Heads-up Displays 2024-2034: Technologies, Players, Opportunitiesヘッドアップディスプレイ 2024-2034:技術、プレーヤー、機会 この調査レポートでは、市場の主要プレーヤーを評価し、2024年から2034年までの今後10年間の予測も行っています。 主な掲載内容(目次より抜粋) 市場予測 HUDテクノロジ... もっと見る
※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
Summary
この調査レポートでは、市場の主要プレーヤーを評価し、2024年から2034年までの今後10年間の予測も行っています。
主な掲載内容(目次より抜粋)
Report Summary
Automotive heads-up displays (HUDs) are set to revolutionize the automotive display sector. The potential to positively impact road safety, increase vehicle customization as well as enhance the communication between the front seat passengers and the vehicle. The rise in vehicle autonomy is being a shift in focus from OEMs in delivering solutions emphasizing on passenger experience rather than solely the driving experience and while heads-up displays can help with the latter, it can in the future greatly introduce a more immersive entertainment experience to driving.
IDTechEx's new report on heads-up displays follows previous work carried out on automotive displays and specializes on the more immersive type of interaction. This report includes a more in-depth analysis of the different display technologies used as well as the various types of heads-up displays and key distinctions between these. Interviews with key players in the market helped shape this forecast with the market expected to reach over US$10 billion by 2034 with a CAGR of 24%.
IDTechEx forecast for HUDs market value in next decade. Source: IDTechEx
The previous automotive displays report was fundamental in obtaining an overall understanding of how automotive original equipment manufacturers (OEMs) are envisioning the future of displays within their vehicles. However, with the growing interest in HUDs it is important to delve into this topic in a more detailed manner. For this reason, this report not only covers technology and HUD types, but also how these displays are manufactured, along with key challenges. It also investigates how key components such as the windshield must adapt to conform with this growing trend. Furthermore, various coatings are now of increased importance to ensure this technology's optimal performance.
The current dominant technology in this space is the TFT-LCD but unlike other applications, HUDs require much higher brightness levels as well as durability and resilience. Brightness must be very high since images may be projected to areas where the ambient lighting conditions are very elevated, i.e. under direct sunlight, and HUDs must suitably display these images under any environment. Often these images are projected directly to the windshield, and while the virtual images could still be visible under dark or overcast conditions, seeing these could be a challenge on very bright days. In addition, the increasing adoption and popularity of autonomous vehicles and advanced driver-assistance systems (ADAS) require HUDs with larger or even varied field of view (FOV) and depth. For these reasons, there could be an opportunity for alternative technologies that could perform such as digital light processing (DLP), computer-generated holography (CGH), laser-scanned MEMS and MicroLEDs. CGH, in particular, has been gaining a lot of traction with companies set to release products into vehicles in the coming years. Its coherent light source requirement, i.e. a laser means that this technique is very bright, and the possibility of projecting three-dimensional virtual images without a loss in resolution means a more comfortable driving experience is possible with images highlighting key obstacles on the road with true depth cues. Drivers can seamlessly focus and defocus on virtual objects as they do with everyday objects, and this creates a more enjoyable driving experience.
Drivers can seamlessly focus and defocus on virtual objects. Source: IDTechEx
While these are notable benefits to adopting holography into HUDs, there are two key reasons why this technology has so far remained unsuccessful in challenging TFT-LCDs: cost, and form factor. TFT-LCDs are significantly more mature and have many more suppliers competing to provide the best price. CGH cannot compete with this technology when it comes to cost. Secondly, form factor is another key differentiator. There are a lot of optics and additional components required to assemble a holographic heads-up display. Currently, large premium vehicles are most suited to adopt this technology. However, as technologies matures, and the cost as well as its form factor decreases, it is expected holography will start being adopted to a wider range of vehicles, i.e. smaller and more inexpensive alternatives.
Furthermore, this report looks at the main types of HUDs from dedicated combiner and windshield HUDs to the more immersive augmented reality (AR) HUD. It is believed one of the main drivers for these types of displays is the potential to improve road safety. The number of accidents caused by driver distractions has been rising and often these distractions are caused by technology. It is believed that by displaying key driving information directly to the driver's line of sight, some level of distraction can be mitigated since drivers no longer have to deviate their gaze from the road to obtain key driving information from the dashboard or center information displays. On the other hand, too many annotations and virtual images could hinder the visibility of the road and could be detrimental to passenger safety. There must be moderation in the level of immersiveness, as this technology must aid drivers and not hinder visibility.
This report also assesses key players in the market, as well as forecasts into the next decade covering 2024-2034. The forecasts are broken down by HUD technology and type of HUD. A regional breakdown is provided covering display type volumes.
Drivers and constraints are considered throughout the report, as well as technology maturity, competitive landscape, and ongoing trends in the market. Interviews to numerous players in this space both display manufacturers and their suppliers are conducted, and findings are presented giving the reader insight into where the market is placed and where it is moving. The progress of individual companies is outlined in the report and their product lines assessed and compared with similar competition.
Key aspects of the automotive displays market report
The research in this report has been compiled by IDTechEx analysts following our existing expertise in displays and photonics to electric vehicles and vehicle autonomy. Primary and secondary research was fundamental when putting together this report, speaking to multiple stakeholders in the sector with both a commercial and academic focus on the subject. IDTechEx has attended conferences and tradeshows, to understand the market and validate some hypotheses. The information and data gathered was helpful when conceiving this uniquely comprehensive report.
This report provides an overall assessment of the automotive display landscape and covers fundamental technologies, product lines, applications, and key players. Key features of this report include:
Table of Contents
|