform Deployment in Telecom Analytics 2020 - 2025

Figures

Figure 1: Hybrid Data in Next Generation Applications
Figure 2: Big Data Components
Figure 3: Big Data Sources
Figure 4: Capturing Data from Detection Systems and Sensors
Figure 5: Capturing Data across Sectors
Figure 6: AI Structure
Figure 7: The Big Data Value Chain
Figure 8: Telco Analytics Investments Driven by Big Data
Figure 9: Different Data Types within Telco Environment
Figure 10: Presence-enabled Application
Figure 11: Calling Name (CNAM) Service Operation
Figure 12: Subscriber Data Management (SDM) Ecosystem
Figure 13: Data Fragmented across Telecom Databases
Figure 14: Big Data Product Growth Prospects
Figure 15: Big Data Vendor Ranking Matrix
Figure 16: Global Big Data in Telecom Analytics 2020 - 2025
Figure 17:  Big Data in Telecom Analytics by Region 2020 - 2025
Figure 18:  Big Data Products and Services in Telecom Analytics 2020 - 2025
Figure 19:  Big Data Management Platform for Telecom 2020 - 2025
Figure 20:  Big Data in Telecom Data Analytics by Compute Type 2020 - 2025
Figure 21:  Big Data Compute in Telecom Data Analytics by Cloud Deployment Type 2020 - 2025
Figure 22:  Big Data in Telecom Data Analytics by Storage Type 2020 - 2025
Figure 23:  Big Data Storage in Telecom Data Analytics by Cloud Deployment Type 2020 - 2025
Figure 24:  Big Data in Telecom Analytics by Functions 2020 - 2025
Figure 25:  Big Data in Network Data Analytics by Functions 2020 - 2025
Figure 26:  Big Data in Telecom Analytics by Application Type 2020 - 2025
Figure 27:  Big Data in Business Specific Applications in Telecom Analytics 2020 - 2025
Figure 28:  IoT in Telecom Analytics by Consumer, Enterprise, Industrial, and Government Sectors 2020 - 2025
Figure 29:  Big Data Services for Telecom Analytics 2020 - 2025
Figure 30:  Big Data Professional Services for Telecom Analytics 2020 - 2025
Figure 31:  Big Data Managed Services for Telecom Analytics 2020 - 2025
Figure 32:  Big Data Virtualization Platform Deployment in Telecom Analytics 2020 - 2025

Tables

Table 1: Global Big Data in Telecom Analytics 2020 - 2025
Table 2: Big Data in Telecom Analytics by Region 2020 - 2025
Table 3: Big Data Products and Services in Telecom Analytics 2020 - 2025
Table 4: Big Data Management Platform for Telecom 2020 - 2025
Table 5: Big Data in Telecom Data Analytics by Compute Type 2020 - 2025
Table 6: Big Data Compute in Telecom Data Analytics by Cloud Deployment Type 2020 - 2025
Table 7: Big Data in Telecom Data Analytics by Storage Type 2020 - 2025
Table 8: Big Data in Telecom Analytics by Functions 2020 - 2025
Table 9: Big Data in Network Data Analytics by Functions 2020 - 2025
Table 10: Big Data in Telecom Analytics by Application Type 2020 - 2025
Table 11: Big Data in Business Specific Applications in Telecom Analytics 2020 - 2025
Table 12: IoT in Telecom Analytics by Consumer, Enterprise, Industrial, and Government Sectors 2020 - 2025
Table 13: Big Data Services for Telecom Analytics 2020 - 2025
Table 14: Big Data Professional Services for Telecom Analytics 2020 - 2025
Table 15: Big Data Managed Services for Telecom Analytics 2020 - 2025
Table 16: Big Data Virtualization Platform Deployment in Telecom Analytics 2020 - 2025

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(通信回線)の最新刊レポート

本レポートと同じKEY WORD(ビッグデータ)の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


Mind Commerce社はどのような調査会社ですか?


マインドコマース(Mind Commerce)は、ネットワークインフラ、Eコマース、オンラインコンテンツ、アプリケーションなど、有線と無線の両方の通信市場を広範かつ詳細に調査・分析を行ったレポートを数... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/07 10:27

155.63 円

167.26 円

203.27 円

ページTOPに戻る