量子センサーの世界市場 2025-2035
The Global Market for Quantum Sensors 2025-2035
量子センシングは、原子レベルでの極めて精密な測定を可能にする新たな技術である。精度、一貫性、測定頻度において、従来のセンサーを凌駕する利点がある。このテクノロジーは、ライフサイエンス、エネルギー... もっと見る
Summary
Quantum sensing is an emerging technology that allows for extremely precise measurements at the atomic level. It offers advantages over traditional sensors in terms of accuracy, consistency, and measurement frequency. The technology has broad potential applications across industries like life sciences, energy, communications, logistics, and microelectronics. Key capabilities of quantum sensors include advanced monitoring, imaging, navigation, and identification. Specific use cases range from medical imaging and brain-computer interfaces to optimizing production lines and enhancing navigation systems. The market impact is expected to grow moderately approaching 2030, with potential for significant acceleration thereafter.
The current quantum sensing ecosystem is relatively small but developing. There are less than 50 quantum sensors start-ups, compared to over 250 in quantum computing. Most revenue currently comes from components and joint research projects rather than commercialized products. The ecosystem is most mature in equipment and components, with hardware products still in development. Major focus areas include finding the right balance of sensitivity, size, weight and other specifications for various applications. Challenges like shielding sensors from environmental noise are being addressed through methods like sensor arrays and AI-enhanced signal processing.
Investment in the field is growing, with over 80% coming from venture capital and corporate investors. The five most funded start- ups have received over 80% of total funding. However, the full value chain is still being built, leaving room for new entrants.
Report contents include:
-
Principles of quantum sensing:
-
Explanation of quantum superposition and entanglement
-
How quantum properties are leveraged for sensing
-
Comparison of quantum and classical measurement techniques
-
Key advantages: improved sensitivity, precision, and accuracy
-
Types of quantum sensors:
-
Atomic clocks:
-
Cesium fountain clocks
-
Optical lattice clocks
-
Ion-based atomic clocks
-
Applications in timekeeping, GPS, and financial trading
-
Magnetometers:
-
SQUID magnetometers
-
Optically pumped magnetometers
-
NV center magnetometers
-
Applications in medical imaging, geophysical surveys, and navigation
-
Gravimeters:
-
Atom interferometry-based gravimeters
-
Superconducting gravimeters
-
Applications in oil and mineral exploration, civil engineering, and climate studies
-
Electric field sensors:
-
Rydberg atom-based sensors
-
Single-electron transistor sensors
-
Applications in electronics testing and atmospheric science
-
Quantum imaging devices:
-
Ghost imaging systems
-
Quantum radar
-
Applications in biomedical imaging and stealth technology detection
-
Comparison with classical sensors:
-
Sensitivity improvements: orders of magnitude better in many cases
-
Size and power consumption advantages
-
Limitations and challenges compared to classical sensors
-
Cost considerations and potential for cost reduction
-
Current technological readiness levels:
-
Assessment of each quantum sensor type on the TRL scale
-
Identification of sensors closest to widespread commercial deployment
-
Areas requiring further research and development
-
Market drivers and Market restraints.
-
Market opportunities
-
Market challenges
-
Applications and End-use Industries
-
Healthcare and Life Sciences:
-
Medical imaging:
-
High-resolution MRI using quantum magnetometers
-
Single-molecule imaging for drug discovery
-
Brain activity mapping with increased spatial and temporal resolution
-
Drug discovery:
-
Quantum sensors for analyzing molecular interactions
-
Accelerated screening of potential drug candidates
-
Improved understanding of protein folding and dynamics
-
Biosensing:
-
Ultra-sensitive detection of biomarkers for early disease diagnosis
-
Real-time monitoring of biological processes
-
Quantum-enhanced DNA sequencing technologies
-
-
Defense and Military:
-
Navigation systems:
-
Quantum inertial measurement units for GPS-independent navigation
-
High-precision timing for synchronized operations
-
Underwater navigation using quantum gravimeters
-
Underwater detection:
-
Quantum magnetometers for submarine detection
-
Quantum gravity gradiometers for underwater mapping
-
Quantum sonar systems with improved range and resolution
-
Communication systems:
-
Quantum-secured communication networks
-
Long-distance quantum key distribution
-
Quantum radar for stealth technology detection
-
Information Technology:
-
Quantum computing:
-
Quantum sensors for error correction in quantum computers
-
Readout systems for quantum bits (qubits)
-
Quantum memory devices
-
Quantum communication:
-
Quantum repeaters for long-distance quantum networks
-
Entanglement distribution for quantum internet
-
Quantum-enhanced optical communication systems
-
Cybersecurity:
-
Quantum random number generators for encryption
-
Quantum key distribution for secure communication
-
Quantum sensing for detecting eavesdropping attempts
-
Environmental Monitoring:
-
Climate change research:
-
High-precision gravity measurements for ice mass changes
-
Quantum-enhanced atmospheric gas sensing
-
Ocean current mapping using quantum magnetometers
-
Geological surveys:
-
Quantum gravimetry for mineral and oil exploration
-
Earthquake prediction using quantum strain sensors
-
Groundwater mapping and monitoring
-
Natural disaster prediction:
-
Early warning systems using quantum gravity sensors
-
Improved weather forecasting with quantum-enhanced measurements
-
Volcanic activity monitoring using quantum gas sensors
-
Oil and Gas:
-
Exploration and surveying:
-
High-resolution underground mapping with quantum gravimeters
-
Improved oil reservoir characterization
-
Quantum magnetometers for pipeline inspection
-
Pipeline monitoring:
-
Leak detection using quantum gas sensors
-
Structural integrity assessment with quantum strain sensors
-
Real-time monitoring of oil and gas flow rates
-
Transportation and Automotive:
-
Autonomous vehicles:
-
Quantum-enhanced GPS-free navigation systems
-
Improved LiDAR systems using quantum sensing
-
Quantum radar for all-weather object detection
-
Aerospace navigation:
-
High-precision inertial measurement units for aircraft
-
Satellite-based quantum sensors for Earth observation
-
Quantum timing systems for improved air traffic control
-
Other Industries:
-
Finance and banking:
-
Ultra-precise timekeeping for high-frequency trading
-
Quantum random number generators for financial modeling
-
Quantum sensors for secure transactions and fraud detection
-
Agriculture:
-
Soil composition analysis using quantum sensors
-
Crop health monitoring with quantum-enhanced hyperspectral imaging
-
Precision agriculture using quantum-based positioning systems
-
Construction:
-
Structural health monitoring with quantum strain sensors
-
Underground utility mapping using quantum gravimetry
-
Improved surveying and land management technique
-
Mining
-
Competitive Landscape including detailed company profiles. Companies profiled include Airbus, Aquark Technologies, Atomionics, Bosch Quantum Sensing, Chipiron, Chiral Nano AG, ColdQuanta, Delta g, EuQlid, Exail Quantum Sensors, Genesis Quantum Technology, ID Quantique, Infleqtion, Ligentec, M Squared Lasers, Mag4Health, Mesa Quantum, Miraex, MuQuans, Nomad Atomics, Nu Quantum, NVision, PhotonForce, Q-CTRL, Qaisec, Qnami, Q.ANT, QuantaMap, QuantCAD LLC, Quantum Diamond Technologies Inc., QuantumDiamonds GmbH, Quantum Optus, Quantum Systems, etc.
-
Technology Trends and Innovations
-
Miniaturization of quantum sensors:
-
Progress in reducing size, weight, and power consumption
-
Challenges in maintaining performance with miniaturization
-
Potential for wearable and mobile quantum sensing devices
-
-
Room temperature quantum sensors:
-
Advancements in materials and designs for room temperature operation
-
Comparison of performance with cryogenic quantum sensors
-
Potential applications enabled by room temperature operation
-
Hybrid quantum-classical systems:
-
Integration of quantum sensors with classical readout electronics
-
Quantum-enhanced classical sensors
-
Synergies between quantum and classical sensing technologies
-
Quantum networks and distributed sensing:
-
Development of quantum sensor networks
-
Entanglement-based distributed sensing protocols
-
Applications in large-scale environmental and security monitoring
-
AI and machine learning integration:
-
Machine learning algorithms for quantum sensor data analysis
-
AI-driven optimization of quantum sensor operation
-
Predictive maintenance and calibration using AI
-
Quantum-enhanced metrology:
-
Advances in quantum metrology for fundamental constants
-
Quantum-enhanced calibration techniques
-
Impact on international measurement standards
-
Market Forecast and Future Outlook
-
Emerging applications and use cases:
-
Quantum sensors in brain-computer interfaces
-
Applications in anti-aging research and personalized medicine
-
Quantum-enhanced virtual and augmented reality systems
-
Potential disruptive technologies:
-
Hybrid quantum-photonic sensors
-
Topological quantum sensors
-
Quantum sensors based on exotic states of matter
-
Investment Landscape
-
Case Studies
-
Quantum sensors in healthcare: Early disease detection
-
Detailed examination of quantum magnetometer use in early Alzheimer's detection
-
Comparison of sensitivity and accuracy with traditional diagnostic methods
-
Cost-benefit analysis and potential impact on healthcare outcomes
-
-
Military applications: Enhanced navigation systems
-
Case study of quantum inertial measurement units in submarine navigation
-
Performance comparison with classical navigation systems
-
Implications for strategic defense capabilities
-
Environmental monitoring: Climate change research
-
Application of quantum gravity sensors in measuring ice mass changes
-
Integration with satellite data for comprehensive climate models
-
Impact on climate change predictions and policy decisions
-
Financial sector: High-frequency trading
-
Use of quantum timing systems in high-frequency trading platforms
-
Analysis of performance improvements and economic impact
-
Regulatory considerations and fairness issues
-
Quantum internet: Secure communication networks
-
Pilot project for quantum key distribution in a metropolitan area
-
Technical challenges and solutions in implementing quantum networks
-
Potential applications beyond secure communication
ページTOPに戻る
Table of Contents
1 EXECUTIVE SUMMARY 11
-
1.1 First and second quantum revolutions 11
-
1.2 Current quantum technology market landscape 13
-
1.2.1 Key developments 14
-
1.3 Investment Landscape 14
-
1.4 Global government initiatives 15
-
1.5 Industry developments 2020-2024 17
-
1.6 Challenges for quantum technologies adoption 26
-
1.7 Market Drivers 27
-
1.8 Market and technology challenges 28
-
1.9 Technology Trends and Innovations 30
-
1.10 Market Forecast and Future Outlook 31
-
1.10.1 Short-term Outlook (2025-2027) 31
-
1.10.2 Medium-term Outlook (2028-2031) 31
-
1.10.3 Long-term Outlook (2032-2035) 31
-
1.11 Emerging Applications and Use Cases 32
-
1.12 Potential Disruptive Technologies 33
-
1.13 Global market for quantum sensors 34
2 INTRODUCTION 36
-
2.1 What is quantum sensing? 37
-
2.2 Types of quantum sensors 37
-
2.2.1 Comparison between classical and quantum sensors 38
-
2.3 Quantum Sensing Principles 39
-
2.4 Value proposition for quantum sensors 40
-
2.5 Current Technological Readiness Levels 42
-
2.6 SWOT analysis 43
3 ATOMIC CLOCKS 44
-
3.1 Technology Overview 44
-
3.2 High frequency oscillators 44
-
3.2.1 Emerging oscillators 45
-
3.3 Caesium atoms 45
-
3.4 Self-calibration 46
-
3.5 New atomic clock technologies 46
-
3.6 Optical atomic clocks 46
-
3.6.1 Chip-scale optical clocks 48
-
3.7 Companies 50
-
3.8 SWOT analysis 51
-
3.9 Market forecasts 52
4 QUANTUM MAGNETIC FIELD SENSORS 53
-
4.1 Technology overview 54
-
4.2 Motivation for use 55
-
4.3 Market opportunity 57
-
4.4 Superconducting Quantum Interference Devices (Squids) 57
-
4.4.1 Applications 59
-
4.4.2 Key players 61
-
4.4.3 SWOT analysis 61
-
4.5 Optically Pumped Magnetometers (OPMs) 62
-
4.5.1 Applications 62
-
4.5.2 Key players 63
-
4.5.3 SWOT analysis 63
-
4.6 Tunneling Magneto Resistance Sensors (TMRs) 64
-
4.6.1 Applications 65
-
4.6.2 Key players 66
-
4.6.3 SWOT analysis 66
-
4.7 Nitrogen Vacancy Centers (N-V Centers) 67
-
4.7.1 Applications 67
-
4.7.2 Key players 68
-
4.7.3 SWOT analysis 68
-
4.8 Market forecasts 69
5 QUANTUM GRAVIMETERS 70
-
5.1 Technology overview 70
-
5.2 Applications 71
-
5.3 Key players 74
-
5.4 Market forecasts 75
-
5.5 SWOT analysis 76
6 QUANTUM GYROSCOPES 77
-
6.1 Technology description 77
-
6.1.1 Inertial Measurement Units (IMUs) 78
-
6.1.2 Atomic quantum gyroscopes 79
-
6.2 Applications 81
-
6.3 Key players 83
-
6.4 SWOT analysis 84
7 QUANTUM IMAGE SENSORS 85
-
7.1 Technology overview 85
-
7.2 Applications 86
-
7.3 SWOT analysis 87
-
7.4 Market forecast 88
-
7.5 Key players 89
8 QUANTUM RADAR 90
-
8.1 Technology overview 90
-
8.2 Applications 92
9 QUANTUM CHEMICAL SENSORS 93
-
9.1 Technology overview 93
-
9.2 Commercial activities 94
10 QUANTUM NEMS AND MEMS 94
-
10.1 Technology overview 94
-
10.2 Types 95
-
10.3 Applications 95
-
10.4 Challenges 96
11 CASE STUDIES 97
-
11.1 Quantum Sensors in Healthcare: Early Disease Detection 97
-
11.2 Military Applications: Enhanced Navigation Systems 98
-
11.3 Environmental Monitoring 98
-
11.4 Financial Sector: High-Frequency Trading 99
-
11.5 Quantum Internet: Secure Communication Networks 99
12 END-USE INDUSTRIES 100
-
12.1 Healthcare and Life Sciences 100
-
12.1.1 Medical Imaging 100
-
12.1.2 Drug Discovery 101
-
12.1.3 Biosensing 101
-
12.2 Defense and Military 101
-
12.2.1 Navigation Systems 102
-
12.2.2 Underwater Detection 102
-
12.2.3 Communication Systems 102
-
12.3 Environmental Monitoring 103
-
12.3.1 Climate Change Research 104
-
12.3.2 Geological Surveys 104
-
12.3.3 Natural Disaster Prediction 105
-
12.3.4 Other Applications 105
-
12.4 Oil and Gas 105
-
12.4.1 Exploration and Surveying 106
-
12.4.2 Pipeline Monitoring 106
-
12.4.3 Other Applications 107
-
12.5 Transportation and Automotive 108
-
12.5.1 Autonomous Vehicles 108
-
12.5.2 Aerospace Navigation 108
-
12.5.3 Other Applications 109
-
12.6 Other Industries 109
-
12.6.1 Finance and Banking 109
-
12.6.2 Agriculture 110
-
12.6.3 Construction 110
-
12.6.4 Mining 110
13 COMPANY PROFILES 111 (44 company profiles)
14 APPENDICES 141
-
14.1 Research Methodology 141
-
14.2 Glossary of Terms 142
-
14.3 List of Abbreviations 145
15 REFERENCES 146
ページTOPに戻る
List of Tables/Graphs
List of Tables
-
Table 1. First and second quantum revolutions. 11
-
Table 2. Quantum Sensing Technologies and Applications. 12
-
Table 3. Global government initiatives in quantum technologies. 16
-
Table 4. Quantum technologies industry developments 2020-2024. 17
-
Table 5. Challenges for quantum technologies adoption. 26
-
Table 6. Market Drivers for Quantum Sensors. 27
-
Table 7. Market and technology challenges in quantum sensing. 29
-
Table 8. Technology Trends and Innovations in Quantum Sensors. 30
-
Table 9. Emerging Applications and Use Cases 33
-
Table 10. Potential Disruptive Technologies. 34
-
Table 11. Global market for quantum sensors, by types, 2018-2035 (Millions USD). 35
-
Table 12.Types of Quantum Sensors 37
-
Table 13. Comparison between classical and quantum sensors. 38
-
Table 14. Applications in quantum sensors. 39
-
Table 15. Technology approaches for enabling quantum sensing 40
-
Table 16. Value proposition for quantum sensors. 41
-
Table 17. Key challenges and limitations of quartz crystal clocks vs. atomic clocks. 44
-
Table 18. New modalities being researched to improve the fractional uncertainty of atomic clocks. 48
-
Table 19. Companies developing high-precision quantum time measurement 50
-
Table 20. Key players in atomic clocks. 52
-
Table 21. Global market for atomic clocks 2025-2035 (Billions USD). 52
-
Table 22. Comparative analysis of key performance parameters and metrics of magnetic field sensors. 55
-
Table 23. Types of magnetic field sensors. 56
-
Table 24. Market opportunity for different types of quantum magnetic field sensors. 57
-
Table 25. Applications of SQUIDs. 59
-
Table 26. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices). 60
-
Table 27. Key players in SQUIDs. 61
-
Table 28. Applications of optically pumped magnetometers (OPMs). 62
-
Table 29. Key players in Optically Pumped Magnetometers (OPMs). 63
-
Table 30. Applications for TMR (Tunneling Magnetoresistance) sensors. 65
-
Table 31. Market players in TMR (Tunneling Magnetoresistance) sensors. 66
-
Table 32. Applications of N-V center magnetic field centers 67
-
Table 33. Key players in N-V center magnetic field sensors. 68
-
Table 34. Global market forecasts for quantum magnetic field sensors, by type, 2025-2035 (Millions USD). 69
-
Table 35. Applications of quantum gravimeters 71
-
Table 36. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping. 72
-
Table 37. Key players in quantum gravimeters. 74
-
Table 38. Global market for Quantum gravimeters 2025-2035 (Millions USD). 75
-
Table 39. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes. 78
-
Table 40. Markets and applications for quantum gyroscopes. 83
-
Table 41. Key players in quantum gyroscopes. 83
-
Table 42. Types of quantum image sensors and their key features. 85
-
Table 43. Applications of quantum image sensors. 86
-
Table 44. Global market for quantum image sensors 2025-2035 (Millions USD). 88
-
Table 45. Key players in quantum image sensors. 89
-
Table 46. Comparison of quantum radar versus conventional radar and lidar technologies. 91
-
Table 47. Applications of quantum radar. 92
-
Table 48.Types of Quantum NEMS and MEMS. 95
-
Table 49. Quantum Sensors in Healthcare and Life Sciences. 100
-
Table 50. Quantum Sensors in Defense and Military 102
-
Table 51. Quantum Sensors in Environmental Monitoring 104
-
Table 52. Quantum Sensors in Oil and Gas 106
-
Table 53. Quantum Sensors in Transportation. 108
-
Table 54.Glossary of terms. 142
-
Table 55. List of Abbreviations. 145
List of Figures
-
Figure 1. Quantum computing development timeline. 13
-
Figure 2.Quantum investments 2012-2024 (millions USD). 15
-
Figure 3. National quantum initiatives and funding. 16
-
Figure 4. Quantum Sensors: Market and Technology Roadmap to 2040. 32
-
Figure 5. Global market for quantum sensors, by types, 2018-2035 (Millions USD). 36
-
Figure 6. Q.ANT quantum particle sensor. 42
-
Figure 7. Current Technological Readiness Levels: Quantum Sensors. 42
-
Figure 8. SWOT analysis for quantum sensors market. 43
-
Figure 9. Strontium lattice optical clock. 47
-
Figure 10. NIST's compact optical clock. 49
-
Figure 11. SWOT analysis for atomic clocks. 52
-
Figure 12. Global market for atomic clocks 2025-2035 (Billions USD). 53
-
Figure 13.Principle of SQUID magnetometer. 58
-
Figure 14. SWOT analysis for SQUIDS. 62
-
Figure 15. SWOT analysis for OPMs 64
-
Figure 16. Tunneling magnetoresistance mechanism and TMR ratio formats. 65
-
Figure 17. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors. 67
-
Figure 18. SWOT analysis for N-V Center Magnetic Field Sensors. 69
-
Figure 19. Global market forecasts for quantum magnetic field sensors, by type, 2025-2035 (Millions USD). 70
-
Figure 20. Quantum Gravimeter. 71
-
Figure 21. Global market for Quantum gravimeters 2025-2035 (Millions USD). 75
-
Figure 22. SWOT analysis for Quantum Gravimeters. 76
-
Figure 23. SWOT analysis for Quantum Gyroscopes. 85
-
Figure 24. SWOT analysis for Quantum image sensing. 88
-
Figure 25. Global market for quantum image sensors 2025-2035 (Millions USD). 89
-
Figure 26. Principle of quantum radar. 91
-
Figure 27. Illustration of a quantum radar prototype. 91
-
Figure 28. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right). 119
ページTOPに戻る
本レポートと同分野(電子部品/半導体)の最新刊レポート
Future Markets, inc.社のエレクトロニクス分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
Future Markets, inc.社はどのような調査会社ですか?
Future Markets, inc.は先端技術に焦点をあてたスウェーデンの調査会社です。
2009年設立のFMi社は先端素材、バイオ由来の素材、ナノマテリアルの市場をトラッキングし、企業や学... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|