世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

ポリマーリサイクル技術 2020-2030年:プラスチックごみの寿命選択:ツール、動向と市場


Polymer Recycling Technologies 2020-2030

このレポートはポリマーリサイクル技術を調査し、2030年までの予測や新しい技術の分析を掲載しています。 主な掲載内容   ※目次より抜粋 エグゼクティブサマリー イントロ... もっと見る

 

 

出版社 出版年月 価格 ページ数 言語
IDTechEx
アイディーテックエックス
2020年6月29日 お問い合わせください
ライセンス・価格情報
注文方法はこちら
157 英語

※価格はデータリソースまでお問い合わせください。


 

サマリー

このレポートはポリマーリサイクル技術を調査し、2030年までの予測や新しい技術の分析を掲載しています。

主な掲載内容  ※目次より抜粋

  1. エグゼクティブサマリー
  2. イントロダクション
  3. リサイクル技術概要
    1. ポリマーリサイクル処理
    2. 主要ポリマーのリサイクル
  4. 一次と二次リサイクル
    1. 機械を使ったリサイクル
    2. 溶剤抽出
  5. 三次リサイクル
    1. プラスチックから燃料への転換
    2. 脱重合
  6. 四次リサイクル
  7. 市場予測と結論
 
Report Details
 
Developing sustainable technologies to create a circular economy for plastics has become increasingly important in industry over the past few years. Increasing customer awareness of the environmental impact of polymers with lifespans of several hundreds of years, as well as a global shift in attitudes towards carbon dioxide emissions from the use of petrochemicals to create new plastics, has resulted in renewed focus on polymer recycling and waste management technologies.
 
However, existing technologies have relied upon mechanically sorting and melting plastic waste, which frequently result in "down-cycling" of materials due to high levels of contamination. The issues with current recycling processes are so severe that countries like China who were previously mass importers of waste for recycling have closed their doors, throwing the world of recycling into chaos and driving Western nations to look for alternative technologies for recycling the growing mountain of plastic waste. Technologies such as thermal pyrolysis or catalytic depolymerisation could be part of the solution, allowing unrecyclable plastics to be converted into fuels and chemical feedstocks. But will these technologies ever be cheap or functional enough to become viable solutions?
 
Technology and applications
In 2020, the range of technologies to recycle polymer waste is growing rapidly. Polymer recycling technologies 2020-2030 takes an in-depth look into the diverse range of leading-edge companies developing new technologies to process polymer waste. In-depth assessments of the latest technologies are provided, with focus on chemical recycling, including depolymerisation, pyrolysis, gasification and solvent extraction. Furthermore, this report cuts through the marketing hype to offer a detailed insight into some of the foremost polymer recycling technology suppliers leading global innovation and bringing potentially disruptive products to market.
 
Market analysis
This report provides an overview of the technological advancements in polymer recycling to date, a comprehensive insight into the drivers and restraints affecting adoption and implementation at scale, and provides case studies and SWOT analyses for the most prolific disrupters developing novel polymer recycling technologies. IDTechEx conducted exhaustive primary research with companies across a range of industries developing polymer recycling technologies for key insights into the drivers and restraints affecting the growth of this technology.
 
Key questions answered in this report
  • Who are the key players developing new technologies for polymer recycling?
  • What are the types of new technologies being developed?
  • Which polymers are being actively targeted and why?
  • How do new recycling technologies feed into the polymer value chain?
  • What are the key drivers and restraints of market growth?
  • How can mechanical recycling be disrupted by new polymer recycling technologies?
  • How will revenues from new polymer recycling technologies evolve from 2020-2030?
Source - IDTechEx


ページTOPに戻る


目次

Table of Contents

1. EXECUTIVE SUMMARY
1.1. What is the circular economy?
1.2. Awareness around single use plastic pollution
1.3. Global plastics production to pass 600 million tonnes by 2030
1.4. Historical management of Municipal Solid Waste
1.5. China's National Sword policy
1.6. Outlook for managing plastic waste in largest producers
1.7. What is solvent extraction?
1.8. Drivers and restraints
1.9. Conversion of plastics to fuels (PTF)
1.10. Drivers and restraints
1.11. Polymer to monomer and intermediate depolymerisation
1.12. Drivers and restraints
1.13. Global revenues from polymer recycling
1.14. What is the future for polymer recycling?
2. INTRODUCTION
2.1. Plastic Waste
2.1.1. Social, economic and environmental megatrends
2.1.2. Reduced carbon dioxide emissions directives
2.1.3. What is the circular economy?
2.1.4. Global supply of plastics has grown exponentially
2.1.5. Awareness around single use plastic pollution
2.1.6. Global plastics production to pass 600 million tonnes by 2030
2.1.7. Historical management of municipal solid waste
2.1.8. The top 10 global recyclers of municipal solid waste (MSW)
2.1.9. Plastic recycling is lagging behind
2.1.10. Global plastic waste by disposal type
2.1.11. China's National Sword policy
2.1.12. The consequences of the National Sword policy
2.1.13. Plastic recycling varies by polymer type
2.1.14. Polymer types: thermoplastics, thermosets and elastomers
2.1.15. Why are plastic recycling rates so low?
2.1.16. Outlook for managing plastic waste in largest producers
2.2. Biobased and biodegradable polymers
2.2.1. The range of available biobased monomers
2.2.2. Defining "biobased polymers"
2.2.3. Biobased polymers and waste management in 2020
2.2.4. Are biodegradable plastics the solution?
2.2.5. Biobased value add: The Green Premium...
2.2.6. ...versus the price of Brent Crude
2.2.7. Environmental costs: the rising tide of plastic pollution
2.2.8. Feedstock competition: food or fuel (or plastics)?
2.2.9. Drivers and restraints of market growth
2.2.10. Relevant IDTechEx research
3. RECYCLING TECHNOLOGIES OVERVIEW
3.1. Polymer recycling processes
3.1.1. Recycling collection methods and facilities
3.1.2. Single vs multiple stream recycling
3.1.3. The four types of recycling: process definitions
3.1.4. Opportunities for recycling in the polymer value chain
3.2. Recycling key polymers
3.2.1. Recycling key polymer types
3.2.2. Recycling PET
3.2.3. Technology suppliers for PET recycling in this report
3.2.4. Recycling PE
3.2.5. Technology suppliers for PE recycling in this report
3.2.6. Recycling PP
3.2.7. Technology suppliers for PP recycling in this report
3.2.8. Recycling PS
3.2.9. Technology suppliers for PS recycling in this report
4. PRIMARY AND SECONDARY RECYCLING
4.1. Mechanical recycling
4.1.1. Primary mechanical recycling
4.1.2. Secondary mechanical recycling: collection
4.1.3. Secondary mechanical recycling: decontamination
4.1.4. Secondary mechanical recycling: melt and extrusion
4.1.5. Invisible barcodes to improve plastic recycling
4.1.6. Recycled polymers in the food industry
4.1.7. The problem of downcycling
4.1.8. Drivers and restraints of secondary mechanical recycling
4.2. Solvent extraction
4.2.1. What is solvent extraction?
4.2.2. VinyLoop- PVC: a warning case study
4.2.3. Technology suppliers
4.2.4. APK
4.2.5. Polystyvert
4.2.6. Purecycle Technologies
4.2.7. Worn Again
4.2.8. Drivers and restraints
5. TERTIARY RECYCLING
5.1. Plastic to fuel conversion
5.1.1. Conversion of plastics to fuels (PTF)
5.1.2. Conversion of plastics to fuels (PTF)
5.1.3. Incineration, gasification or thermal pyrolysis?
5.1.4. Typical outputs of plastic to fuel processes
5.1.5. Pyrolysis of plastic waste
5.1.6. Pyrolysis of plastic waste - process diagram
5.1.7. Advantages and challenges in plastic pyrolysis
5.1.8. Size limitations
5.1.9. Hydrogen deficiency
5.1.10. Contamination
5.1.11. The impact of contamination
5.1.12. Gasification of plastic waste
5.1.13. Challenges in gasification
5.1.14. Options for syngas from gasification
5.1.15. Feedstock materials for PTF conversion
5.1.16. PTF conversion outputs and side products
5.1.17. A comparison of plastic to fuel techniques
5.1.18. The environmental impact of plastic to fuel conversion
5.1.19. Technology suppliers
5.1.20. Agile Process Chemicals LLP
5.1.21. Agilyx
5.1.22. Enerkem
5.1.23. Enval
5.1.24. Fulcrum Bioenergy
5.1.25. Klean Industries
5.1.26. Plastic2Oil
5.1.27. PlasticEnergy
5.1.28. Nexus Fuels
5.1.29. Recycling Technologies
5.1.30. Drivers and restraints
5.2. Depolymerisation
5.2.1. Polymer to monomer and intermediate depolymerisation
5.2.2. Depolymerisation of PET
5.2.3. Depolymerisation of polystyrene
5.2.4. Depolymerisation of polyolefins
5.2.5. Depolymerisation of biodegradable polymers
5.2.6. Technology suppliers by feedstock
5.2.7. Agilyx
5.2.8. Ambercycle
5.2.9. Aquafil
5.2.10. BioCellection
5.2.11. Carbios
5.2.12. Garbo
5.2.13. Gr3n
5.2.14. Ioniqa
5.2.15. Jeplan
5.2.16. Loop Industries
5.2.17. Natureworks
5.2.18. Pyrowave
5.2.19. Drivers and restraints
6. QUATERNARY RECYCLING
6.1. Waste to energy: polymer incineration
6.2. MSW versus coal, oil and gas comparison
6.3. Incineration competing with landfill and recycling
6.4. Incineration uptake: USA versus Europe
6.5. Debate surrounding incineration
7. MARKET FORECASTS AND CONCLUSIONS
7.1. How oil prices affect plastic recycling
7.2. Breakeven price point for mechanical recycling
7.3. Breakeven for solvent extraction
7.4. Breakeven for plastic to fuel conversion
7.5. Breakeven for depolymerisation
7.6. Global revenues from polymer recycling
7.7. Could regulations spur things on?
7.8. What is the future for polymer recycling?
8. APPENDIX: GLOSSARY AND DEFINITIONS
8.1. Glossary: common acronyms for reference
8.2. Key terms and definitions

 

 

 

ページTOPに戻る


 

Summary

このレポートはポリマーリサイクル技術を調査し、2030年までの予測や新しい技術の分析を掲載しています。

主な掲載内容  ※目次より抜粋

  1. エグゼクティブサマリー
  2. イントロダクション
  3. リサイクル技術概要
    1. ポリマーリサイクル処理
    2. 主要ポリマーのリサイクル
  4. 一次と二次リサイクル
    1. 機械を使ったリサイクル
    2. 溶剤抽出
  5. 三次リサイクル
    1. プラスチックから燃料への転換
    2. 脱重合
  6. 四次リサイクル
  7. 市場予測と結論
 
Report Details
 
Developing sustainable technologies to create a circular economy for plastics has become increasingly important in industry over the past few years. Increasing customer awareness of the environmental impact of polymers with lifespans of several hundreds of years, as well as a global shift in attitudes towards carbon dioxide emissions from the use of petrochemicals to create new plastics, has resulted in renewed focus on polymer recycling and waste management technologies.
 
However, existing technologies have relied upon mechanically sorting and melting plastic waste, which frequently result in "down-cycling" of materials due to high levels of contamination. The issues with current recycling processes are so severe that countries like China who were previously mass importers of waste for recycling have closed their doors, throwing the world of recycling into chaos and driving Western nations to look for alternative technologies for recycling the growing mountain of plastic waste. Technologies such as thermal pyrolysis or catalytic depolymerisation could be part of the solution, allowing unrecyclable plastics to be converted into fuels and chemical feedstocks. But will these technologies ever be cheap or functional enough to become viable solutions?
 
Technology and applications
In 2020, the range of technologies to recycle polymer waste is growing rapidly. Polymer recycling technologies 2020-2030 takes an in-depth look into the diverse range of leading-edge companies developing new technologies to process polymer waste. In-depth assessments of the latest technologies are provided, with focus on chemical recycling, including depolymerisation, pyrolysis, gasification and solvent extraction. Furthermore, this report cuts through the marketing hype to offer a detailed insight into some of the foremost polymer recycling technology suppliers leading global innovation and bringing potentially disruptive products to market.
 
Market analysis
This report provides an overview of the technological advancements in polymer recycling to date, a comprehensive insight into the drivers and restraints affecting adoption and implementation at scale, and provides case studies and SWOT analyses for the most prolific disrupters developing novel polymer recycling technologies. IDTechEx conducted exhaustive primary research with companies across a range of industries developing polymer recycling technologies for key insights into the drivers and restraints affecting the growth of this technology.
 
Key questions answered in this report
  • Who are the key players developing new technologies for polymer recycling?
  • What are the types of new technologies being developed?
  • Which polymers are being actively targeted and why?
  • How do new recycling technologies feed into the polymer value chain?
  • What are the key drivers and restraints of market growth?
  • How can mechanical recycling be disrupted by new polymer recycling technologies?
  • How will revenues from new polymer recycling technologies evolve from 2020-2030?
Source - IDTechEx


ページTOPに戻る


Table of Contents

Table of Contents

1. EXECUTIVE SUMMARY
1.1. What is the circular economy?
1.2. Awareness around single use plastic pollution
1.3. Global plastics production to pass 600 million tonnes by 2030
1.4. Historical management of Municipal Solid Waste
1.5. China's National Sword policy
1.6. Outlook for managing plastic waste in largest producers
1.7. What is solvent extraction?
1.8. Drivers and restraints
1.9. Conversion of plastics to fuels (PTF)
1.10. Drivers and restraints
1.11. Polymer to monomer and intermediate depolymerisation
1.12. Drivers and restraints
1.13. Global revenues from polymer recycling
1.14. What is the future for polymer recycling?
2. INTRODUCTION
2.1. Plastic Waste
2.1.1. Social, economic and environmental megatrends
2.1.2. Reduced carbon dioxide emissions directives
2.1.3. What is the circular economy?
2.1.4. Global supply of plastics has grown exponentially
2.1.5. Awareness around single use plastic pollution
2.1.6. Global plastics production to pass 600 million tonnes by 2030
2.1.7. Historical management of municipal solid waste
2.1.8. The top 10 global recyclers of municipal solid waste (MSW)
2.1.9. Plastic recycling is lagging behind
2.1.10. Global plastic waste by disposal type
2.1.11. China's National Sword policy
2.1.12. The consequences of the National Sword policy
2.1.13. Plastic recycling varies by polymer type
2.1.14. Polymer types: thermoplastics, thermosets and elastomers
2.1.15. Why are plastic recycling rates so low?
2.1.16. Outlook for managing plastic waste in largest producers
2.2. Biobased and biodegradable polymers
2.2.1. The range of available biobased monomers
2.2.2. Defining "biobased polymers"
2.2.3. Biobased polymers and waste management in 2020
2.2.4. Are biodegradable plastics the solution?
2.2.5. Biobased value add: The Green Premium...
2.2.6. ...versus the price of Brent Crude
2.2.7. Environmental costs: the rising tide of plastic pollution
2.2.8. Feedstock competition: food or fuel (or plastics)?
2.2.9. Drivers and restraints of market growth
2.2.10. Relevant IDTechEx research
3. RECYCLING TECHNOLOGIES OVERVIEW
3.1. Polymer recycling processes
3.1.1. Recycling collection methods and facilities
3.1.2. Single vs multiple stream recycling
3.1.3. The four types of recycling: process definitions
3.1.4. Opportunities for recycling in the polymer value chain
3.2. Recycling key polymers
3.2.1. Recycling key polymer types
3.2.2. Recycling PET
3.2.3. Technology suppliers for PET recycling in this report
3.2.4. Recycling PE
3.2.5. Technology suppliers for PE recycling in this report
3.2.6. Recycling PP
3.2.7. Technology suppliers for PP recycling in this report
3.2.8. Recycling PS
3.2.9. Technology suppliers for PS recycling in this report
4. PRIMARY AND SECONDARY RECYCLING
4.1. Mechanical recycling
4.1.1. Primary mechanical recycling
4.1.2. Secondary mechanical recycling: collection
4.1.3. Secondary mechanical recycling: decontamination
4.1.4. Secondary mechanical recycling: melt and extrusion
4.1.5. Invisible barcodes to improve plastic recycling
4.1.6. Recycled polymers in the food industry
4.1.7. The problem of downcycling
4.1.8. Drivers and restraints of secondary mechanical recycling
4.2. Solvent extraction
4.2.1. What is solvent extraction?
4.2.2. VinyLoop- PVC: a warning case study
4.2.3. Technology suppliers
4.2.4. APK
4.2.5. Polystyvert
4.2.6. Purecycle Technologies
4.2.7. Worn Again
4.2.8. Drivers and restraints
5. TERTIARY RECYCLING
5.1. Plastic to fuel conversion
5.1.1. Conversion of plastics to fuels (PTF)
5.1.2. Conversion of plastics to fuels (PTF)
5.1.3. Incineration, gasification or thermal pyrolysis?
5.1.4. Typical outputs of plastic to fuel processes
5.1.5. Pyrolysis of plastic waste
5.1.6. Pyrolysis of plastic waste - process diagram
5.1.7. Advantages and challenges in plastic pyrolysis
5.1.8. Size limitations
5.1.9. Hydrogen deficiency
5.1.10. Contamination
5.1.11. The impact of contamination
5.1.12. Gasification of plastic waste
5.1.13. Challenges in gasification
5.1.14. Options for syngas from gasification
5.1.15. Feedstock materials for PTF conversion
5.1.16. PTF conversion outputs and side products
5.1.17. A comparison of plastic to fuel techniques
5.1.18. The environmental impact of plastic to fuel conversion
5.1.19. Technology suppliers
5.1.20. Agile Process Chemicals LLP
5.1.21. Agilyx
5.1.22. Enerkem
5.1.23. Enval
5.1.24. Fulcrum Bioenergy
5.1.25. Klean Industries
5.1.26. Plastic2Oil
5.1.27. PlasticEnergy
5.1.28. Nexus Fuels
5.1.29. Recycling Technologies
5.1.30. Drivers and restraints
5.2. Depolymerisation
5.2.1. Polymer to monomer and intermediate depolymerisation
5.2.2. Depolymerisation of PET
5.2.3. Depolymerisation of polystyrene
5.2.4. Depolymerisation of polyolefins
5.2.5. Depolymerisation of biodegradable polymers
5.2.6. Technology suppliers by feedstock
5.2.7. Agilyx
5.2.8. Ambercycle
5.2.9. Aquafil
5.2.10. BioCellection
5.2.11. Carbios
5.2.12. Garbo
5.2.13. Gr3n
5.2.14. Ioniqa
5.2.15. Jeplan
5.2.16. Loop Industries
5.2.17. Natureworks
5.2.18. Pyrowave
5.2.19. Drivers and restraints
6. QUATERNARY RECYCLING
6.1. Waste to energy: polymer incineration
6.2. MSW versus coal, oil and gas comparison
6.3. Incineration competing with landfill and recycling
6.4. Incineration uptake: USA versus Europe
6.5. Debate surrounding incineration
7. MARKET FORECASTS AND CONCLUSIONS
7.1. How oil prices affect plastic recycling
7.2. Breakeven price point for mechanical recycling
7.3. Breakeven for solvent extraction
7.4. Breakeven for plastic to fuel conversion
7.5. Breakeven for depolymerisation
7.6. Global revenues from polymer recycling
7.7. Could regulations spur things on?
7.8. What is the future for polymer recycling?
8. APPENDIX: GLOSSARY AND DEFINITIONS
8.1. Glossary: common acronyms for reference
8.2. Key terms and definitions

 

 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD(グリーン技術)の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/21 10:26

156.13 円

165.08 円

200.38 円

ページTOPに戻る