世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

リチウムイオン電池特許背景 2020年:技術、動向、企業比較、特許例


Li-ion Battery Patent Landscape 2020

このレポートはリチウムイオン電池の市場を調査し、2020年における技術や特許を分析しています。     Report Details   First commercialised in the 1... もっと見る

 

 

出版社 出版年月 価格 ページ数 言語
IDTechEx
アイディーテックエックス
2020年8月5日 お問い合わせください
ライセンス・価格情報
注文方法はこちら
210 英語

※価格はデータリソースまでお問い合わせください。


 

サマリー

このレポートはリチウムイオン電池の市場を調査し、2020年における技術や特許を分析しています。
 
 
Report Details
 
First commercialised in the 1990s, the Li-ion battery consists of a graphitic or carbonaceous negative electrode, a lithium salt dissolved in an organic solvent as the electrolyte and a transition metal oxide as the cathode. While this setup has not fundamentally changed, the performance, safety and cost of Li-ion batteries have improved substantially as a result of continuous R&D into to almost all components of a Li-ion cell and battery. Indeed, further improvements may be necessary to truly disrupt automotive and power generation markets, and R&D effort has grown in line with the growth in the market, as can be demonstrated by the growth in Li-ion patents. There has been consistent growth in patents across Li-ion technology and across many technology groups. Specifically covered in the report are trends and analyses on NMC/NCA and Li- and Mn-rich cathodes, silicon and titanate, electrolytes and electrolyte additives, separators and nanocarbons. Significant growth in the number of applications per year, including for a number of individual topic areas, was seen particularly between 2010-2015. While all areas covered have seen growth since 2010, the number of patents regarding the use of nanocarbons in Li-ion have seen the most substantial growth over the past 10 years.
 
New battery advancements and energy storage technologies are regularly publicised, but they are competing against a moving target in Li-ion batteries. Reviewing the patent literature can provide valuable information and context for which direction innovation is heading in and which areas are seeing the most recent activity. NMC and NCA layered oxides have been commercial for many years now but development continues as the industry attempts to further increase nickel and lower cobalt content of these materials. At the anode, silicon can be added in small percentages to improve capacity, but increasing the amount of silicon beyond a few percent means silicon anodes are yet to enter the market. Beyond the active materials, solid-state batteries and electrolytes rightly receive considerable attention and hype. Nevertheless, liquid electrolytes are still a key area of development, with additives potentially playing a decisive role in commercialising new anode and cathode materials. This patent analysis will provide insight into how these materials are being developed, the challenges associated with incorporating new technologies, which companies are active in these topics, and how strategies may differ between the top assignees.
 
The report provides a view of the main IP trends with respect to geographical activity, player strategy and technological trends and can be used to help clarify what innovation is taking place in Li-ion batteries and where. The report also provides an overview of the patent trends for Li-ion players and assignees, ranks assignees in each topic category and provides a deeper dive and comparison on particular topics that are focussed on by the top assignees. A breakdown of patents that are active or pending, compared to the total number of applications made, is also provided to allow insight into assignees who have been recently active in Li-ion innovation.
 
 
This report will provide insight and discussion on where Li-ion performance improvements will come from and as an outcome of the analysis, example patents are also reviewed and discussed in the context of current Li-ion market developments alongside a discussion of future technology commercialisation. Highlighted in the report are key technology/IP trends, geographical activity, key players and assignees, and player rankings.
 
Included in the report:
  • Introduction to the Li-ion market
  • Overview of Li-ion patents
  • NMC/NCA and Li-Mn-rich cathode patent landscape
  • Silicon anode patent landscape
  • Titanate anode patent landscape
  • Liquid electrolyte patent landscape
  • Carbon nanotubes and graphene for Li-ion
  • Player analysis and comparison
  • Patent examples and case studies
  • Discussion of future technology direction

 



ページTOPに戻る


目次

Table of Contents

1. EXECUTIVE SUMMARY
1.1. Introduction
1.2. Report scope
1.3. Li-ion patent analysis overview
1.4. Patent trends overview
1.5. Total patent applications
1.6. Top 5 Li-ion patent assignees
1.7. NMC patents - player rank
1.8. LG Chem co-assignees
1.9. Samsung co-assignees
1.10. Panasonic co-assignees
1.11. Trends in Li-ion mirrored by patents
1.12. Patent examples
1.13. NMC cathode - top 3 assignee main IPC comparison
1.14. Top 3 assignee NMC/NCA technology comparison
1.15. NMC assignee supply chain position
1.16. Si-anode patent application trend by assignee location
1.17. Top assignees - total Si-anode patents
1.18. Recent Si-anode patent citations
1.19. Top 3 Si-anode assignee main IPC comparison
1.20. Top 3 assignee Si-anode technology comparison
1.21. Electrolyte patents - player rank
1.22. Electrolyte patents - trend by assignee location
1.23. Electrolyte technology trend
1.24. CNTs or graphene in LIB patent application trend
1.25. Nanocarbon patents - player rank
1.26. Player rank by number of active and pending patents
1.27. Top 3 CNT/graphene assignee main IPC comparison
1.28. Future cathode direction
1.29. Future anode direction
1.30. Electrolyte overview
1.31. Future nanocarbon direction
2. INTRODUCTION
2.1. Li-ion technology development
2.2. What is in a cell?
2.3. Demand for Li-ion shifting
2.4. European gigafactories announced by 2018
2.5. European gigafactories announced to date
2.6. Why lithium?
2.7. More than one type of Li-ion battery
2.8. The battery trilemma
2.9. Battery wish list
2.10. The Li-ion supply chain
3. LI-ION PATENT LANDSCAPE
3.1. Introduction
3.2. Report scope
3.3. Search methodology
3.4. Example patents criteria
3.5. Total patent applications
3.6. Country of origin vs country filed
3.7. Patent simple families by country
3.8. Patent simple families by country from 2010
3.9. Export of patents
3.10. Geographic IP landscape
3.11. Top 5 patent assignees
3.12. Top 5 assignee share
3.13. Top 5th - 20th assignees
3.14. LG Chem co-assignees
3.15. Samsung co-assignees
3.16. Panasonic co-assignees
3.17. Toyota co-assignees
3.18. GS Yuasa co-assignees
3.19. Trends in Li-ion mirrored by patents
4. NMC, NCA PATENT LANDSCAPE
4.1.1. Cathode recap
4.1.2. Cathode history
4.1.3. NMC/NCA patent scope
4.1.4. NMC/NCA search term
4.1.5. NMC/NCA patent trend
4.1.6. NMC/NCA geographic distribution
4.1.7. Top 10 NMC/NCA assignees
4.1.8. 10th-20th top NMC/NCA assignees
4.1.9. Application assignee share
4.1.10. Application trend of top assignees
4.1.11. Player rank by number of active and pending patents
4.1.12. Top 3 NMC assignee's main IPC comparison
4.1.13. Top 3 assignee technology comparison
4.1.14. Geographical activity of top 20 assignees
4.1.15. Top assignees of active and pending simple patent families
4.1.16. Assignee supply chain position
4.1.17. NMC citations per application
4.1.18. Recent NMC citations per application
4.1.19. Ternary cathode patent overview
4.1.20. Future cathode direction
4.2. Example patents
4.2.1. Patent examples
4.2.2. High nickel cathode synthesis
4.2.3. Low cobalt NCA - SMM
4.2.4. High nickel cathode stabilisation
4.2.5. Single crystal NCA cathode
4.2.6. EcoPro high-Ni concentration gradient synthesis
4.2.7. Cathode concentration gradient
4.2.8. Streamlined cathode synthesis
4.2.9. Patent litigation over NMC/NCM - Umicore vs. BASF
4.2.10. Patent litigation - the positive example of LFP
4.3. Li- and Mn-rich cathodes
4.3.1. Li- and Mn-rich cathode search string
4.3.2. Li- and Mn-rich patent applications trend
4.3.3. Top assignees
4.3.4. Application trend of top assignees
4.3.5. Li and Mn-rich cathode patent examples
4.3.6. Li and Mn rich - Samsung
4.3.7. Zenlabs Li- and Mn-rich
4.3.8. Li and Mn rich oxides
5. SILICON ANODE PATENT LANDSCAPE
5.1.1. Anode materials
5.1.2. Silicon anode patent scope
5.1.3. Silicon anode patent application trend
5.1.4. Si-anode application geographic distribution
5.1.5. Application trend by assignee location
5.1.6. Top assignees - total patents
5.1.7. Top assignees - simple patent families
5.1.8. Application assignee share
5.1.9. 10th-20th top assignees
5.1.10. Assignee supply chain position
5.1.11. Main IPC trend
5.1.12. Si-anode citations per application
5.1.13. Recent Si-anode patent citations
5.1.14. Top 3 assignees compared
5.1.15. Top 3 assignees trends compared
5.1.16. Top 3 assignees authorities
5.1.17. Top 3 Si-anode assignee main IPC comparison
5.1.18. Top 3 assignee technology comparison
5.2. Example anode patents
5.2.1. Silicon anode patent examples
5.2.2. Si alloys/titanate coating
5.2.3. Composite C/Si anode particle
5.2.4. Carbon coated silicon anodes - LG Chem
5.2.5. Porous silicon-carbon composite particles
5.2.6. Si/SiC/C composite
5.2.7. Graphene coated silicon nanowire
5.2.8. Anode free lithium battery - Samsung
5.2.9. "Anode-free" lithium battery - SolidEnergy
6. LTO ANODE PATENT LANDSCAPE
6.1. Where will LTO play a role?
6.2. LTO/titanate anode patent application trend
6.3. LTO/titanate patent geographic distribution
6.4. Application trend by assignee location
6.5. Geographical activity of top 20 assignees
6.6. Top 10 assignees
6.7. Top assignees - LTO simple patent families
6.8. Future anode direction
7. ELECTROLYTE PATENT LANDSCAPE
7.1. Introduction to Li-ion electrolytes
7.2. Electrolyte decomposition
7.3. Electrolyte patent application trend
7.4. Top 10 assignees
7.5. Top 10 assignees - electrolyte simple patent families
7.6. Top 10th - 20th assignees
7.7. Player rank by number of active and pending patents
7.8. Electrolyte application geographic distribution
7.9. Geographical activity of top 20 assignees
7.10. Application trend by assignee location
7.11. Application assignee share
7.12. Technology trend
7.13. Electrolyte technology distribution
7.14. Electrolyte patent citations
7.15. Recent electrolyte patent citations
7.16. Electrolyte patent simple family technology splits
7.17. Top 3 electrolyte additive assignee comparison
7.18. Electrolyte additive patent examples
7.19. Ionic liquids
7.20. Ionic Liquid patent application trend
7.21. Ionic liquid usage
7.22. Electrolyte overview
8. SEPARATOR PATENT LANDSCAPE
8.1. Introduction to separators
8.2. Separator search string
8.3. Separator patent application trend
8.4. Separator application geographic distribution
8.5. Application trend by assignee location
8.6. Top 10 assignees
8.7. Top 10th - 20th assignees
8.8. Player rank by number of active and pending patents
8.9. Geographical activity of top 20 assignees
8.10. Separator overview
9. NANOCARBONS - CNTS, GRAPHENE
9.1.1. Conductive agents
9.1.2. CNTs/graphene in LIB patent application trend
9.1.3. CNTs or graphene in LIB patent application trend
9.1.4. Top 10 assignees - CNT, graphene
9.1.5. Top 10th-20th assignees
9.1.6. Player rank by number of active and pending patents
9.1.7. Li-ion CNT/graphene patent citations
9.1.8. Application trend by assignee location
9.1.9. CNT/graphene application geographic distribution
9.1.10. Geographical activity of top 20 assignees
9.1.11. Patent simple family - geographic distribution
9.1.12. Top 3 CNT/graphene assignee main IPC comparison
9.1.13. CNT/Graphene and silicon anodes
9.1.14. Samsung and LG Chem focus
9.1.15. Future nanocarbon direction
9.2. Nanocarbon patent examples
9.2.1. Si nanowire-graphene anodes - Samsung
9.2.2. Tin-graphene anode
9.2.3. Nanocarbon for rate improvement
9.2.4. Tsinghua University portfolio

 

 

ページTOPに戻る


 

Summary

このレポートはリチウムイオン電池の市場を調査し、2020年における技術や特許を分析しています。
 
 
Report Details
 
First commercialised in the 1990s, the Li-ion battery consists of a graphitic or carbonaceous negative electrode, a lithium salt dissolved in an organic solvent as the electrolyte and a transition metal oxide as the cathode. While this setup has not fundamentally changed, the performance, safety and cost of Li-ion batteries have improved substantially as a result of continuous R&D into to almost all components of a Li-ion cell and battery. Indeed, further improvements may be necessary to truly disrupt automotive and power generation markets, and R&D effort has grown in line with the growth in the market, as can be demonstrated by the growth in Li-ion patents. There has been consistent growth in patents across Li-ion technology and across many technology groups. Specifically covered in the report are trends and analyses on NMC/NCA and Li- and Mn-rich cathodes, silicon and titanate, electrolytes and electrolyte additives, separators and nanocarbons. Significant growth in the number of applications per year, including for a number of individual topic areas, was seen particularly between 2010-2015. While all areas covered have seen growth since 2010, the number of patents regarding the use of nanocarbons in Li-ion have seen the most substantial growth over the past 10 years.
 
New battery advancements and energy storage technologies are regularly publicised, but they are competing against a moving target in Li-ion batteries. Reviewing the patent literature can provide valuable information and context for which direction innovation is heading in and which areas are seeing the most recent activity. NMC and NCA layered oxides have been commercial for many years now but development continues as the industry attempts to further increase nickel and lower cobalt content of these materials. At the anode, silicon can be added in small percentages to improve capacity, but increasing the amount of silicon beyond a few percent means silicon anodes are yet to enter the market. Beyond the active materials, solid-state batteries and electrolytes rightly receive considerable attention and hype. Nevertheless, liquid electrolytes are still a key area of development, with additives potentially playing a decisive role in commercialising new anode and cathode materials. This patent analysis will provide insight into how these materials are being developed, the challenges associated with incorporating new technologies, which companies are active in these topics, and how strategies may differ between the top assignees.
 
The report provides a view of the main IP trends with respect to geographical activity, player strategy and technological trends and can be used to help clarify what innovation is taking place in Li-ion batteries and where. The report also provides an overview of the patent trends for Li-ion players and assignees, ranks assignees in each topic category and provides a deeper dive and comparison on particular topics that are focussed on by the top assignees. A breakdown of patents that are active or pending, compared to the total number of applications made, is also provided to allow insight into assignees who have been recently active in Li-ion innovation.
 
 
This report will provide insight and discussion on where Li-ion performance improvements will come from and as an outcome of the analysis, example patents are also reviewed and discussed in the context of current Li-ion market developments alongside a discussion of future technology commercialisation. Highlighted in the report are key technology/IP trends, geographical activity, key players and assignees, and player rankings.
 
Included in the report:
  • Introduction to the Li-ion market
  • Overview of Li-ion patents
  • NMC/NCA and Li-Mn-rich cathode patent landscape
  • Silicon anode patent landscape
  • Titanate anode patent landscape
  • Liquid electrolyte patent landscape
  • Carbon nanotubes and graphene for Li-ion
  • Player analysis and comparison
  • Patent examples and case studies
  • Discussion of future technology direction

 



ページTOPに戻る


Table of Contents

Table of Contents

1. EXECUTIVE SUMMARY
1.1. Introduction
1.2. Report scope
1.3. Li-ion patent analysis overview
1.4. Patent trends overview
1.5. Total patent applications
1.6. Top 5 Li-ion patent assignees
1.7. NMC patents - player rank
1.8. LG Chem co-assignees
1.9. Samsung co-assignees
1.10. Panasonic co-assignees
1.11. Trends in Li-ion mirrored by patents
1.12. Patent examples
1.13. NMC cathode - top 3 assignee main IPC comparison
1.14. Top 3 assignee NMC/NCA technology comparison
1.15. NMC assignee supply chain position
1.16. Si-anode patent application trend by assignee location
1.17. Top assignees - total Si-anode patents
1.18. Recent Si-anode patent citations
1.19. Top 3 Si-anode assignee main IPC comparison
1.20. Top 3 assignee Si-anode technology comparison
1.21. Electrolyte patents - player rank
1.22. Electrolyte patents - trend by assignee location
1.23. Electrolyte technology trend
1.24. CNTs or graphene in LIB patent application trend
1.25. Nanocarbon patents - player rank
1.26. Player rank by number of active and pending patents
1.27. Top 3 CNT/graphene assignee main IPC comparison
1.28. Future cathode direction
1.29. Future anode direction
1.30. Electrolyte overview
1.31. Future nanocarbon direction
2. INTRODUCTION
2.1. Li-ion technology development
2.2. What is in a cell?
2.3. Demand for Li-ion shifting
2.4. European gigafactories announced by 2018
2.5. European gigafactories announced to date
2.6. Why lithium?
2.7. More than one type of Li-ion battery
2.8. The battery trilemma
2.9. Battery wish list
2.10. The Li-ion supply chain
3. LI-ION PATENT LANDSCAPE
3.1. Introduction
3.2. Report scope
3.3. Search methodology
3.4. Example patents criteria
3.5. Total patent applications
3.6. Country of origin vs country filed
3.7. Patent simple families by country
3.8. Patent simple families by country from 2010
3.9. Export of patents
3.10. Geographic IP landscape
3.11. Top 5 patent assignees
3.12. Top 5 assignee share
3.13. Top 5th - 20th assignees
3.14. LG Chem co-assignees
3.15. Samsung co-assignees
3.16. Panasonic co-assignees
3.17. Toyota co-assignees
3.18. GS Yuasa co-assignees
3.19. Trends in Li-ion mirrored by patents
4. NMC, NCA PATENT LANDSCAPE
4.1.1. Cathode recap
4.1.2. Cathode history
4.1.3. NMC/NCA patent scope
4.1.4. NMC/NCA search term
4.1.5. NMC/NCA patent trend
4.1.6. NMC/NCA geographic distribution
4.1.7. Top 10 NMC/NCA assignees
4.1.8. 10th-20th top NMC/NCA assignees
4.1.9. Application assignee share
4.1.10. Application trend of top assignees
4.1.11. Player rank by number of active and pending patents
4.1.12. Top 3 NMC assignee's main IPC comparison
4.1.13. Top 3 assignee technology comparison
4.1.14. Geographical activity of top 20 assignees
4.1.15. Top assignees of active and pending simple patent families
4.1.16. Assignee supply chain position
4.1.17. NMC citations per application
4.1.18. Recent NMC citations per application
4.1.19. Ternary cathode patent overview
4.1.20. Future cathode direction
4.2. Example patents
4.2.1. Patent examples
4.2.2. High nickel cathode synthesis
4.2.3. Low cobalt NCA - SMM
4.2.4. High nickel cathode stabilisation
4.2.5. Single crystal NCA cathode
4.2.6. EcoPro high-Ni concentration gradient synthesis
4.2.7. Cathode concentration gradient
4.2.8. Streamlined cathode synthesis
4.2.9. Patent litigation over NMC/NCM - Umicore vs. BASF
4.2.10. Patent litigation - the positive example of LFP
4.3. Li- and Mn-rich cathodes
4.3.1. Li- and Mn-rich cathode search string
4.3.2. Li- and Mn-rich patent applications trend
4.3.3. Top assignees
4.3.4. Application trend of top assignees
4.3.5. Li and Mn-rich cathode patent examples
4.3.6. Li and Mn rich - Samsung
4.3.7. Zenlabs Li- and Mn-rich
4.3.8. Li and Mn rich oxides
5. SILICON ANODE PATENT LANDSCAPE
5.1.1. Anode materials
5.1.2. Silicon anode patent scope
5.1.3. Silicon anode patent application trend
5.1.4. Si-anode application geographic distribution
5.1.5. Application trend by assignee location
5.1.6. Top assignees - total patents
5.1.7. Top assignees - simple patent families
5.1.8. Application assignee share
5.1.9. 10th-20th top assignees
5.1.10. Assignee supply chain position
5.1.11. Main IPC trend
5.1.12. Si-anode citations per application
5.1.13. Recent Si-anode patent citations
5.1.14. Top 3 assignees compared
5.1.15. Top 3 assignees trends compared
5.1.16. Top 3 assignees authorities
5.1.17. Top 3 Si-anode assignee main IPC comparison
5.1.18. Top 3 assignee technology comparison
5.2. Example anode patents
5.2.1. Silicon anode patent examples
5.2.2. Si alloys/titanate coating
5.2.3. Composite C/Si anode particle
5.2.4. Carbon coated silicon anodes - LG Chem
5.2.5. Porous silicon-carbon composite particles
5.2.6. Si/SiC/C composite
5.2.7. Graphene coated silicon nanowire
5.2.8. Anode free lithium battery - Samsung
5.2.9. "Anode-free" lithium battery - SolidEnergy
6. LTO ANODE PATENT LANDSCAPE
6.1. Where will LTO play a role?
6.2. LTO/titanate anode patent application trend
6.3. LTO/titanate patent geographic distribution
6.4. Application trend by assignee location
6.5. Geographical activity of top 20 assignees
6.6. Top 10 assignees
6.7. Top assignees - LTO simple patent families
6.8. Future anode direction
7. ELECTROLYTE PATENT LANDSCAPE
7.1. Introduction to Li-ion electrolytes
7.2. Electrolyte decomposition
7.3. Electrolyte patent application trend
7.4. Top 10 assignees
7.5. Top 10 assignees - electrolyte simple patent families
7.6. Top 10th - 20th assignees
7.7. Player rank by number of active and pending patents
7.8. Electrolyte application geographic distribution
7.9. Geographical activity of top 20 assignees
7.10. Application trend by assignee location
7.11. Application assignee share
7.12. Technology trend
7.13. Electrolyte technology distribution
7.14. Electrolyte patent citations
7.15. Recent electrolyte patent citations
7.16. Electrolyte patent simple family technology splits
7.17. Top 3 electrolyte additive assignee comparison
7.18. Electrolyte additive patent examples
7.19. Ionic liquids
7.20. Ionic Liquid patent application trend
7.21. Ionic liquid usage
7.22. Electrolyte overview
8. SEPARATOR PATENT LANDSCAPE
8.1. Introduction to separators
8.2. Separator search string
8.3. Separator patent application trend
8.4. Separator application geographic distribution
8.5. Application trend by assignee location
8.6. Top 10 assignees
8.7. Top 10th - 20th assignees
8.8. Player rank by number of active and pending patents
8.9. Geographical activity of top 20 assignees
8.10. Separator overview
9. NANOCARBONS - CNTS, GRAPHENE
9.1.1. Conductive agents
9.1.2. CNTs/graphene in LIB patent application trend
9.1.3. CNTs or graphene in LIB patent application trend
9.1.4. Top 10 assignees - CNT, graphene
9.1.5. Top 10th-20th assignees
9.1.6. Player rank by number of active and pending patents
9.1.7. Li-ion CNT/graphene patent citations
9.1.8. Application trend by assignee location
9.1.9. CNT/graphene application geographic distribution
9.1.10. Geographical activity of top 20 assignees
9.1.11. Patent simple family - geographic distribution
9.1.12. Top 3 CNT/graphene assignee main IPC comparison
9.1.13. CNT/Graphene and silicon anodes
9.1.14. Samsung and LG Chem focus
9.1.15. Future nanocarbon direction
9.2. Nanocarbon patent examples
9.2.1. Si nanowire-graphene anodes - Samsung
9.2.2. Tin-graphene anode
9.2.3. Nanocarbon for rate improvement
9.2.4. Tsinghua University portfolio

 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/15 10:26

157.84 円

166.62 円

202.61 円

ページTOPに戻る