Advanced Li-ion and Beyond Lithium Batteries 2022-2032: Technologies, Players, Trends, Markets先進リチウムイオン電池とビヨンドリチウム電池の2022-2032年。技術、プレーヤー、トレンド、市場 この調査レポートでは、リチウムイオンセルの設計や材料、シリコン負極、リチウム金属負極、リチウム硫黄電池、ナトリウムイオン電池、レドックスフロー電池などの先進・代替電池技術について詳細に調査・分析... もっと見る
※価格はデータリソースまでお問い合わせください。
Summary
この調査レポートでは、リチウムイオンセルの設計や材料、シリコン負極、リチウム金属負極、リチウム硫黄電池、ナトリウムイオン電池、レドックスフロー電池などの先進・代替電池技術について詳細に調査・分析しています。
主な掲載内容(目次より抜粋)
Report Summary
This report provides in-depth analysis, trends and developments in advanced and alternative battery technologies, including to Li-ion cell designs and materials, silicon anodes, Li-metal anodes as well as lithium-sulphur, Na-ion and redox flow battery chemistries, amongst others. Details on the key players and start-ups in each technology are outlined and addressable markets and forecasts are provided for silicon, Li-metal, Na-ion, RFBs and large Zn-based batteries.
Li-ion batteries based on graphite anodes and layered oxide cathodes (LCO, NMC, NCA) have been ubiquitous in consumer electronics for over a decade and have come to dominate large parts of both the electric vehicle and stationary energy storage markets. However, as they start to reach their performance limits and as environmental and supply risks are highlighted, improvements and alternatives to Li-ion batteries will become increasingly important. But with announcements of breakthroughs into next generation technologies a regular occurrence, which technologies and companies will succeed? This report analyses and appraises various next-generation technologies, including on silicon and lithium-metal anodes, lithium-sulphur (Li-S), sodium-ion (Na-ion) and redox flow batteries (RFBs), covers the players involved in these areas and the markets and applications that may be available to them.
Advanced Li-ion refers to silicon and Li-metal anodes, solid-electrolytes, high-Ni and LNMO cathodes as well as various cell design factors. Given the importance of the EV market, specifically battery electric cars, on determining battery demand, Li-ion is forecast to maintain its dominant position. Cathode and anode choices, cell design improvements, whether rate of energy density improvement will continue and how high energy density can go are questions addressed in this report. Two of the most exciting material developments to Li-ion are the development and adoption of silicon anodes and Li-metal anodes, the latter often but not always in conjunction with solid-electrolytes. The excitement stems primarily from the possibility of these anode materials significantly improving energy density, though enhancements to rate capability, safety and even cost are being sought. However, both silicon and lithium-metal have posed serious problems to longevity, which has delayed and limited commercial adoption so far. Longevity is even more problematic for the Li-S batteries which replace the intercalation cathodes in Li-ion with a conversion-type sulphur cathode. In addition to a deep dive on silicon, Li-metal and Li-S technologies, an overview of the solid-state electrolyte technology and company landscape is provided.
Design schematics of lithium-based cell chemistries. Source: IDTechEx.
What is becoming clear is that trade-offs are almost always necessary - improving one performance metric, whether it be energy density, cost, or sustainability, will likely come at the expense of another. This remains true when looking beyond lithium-based battery chemistries too.
Alternatives to lithium-based chemistries will generally sacrifice energy density in search of better environmental credentials, lower capital or lifetime costs, better rate capability or higher cycle life. Ultimately, the combination of performance characteristics and therefore choice of technology and chemistry will come down to the needs of a specific application and market. For stationary energy storage for example, there will be a growing need for longer-duration storage technologies. This provides an opportunity for technologies such as the redox flow battery which can more easily scale energy capacity and also affords the opportunity for using low-cost and widely available active materials. The battery electric car market is of course a key target for many battery technology developments, offering the opportunity to supply a market where battery demand is forecast to grow beyond 1500 GWh by 2030. Silicon anode, lithium-metal and solid-state technologies are set to play increasingly prominent roles in the BEV market through the second half of the decade. Other EV segments will have greater scope to incorporate, replace or hybridise with alternative technologies such as LTO, niobium anodes, Na-ion and supercapacitors. IDTechEx's report provides an appraisal of the various alternative technologies, highlighting their respective strengths and weaknesses and the value proposition they offer, or could offer, to specific applications and markets, and covers the players active in each area.
Current Li-ion materials processing and cell manufacturing is dominated by Asia and China. While the US and Europe in particular are now looking to develop and nurture their own battery supply chains, one route to capturing and domesticating value could be to lead the way in innovation and next-generation technology development. Here, the US and Europe fare slightly better. Looking at start-up companies by geography, as a proxy for innovation, and the US comes out as a leader in next generation technology while Europe also has significant activity, though it needs to be noted that development in Asia is likely under-represented given the stronger presence of major battery manufacturers and materials companies. The report is complemented with a large number of company profiles covering company involvement in a particular technology.
Geographic distribution of battery start-up companies. Source: IDTechEx
Forecasts and data tables are provided for addressable markets, cathode splits, silicon anodes, RFBs, Na-ion and Zn-based batteries (Zn-air + Zn-ion + non-flow Zn-Br).
Key takeaways from this report:
Table of Contents
|