世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Antiviral and Antimicrobial Technology Market 2023-2033

Antiviral and Antimicrobial Technology Market 2023-2033


抗ウイルス・抗菌技術市場 2023-2033

この調査レポートでは、銀、銅、亜鉛、シラン4級化合物の4つの主要な抗菌技術の分析を含め、抗菌技術市場について詳細に調査・分析しています。   主な掲載内容(目次より抜粋) ... もっと見る

 

 

出版社 出版年月 電子版価格 納期 ページ数 言語
IDTechEx
アイディーテックエックス
2023年5月30日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
お問合わせください 167 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。


 

Summary

この調査レポートでは、銀、銅、亜鉛、シラン4級化合物の4つの主要な抗菌技術の分析を含め、抗菌技術市場について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 抗菌材料・技術
  • 抗菌技術の応用
  • 抗ウイルス技術
  • 抗菌剤市場の展望
  • 会社概要
 
Report Summary
This report covers the antimicrobial technology market, including analysis of four key antimicrobial technologies: silver, copper, zinc and silane quaternary compounds. Antimicrobial technologies provide residual protection against microbes. The report examines how the technologies work, key considerations for companies seeking to develop products, and analyzes over 100 companies active in this area.
 
The COVID-19 pandemic has been one of the world's worst public health emergencies in living memory and has affected all aspects of life around the world. The pandemic has also propelled awareness of antimicrobial technology and antimicrobial products to new heights. Over the course of the pandemic, players in the antimicrobial technology market developed new antimicrobial additives and coatings to meet unprecedented demand for antiviral surfaces and residual antimicrobial protection.
 
What are antimicrobial technologies?
Antimicrobial technologies, as covered in this IDTechEx report, refer to additives and coatings that provide background elimination of microorganisms, including bacteria, virus, and fungi. While regular cleaning can remove and kill the microorganisms present on a surface, antimicrobial technologies offer continuous residual protection between cleans.
 
But even before the COVID-19 pandemic, antimicrobial technologies have been saving lives and money across a broad number of sectors. A key driver for the use of antimicrobial technologies is their ability to address hospital-acquired infections (or healthcare-associated infection). When used in healthcare facilities such as hospitals, antimicrobial technologies have been demonstrated to significantly decrease the rates of infection. By doing so, thousands if not tens of thousands of deaths can be prevented, and billions of dollars can be saved.
 
There are many opportunities beyond the healthcare sector, including food, agriculture, aquaculture, construction (including heating, ventilation and air conditioning systems), and public settings. The use of antimicrobial paints, coatings and additives in the built environment extends the lifetime of the product which has built-in antimicrobial technology. Beyond product protection, antimicrobial technology also indirectly improves human health through addressing indoor air quality. Antimicrobial textiles can provide anti-odor effect to clothing, curtains, carpets and soft furnishings. With the world moving against the prophylactic use of antibiotics in agriculture, antimicrobial companies can fill in the gap. And now, the COVID-19 pandemic has shed light on the importance of cleaning high-touch surfaces in public settings, and the role of antimicrobial technologies in public health by providing cleaner and safer environments for people in a post-pandemic world.
 
Applications for antimicrobial technologies are wide-ranging. Source: IDTechEx
 
What is in this report?
This report takes a deep dive into key antimicrobial technologies. The mechanism of action of each antimicrobial technology is explained and a comparison of efficacy claims from companies commercializing antimicrobial technologies is provided. Profiles of both major and emerging players, including primary interviews, are included in the report.
 
The key technologies covered in the report are:
  • Silver, including silver chloride, silver zeolite, silver nanoparticles
  • Copper, including copper oxide and copper nanoparticles
  • Zinc, including zinc oxide and zinc pyrithione
  • Silane quaternary ammonium compounds
 
The report also highlights a further 10 technologies either commercialized or in development, including new materials, innovative methods to stabilize and localize traditional disinfectants, biomimetic technologies such as surface patterning techniques, and antimicrobials derived from nature, such as enzymes, peptides, and dyes.
 
IDTechEx have identified over 100 companies that are actively developing antimicrobial technologies and products, including over 50 companies focused entirely in this area. Discussion on market sizing, market outlook, market forecast, and the effect of the COVID-19 pandemic are also included in the report. This report does not include market analysis or forecast of final products that include antimicrobials.
 
Why is this important?
The information provided in this report will be helpful to those seeking to follow this rising antimicrobial trend by clarifying considerations in developing antimicrobial technology. While technologies may appear similar on first glance, the pandemic is driving a rise in companies looking to make quick wins by operating in grey areas. With public awareness at an all-time high, now is the time to develop environmentally responsible, sustainable, effective, and future-proof antimicrobial products. Antimicrobial technologies have significant potential beyond exiting the COVID-19 pandemic safely, but it can also bring about worse problems when used incorrectly.
 
Key aspects
The report provides the following information:
  •  Overview of the antimicrobial technology industry
  •  Key drivers and applications for antimicrobial technologies
  •  Environmental and regulatory concerns of antimicrobial technologies
  •  Analysis of key antimicrobial technologies and brief coverage of others
  •  Analysis of over 100 companies developing antimicrobial technology, including over 50 companies focused on residual antimicrobial technologies
 
For each of the key antimicrobial technologies (silver, copper, zinc and silane quaternary ammonium compounds), the following is covered in the report:
  •  Mechanism of action
  •  Antibacterial, antifungal and antiviral efficacies where available
  •  SWOT analysis
  •  List of key players
 
Report Metrics Details
Historic Data 2019 - 2022
Forecast Period 2023 - 2033
Forecast Units US$ millions
Regions Covered Worldwide
Segments Covered Expected annual revenue of antimicrobial technology developers

 



ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Antimicrobial technology market: scope of the report
1.2. Microorganisms are everywhere
1.3. Key driver: COVID-19
1.4. Key driver: hospital acquired infections
1.5. Key driver: antimicrobial resistance
1.6. Antimicrobial technology market: players
1.7. Antimicrobial technology players: by technology
1.8. Summary of key antimicrobial technologies
1.9. Environmental considerations of antimicrobial technologies
1.10. Antimicrobial technologies and antimicrobial resistance
1.11. Technology conclusions and outlook
1.12. Antimicrobial technology players: by size and year founded
1.13. Key applications of antimicrobial technologies
1.14. Antimicrobial technology market
1.15. Antimicrobial technology market analysis
1.16. Antimicrobial technology market outlook
1.17. Antimicrobial technology market forecast 2023 - 2033
2. INTRODUCTION
2.1. Scope of the report
2.2. Microorganisms are everywhere
2.3. Bacteria
2.4. Bacteria: biology
2.5. Bacteria: biofilm
2.6. Mold and mildew
2.7. Virus
2.8. Key driver: COVID-19
2.9. Key driver: hospital acquired infections
2.10. Key driver: antimicrobial resistance
2.11. Ideal antimicrobial technology
2.12. Major changes in the industry since the previous edition of this report
2.13. What we got right and what we got wrong
3. ANTIMICROBIAL MATERIALS AND TECHNOLOGIES
3.1. Introduction
3.1.1. Techniques to control microorganisms
3.1.2. Mechanisms of action
3.1.3. Substrates
3.1.4. Metals
3.2. Silver antimicrobial technologies
3.2.1. Silver
3.2.2. Silver: mechanism of action
3.2.3. Silver: efficacy
3.2.4. Silver: effect of moisture
3.2.5. Silver: environmental concerns
3.2.6. Silver: potential for resistance
3.2.7. Silver: SWOT analysis
3.2.8. Silver: players
3.3. Copper antimicrobial technologies
3.3.1. Copper
3.3.2. Copper: mechanism of action
3.3.3. Copper: efficacy
3.3.4. Copper: potential for resistance
3.3.5. Copper: comparison with silver
3.3.6. Copper: SWOT analysis
3.3.7. Copper: players
3.4. Zinc antimicrobial technologies
3.4.1. Zinc
3.4.2. Zinc: mechanism of action
3.4.3. Zinc: efficacy
3.4.4. Zinc: potential for resistance
3.4.5. Zinc: SWOT analysis
3.4.6. Zinc: players
3.5. Silane quaternary ammonium compounds (silane quat)
3.5.1. Silane quaternary ammonium (silane quat)
3.5.2. Silane quat: mechanism of action
3.5.3. Silane quat: mechanism of action
3.5.4. Silane quat: efficacy
3.5.5. Silane quat: SWOT analysis
3.5.6. Silane quat: players
3.6. Other antimicrobial technologies
3.6.1. Other antimicrobial technologies
3.6.2. Titanium dioxide: mechanism of action
3.6.3. Titanium dioxide: discussion
3.6.4. Quick-Med Technologies: PolyDADMAC
3.6.5. Quick-Med Technologies: Nimbus
3.6.6. Polyhexamethylene biguanide (PHMB)
3.6.7. Calcium hydroxide
3.6.8. Quick-Med Technologies: hydrogen peroxide
3.6.9. Dyphox: photosensitizing chemicals
3.6.10. Dyphox
3.6.11. SINTX Technologies: silicon nitride
3.6.12. SINTX Technologies
3.6.13. Surface patterns
3.6.14. UMF Corporation: chlorine
3.6.15. Antimicrobial peptides (AMPs)
3.6.16. Pieclex: piezoelectric polymers and fibers
3.6.17. Graphene
3.6.18. Graphene: examples
3.6.19. Nature-based technologies
3.7. Technology summary and other considerations
3.7.1. Antimicrobial technologies: summary
3.7.2. Laboratory vs real life efficacy
3.7.3. Levels of evidence
3.7.4. Environmental considerations
3.7.5. Antimicrobial resistance
3.7.6. Technology conclusions and outlook
4. APPLICATIONS OF ANTIMICROBIAL TECHNOLOGIES
4.1. Overview of antimicrobial technology applications
4.2. Healthcare: hospitals and other healthcare facilities
4.3. Healthcare: medical devices
4.4. Healthcare: advanced wound care
4.5. Healthcare: costs of infections
4.6. Healthcare: silver
4.7. Healthcare: copper
4.8. Food
4.9. Agriculture
4.10. High touch surfaces
4.11. Construction
4.12. Construction: examples
4.13. Construction: HVAC
4.14. Automotive
4.15. Product protection
4.16. Marine
4.17. Fabrics and textiles
4.18. Summary of antimicrobial technology applications
5. REGULATIONS
5.1. Overview of antimicrobial technology regulations
 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/01/21 10:26

157.10 円

163.44 円

195.63 円

ページTOPに戻る