世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Li-ion Batteries and Battery Management Systems for Electric Vehicles 2024-2034


電気自動車用リチウムイオン電池と電池管理システム 2024-2034

この調査レポートでは、正極材料やシリコン負極から、セル・ツー・パックやデュアルケミストリーパックの設計、ワイヤレスBMSに至るまで、リチウムイオンセル、パック、バッテリー管理システム(BMS)の技術と... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2023年8月21日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報
注文方法はこちら
402 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。


 

Summary

この調査レポートでは、正極材料やシリコン負極から、セル・ツー・パックやデュアルケミストリーパックの設計、ワイヤレスBMSに至るまで、リチウムイオンセル、パック、バッテリー管理システム(BMS)の技術と動向について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • リチウムイオン電池技術
  • リチウムイオン電池パック
  • バッテリー管理システム
  • パックメーカー - 商用車
  • セクターとEVセグメント
 
Report Summary
Li-ion batteries and battery management systems for electric vehicles
The global market for Li-ion batteries in electric vehicles is forecast to reach over US$380 billion by 2034, driven primarily by demand for battery electric cars. Electrification and emissions targets, improving battery performance, and an increasingly attractive total cost of ownership for some vehicle segments are driving this growth in demand for battery electric vehicles (EV), and despite challenges relating to global supply chains, semiconductor shortages, and raw material availability, the EV market continued its upward trajectory in 2022. The Li-ion battery is the key technology that underpins and enables the deployment of EVs. This report details the technology and trends to Li-ion cells, packs, and battery management systems (BMS), from cathode materials and silicon anodes, to cell-to-pack and dual chemistry pack designs, to wireless BMS.
 
Share of Li-ion demand by EV segment. Source: IDTechEx.
 
Cells
Li-ion cell chemistries continue to evolve. Higher nickel layered oxides such as NMC 811 are being deployed for battery electric cars (BEV) to maximize energy density and minimize cobalt content but cost pressures have led to growth in the use of LFP, a lower energy density chemistry but also a lower cost one. Optimization of cell and pack design can help minimize this disadvantage. In commercial vehicles, higher cycle life is often needed, making the use of increasingly high-nickel cathodes difficult in the short-term, while in 2 and 3 wheelers a variety of Li-ion chemistries are being used to replace Pb-acid, including LMO, NMC and LFP, and combinations thereof. A range of chemistries are and will continue to be utilized depending on performance requirements, duty-cycles, cost, and availability. The report provides analysis on Li-ion cell technology, covering preferred cell form factors, changing cell chemistries, cathode forecasts, cell performance data and trends, discussion of next generation cell chemistries, as well as EV cell supplier shares.
 
Packs
Cell technology and chemistry often takes centre stage in the discussion on battery technology but developments to battery pack designs are equally important. For example, cell-to-pack designs are becoming increasingly popular for electric cars as a means to optimize energy density and are being developed by players such as BYD, CATL, and Tesla, amongst others. Thermal management is also an increasingly important topic given its critical role in maintaining the safe operation of Li-ion batteries. Different players are pursuing air, liquid and refrigerant-cooled methods, as well as immersion cooling, each with their own benefits and weaknesses. Trends to various battery pack designs are analyzed in this report, including on thermal management strategies, modular and cell-to-pack designs, and material light-weighting.
 
A study of battery pack manufacturers, primarily supplying packs to commercial, non-car vehicle segments, such as heavy duty-trucks, buses and logistics vehicles, is provided with a focus on the European and US players. Comparisons in the form factors, chemistries and performance of turnkey products are provided, along with a discussion of how pack manufacturers are differentiating themselves. The key markets and segments being targeted are outlined alongside analysis of how battery performance requirements change for different markets.
 
Comparison of battery pack performance. Source: IDTechEx.
 
Battery management systems
The battery management system is key to the safe and reliable operation of a Li-ion battery pack. While the core functions of a BMS are relatively well defined and the technology comparatively mature, new developments to battery management systems offer a unique opportunity to improve several aspects of battery performance simultaneously. Potential performance improvements from innovations to BMS and BMS software include increased energy density, faster charging rates, and more accurate battery lifetime estimation, which can be enabled through more accurate state estimation, in turn enabled through a combination of physics-based models, data-based models, and cloud analytics. Wireless BMS are also being developed, enabling easier scaling of pack designs and reducing the amount of wiring needed in a battery pack. GM announced they would utilize a wireless BMS in their Ultium batteries in 2020. The report details the functions of a battery management system, the players in involved in BMS manufacturing and development and key innovations and advancements to battery management systems.
 
EV market segments
Battery electric cars have been one of the key drivers behind growth in Li-ion demand over the past 10 years and are forecast to contribute 80% of the demand for Li-ion batteries by 2030. However, electrification is needed across a broad spectrum of vehicle segments and indeed growth in EVs across multiple sectors is expected. For light commercial vehicles (LCV), battery electrification is not only being explored for environmental reasons but increasingly for economic reasons. Though the market is still dwarfed by electric cars, growth is expected as pilot projects are completed and trust in electric vans is gained. For trucks, battery requirements can be more challenging and some low volume segments may continue to rely on 3rd party pack manufacturers. Nevertheless, OEMs such as Tesla, Daimler, VW and Volvo are all investing heavily in long-haul battery electric trucks. The report provides an overview of some of the key drivers, challenges and battery technology choices for electric vehicle segments including cars, LCVs, trucks, buses, 2 wheelers, marine, construction vehicles and trains. Forecasts for Li-ion batteries for electric vehicles (by GWh, $B) are provided for electric cars, LCVs, trucks, buses, and 2/3 wheelers are provided to 2034.


ページTOPに戻る


Table of Contents

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります


よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



1. EXECUTIVE SUMMARY
1.1. Key takeaways (1)
1.2. Key takeaways (2)
1.3. Major EV categories
1.4. Major EV categories
1.5. Future role for battery pack manufacturers
1.6. Remarks on battery manufacturers
1.7. Battery pack comparison
1.8. Turnkey battery pack performance comparison
1.9. Chemistry choices in turnkey EV packs
1.10. Turnkey battery design choices -cell form factor and cooling
1.11. Pack manufacturers
1.12. Trends in battery management systems
1.13. BMS patent landscape
1.14. BMS players
1.15. Innovations in BMS
1.16. Advanced BMS activity
1.17. BMS solutions for fast charging
1.18. Improvements to battery performance from BMS development
1.19. Regional BEV chemistry trends
1.20. EV cell supplier share
1.21. BEV cell form factors
1.22. BEV cell energy density trends
1.23. Development trends to LIB technology
1.24. Technology roadmap
1.25. Li-ion market demand shifts
1.26. BEV car pack price
1.27. EV Li-ion demand (GWh)
1.28. EV Li-ion battery market (US$B)
2. INTRODUCTION
2.1. Electric Vehicles: Basic Principle
2.2. Electric Vehicle Terms
2.3. Drivetrain Specifications
2.4. Parallel and Series Hybrids: Explained
2.5. What are the Barriers for Electric Vehicles?
2.6. What are the Barriers for Electric Vehicles?
2.7. Carbon emissions from electric vehicles
2.8. Policy and the Li-ion battery market
2.9. Electric vehicle policy
2.10. Impact of EV policy
2.11. Automaker EV Targets
3. LI-ION CELL TECHNOLOGY
3.1. Li-ion cells (cathodes, anodes, form factor, performance trends)
3.1.1. Importance of Li-ion
3.1.2. What is a Li-ion battery?
3.1.3. Lithium battery chemistries
3.1.4. Why lithium-ion?
3.1.5. Types of lithium battery
3.1.6. The Li-ion Supply Chain
3.1.7. Cell production capacity outlook
3.1.8. The Battery Trilemma
3.1.9. Battery wish list
3.1.10. Cathode comparisons - overview
3.1.11. Cathode performance comparison
3.1.12. Chemistry energy density comparison
3.1.13. Suitability of LFP for EVs
3.1.14. Impact of material price increases
3.1.15. Cathode prices
3.1.16. LFP in EVs
3.1.17. Anode comparisons - overview
3.1.18. Anode performance comparison
3.1.19. Anode share
3.1.20. Historic average cell price
3.1.21. How low can cell costs go?
3.1.22. How low can cell costs go?
3.1.23. Cell Types
3.1.24. Automotive format choices
3.1.25. Cell Format Market Share
3.1.26. Cell Format Comparison
3.1.27. Cell sizes
3.1.28. 4680 cylindrical cells
3.1.29. Comparing commercial cell chemistries
3.1.30. Commercial cell specifications
3.1.31. Commercial Li-ion cell performance
3.1.32. EV cell specifications
3.1.33. Increasing BEV battery cell specific energy
3.1.34. Increasing BEV battery cell energy density
3.1.35. Improvements to energy density
3.1.36. Timeline and outlook for Li-ion energy densities
3.1.37. Cycle life requirements for electric vehicles
3.2. Next-generation cell technology
3.2.1. How much can silicon improve energy density?
3.2.2. Current silicon use
3.2.3. Silicon use in EVs
3.2.4. Silicon and LFP
3.2.5. Partnerships and investors - solid-state and silicon
3.2.6. Automotive solid-state and silicon comparison
3.2.7. Notable players for solid-state EV battery technology
3.2.8. Notable players for silicon EV battery technology
3.2.9. Solid-state - Blue Solutions
3.2.10. Solid-state - Prologium
3.2.11. Pack considerations for SSBs
3.2.12. Silicon anodes - Enevate
3.2.13. Potential disruptors to conventional Li-ion
3.2.14. Cell chemistry comparison - quantitative
3.2.15. Concluding remarks
3.2.16. Value proposition of Na-ion batteries
3.2.17. Na-ion can offer cost competitive alternative to Li-ion
3.2.18. Na-ion to compliment Li-ion not replace
4. LI-ION BATTERY PACKS
4.1. Li-ion battery packs (cell-to-pack, 800V, bipolar)
4.1.1. Li-ion Batteries: from Cell to Pack
4.1.2. Shifts in Cell and Pack Design
4.1.3. Battery KPIs for EVs
4.1.4. Modular pack designs
4.1.5. Ultium BMS
4.1.6. What is Cell-to-pack?
4.1.7. Drivers and Challenges for Cell-to-pack
4.1.8. What is Cell-to-chassis/body?
4.1.9. BYD Blade battery
4.1.10. CATL Cell to Pack
4.1.11. CATL's CTP battery evolution
4.1.12. Cell-to-pack and Cell-to-body Designs Summary
4.1.13. Gravimetric Energy Density and Cell-to-pack Ratio
4.1.14. Volumetric Energy Density and Cell-to-pack Ratio
詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/22 10:26

155.52 円

163.34 円

198.56 円

ページTOPに戻る