世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Global Engineered Polymers in Electric Vehicles Market Size Study, by Type of Engineered Polymer (Thermoplastics, Thermosets, Elastomers), by Application (Connectors, Insulators, Enclosures, Cables) and Regional Forecasts 2022-2032

Global Engineered Polymers in Electric Vehicles Market Size Study, by Type of Engineered Polymer (Thermoplastics, Thermosets, Elastomers), by Application (Connectors, Insulators, Enclosures, Cables) and Regional Forecasts 2022-2032


The Global Engineered Polymers in Electric Vehicles Market is valued at approximately USD xxx billion in 2023 and is anticipated to grow with a promising compound annual growth rate of xxx% during ... もっと見る

 

 

出版社 出版年月 電子版価格 納期 ページ数 言語
Bizwit Research & Consulting LLP
ビズウィットリサーチ&コンサルティング
2025年4月20日 US$4,950
シングルユーザライセンス(印刷不可)
ライセンス・価格情報
注文方法はこちら
3-5営業日以内 285 英語

 

Summary

The Global Engineered Polymers in Electric Vehicles Market is valued at approximately USD xxx billion in 2023 and is anticipated to grow with a promising compound annual growth rate of xxx% during the forecast period 2024-2032. As the global automotive industry pivots aggressively toward electrification, engineered polymers have emerged as strategic enablers of this transformation. These advanced materials—renowned for their lightweight nature, high heat resistance, and exceptional mechanical integrity—are being increasingly adopted in electric vehicles (EVs) to enhance performance, efficiency, and safety. From precision-molded connectors to robust insulators and protective enclosures, engineered polymers are helping manufacturers solve critical challenges posed by high-voltage electric powertrains and next-generation battery systems.
The surge in demand for electric vehicles, driven by environmental regulations, consumer awareness, and government incentives, has directly amplified the need for polymer-based solutions that can replace traditional metal components without compromising structural integrity. As OEMs race to extend EV range and reduce battery weight, the use of thermoplastics and elastomers in EV architecture has skyrocketed. Polymers not only help cut vehicle mass but also offer design flexibility, vibration dampening, and excellent thermal stability—features essential for managing complex wiring harnesses, insulation layers, and high-current electronic control units. Despite this momentum, market players are challenged by regulatory compliance hurdles and recycling complexities associated with certain polymer categories.
Innovations in polymer chemistry and compounding technologies have ushered in a new era of materials tailored specifically for EV environments. Companies are engineering polymers with flame retardant properties, low dielectric constants, and enhanced electromagnetic shielding capabilities to meet the demands of high-voltage applications. Meanwhile, partnerships between chemical giants and automakers are fueling the development of polymers that can operate efficiently under extreme thermal, chemical, and mechanical stress. These collaborations are also catalyzing the shift toward sustainable, bio-based polymer solutions, aligning the EV ecosystem with global carbon neutrality goals and circular economy principles.
Regionally, North America holds a strong foothold in the engineered polymers in EV market, supported by rapid electric mobility adoption and a robust R&D infrastructure. Europe closely follows, bolstered by aggressive decarbonization mandates, high-performance automotive manufacturing hubs, and advancements in polymer processing technologies. However, Asia Pacific is poised to witness the most accelerated growth through 2032, fueled by the electric vehicle boom in China, South Korea, and India. These countries are not only key production centers but also house massive domestic EV markets, creating a thriving demand for lightweight polymer solutions. Latin America and the Middle East & Africa are steadily catching up, driven by regulatory support and growing consumer interest in sustainable transportation.
Major market player included in this report are:
• BASF SE
• DuPont de Nemours, Inc.
• SABIC
• Solvay S.A.
• Dow Inc.
• Lanxess AG
• Covestro AG
• LyondellBasell Industries N.V.
• Evonik Industries AG
• Celanese Corporation
• Arkema S.A.
• Huntsman Corporation
• Borealis AG
• Mitsubishi Chemical Holdings Corporation
• Asahi Kasei Corporation
The detailed segments and sub-segment of the market are explained below:
By Type of Engineered Polymer:
• Thermoplastics
• Thermosets
• Elastomers
By Application:
• Connectors
• Insulators
• Enclosures
• Cables
By Region:
North America
• U.S.
• Canada
Europe
• UK
• Germany
• France
• Spain
• Italy
• Rest of Europe
Asia Pacific
• China
• India
• Japan
• Australia
• South Korea
• Rest of Asia Pacific
Latin America
• Brazil
• Mexico
Middle East & Africa
• Saudi Arabia
• South Africa
• Rest of Middle East & Africa
Years considered for the study are as follows:
• Historical year – 2022
• Base year – 2023
• Forecast period – 2024 to 2032
Key Takeaways:
• Market Estimates & Forecast for 10 years from 2022 to 2032.
• Annualized revenues and regional level analysis for each market segment.
• Detailed analysis of geographical landscape with Country level analysis of major regions.
• Competitive landscape with information on major players in the market.
• Analysis of key business strategies and recommendations on future market approach.
• Analysis of competitive structure of the market.
• Demand side and supply side analysis of the market.

ページTOPに戻る


Table of Contents

Table of Contents
Chapter 1. Global Engineered Polymers in Electric Vehicles Market Executive Summary
1.1. Global Engineered Polymers in Electric Vehicles Market Size & Forecast (2022 2032)
1.2. Regional Summary
1.3. Segmental Summary
 1.3.1. By Type of Engineered Polymer
 1.3.2. By Application
1.4. Key Trends
1.5. Recession Impact
1.6. Analyst Recommendation & Conclusion
Chapter 2. Global Engineered Polymers in Electric Vehicles Market Definition and Research Assumptions
2.1. Research Objective
2.2. Market Definition
2.3. Research Assumptions
 2.3.1. Inclusion & Exclusion
 2.3.2. Limitations
 2.3.3. Supply Side Analysis
  2.3.3.1. Availability
  2.3.3.2. Infrastructure
  2.3.3.3. Regulatory Environment
  2.3.3.4. Market Competition
  2.3.3.5. Economic Viability (Consumer’s Perspective)
 2.3.4. Demand Side Analysis
  2.3.4.1. Regulatory Frameworks
  2.3.4.2. Technological Advancements
  2.3.4.3. Environmental Considerations
  2.3.4.4. Consumer Awareness & Acceptance
2.4. Estimation Methodology
2.5. Years Considered for the Study
2.6. Currency Conversion Rates
Chapter 3. Global Engineered Polymers in Electric Vehicles Market Dynamics
3.1. Market Drivers
 3.1.1. Stringent Emission Regulations Driving EV Adoption
 3.1.2. Demand for Lightweight Materials to Enhance Battery Range
 3.1.3. Advancements in Polymer Engineering and Composites
3.2. Market Challenges
 3.2.1. High Material and Processing Costs
 3.2.2. Recycling and End of Life Management Complexities
3.3. Market Opportunities
 3.3.1. Development of Bio based and Sustainable Polymers
 3.3.2. Expansion in Emerging Electric Vehicle Markets
 3.3.3. Innovation in High Performance Polymer Composites
Chapter 4. Global Engineered Polymers in Electric Vehicles Market Industry Analysis
4.1. Porter’s 5 Force Model
 4.1.1. Bargaining Power of Suppliers
 4.1.2. Bargaining Power of Buyers
 4.1.3. Threat of New Entrants
 4.1.4. Threat of Substitutes
 4.1.5. Competitive Rivalry
 4.1.6. Futuristic Approach to Porter’s 5 Force Model
 4.1.7. Porter’s 5 Force Impact Analysis
4.2. PESTEL Analysis
 4.2.1. Political
 4.2.2. Economical
 4.2.3. Social
 4.2.4. Technological
 4.2.5. Environmental
 4.2.6. Legal
4.3. Top Investment Opportunity
4.4. Top Winning Strategies
4.5. Disruptive Trends
4.6. Industry Expert Perspective
4.7. Analyst Recommendation & Conclusion
Chapter 5. Global Engineered Polymers in Electric Vehicles Market Size & Forecasts by Type 2022 2032
5.1. Segment Dashboard
5.2. Global Engineered Polymers in Electric Vehicles Market: Type Revenue Trend Analysis, 2022 & 2032 (USD Million/Billion)
 5.2.1. Thermoplastics
 5.2.2. Thermosets
 5.2.3. Elastomers
Chapter 6. Global Engineered Polymers in Electric Vehicles Market Size & Forecasts by Application 2022 2032
6.1. Segment Dashboard
6.2. Global Engineered Polymers in Electric Vehicles Market: Application Revenue Trend Analysis, 2022 & 2032 (USD Million/Billion)
 6.2.1. Connectors
 6.2.2. Insulators
 6.2.3. Enclosures
 6.2.4. Cables
Chapter 7. Global Engineered Polymers in Electric Vehicles Market Size & Forecasts by Region 2022 2032
7.1. North America Electric Vehicles Polymers Market
 7.1.1. U.S. Electric Vehicles Polymers Market
  7.1.1.1. Type breakdown size & forecasts, 2022 2032
  7.1.1.2. Application breakdown size & forecasts, 2022 2032
 7.1.2. Canada Electric Vehicles Polymers Market
7.2. Europe Electric Vehicles Polymers Market
 7.2.1. UK Electric Vehicles Polymers Market
 7.2.2. Germany Electric Vehicles Polymers Market
 7.2.3. France Electric Vehicles Polymers Market
 7.2.4. Spain Electric Vehicles Polymers Market
 7.2.5. Italy Electric Vehicles Polymers Market
 7.2.6. Rest of Europe Electric Vehicles Polymers Market
7.3. Asia Pacific Electric Vehicles Polymers Market
 7.3.1. China Electric Vehicles Polymers Market
 7.3.2. India Electric Vehicles Polymers Market
 7.3.3. Japan Electric Vehicles Polymers Market
 7.3.4. Australia Electric Vehicles Polymers Market
 7.3.5. South Korea Electric Vehicles Polymers Market
 7.3.6. Rest of Asia Pacific Electric Vehicles Polymers Market
7.4. Latin America Electric Vehicles Polymers Market
 7.4.1. Brazil Electric Vehicles Polymers Market
 7.4.2. Mexico Electric Vehicles Polymers Market
 7.4.3. Rest of Latin America Electric Vehicles Polymers Market
7.5. Middle East & Africa Electric Vehicles Polymers Market
 7.5.1. Saudi Arabia Electric Vehicles Polymers Market
 7.5.2. South Africa Electric Vehicles Polymers Market
 7.5.3. Rest of Middle East & Africa Electric Vehicles Polymers Market
Chapter 8. Competitive Intelligence
8.1. Key Company SWOT Analysis
 8.1.1. BASF SE
 8.1.2. DuPont de Nemours, Inc.
 8.1.3. SABIC
8.2. Top Market Strategies
8.3. Company Profiles
 8.3.1. BASF SE
  8.3.1.1. Key Information
  8.3.1.2. Overview
  8.3.1.3. Financial (Subject to Data Availability)
  8.3.1.4. Product Summary
  8.3.1.5. Market Strategies
 8.3.2. DuPont de Nemours, Inc.
 8.3.3. SABIC
 8.3.4. Solvay S.A.
 8.3.5. Dow Inc.
 8.3.6. Lanxess AG
 8.3.7. Covestro AG
 8.3.8. LyondellBasell Industries N.V.
 8.3.9. Evonik Industries AG
 8.3.10. Celanese Corporation
 8.3.11. Arkema S.A.
 8.3.12. Huntsman Corporation
 8.3.13. Borealis AG
 8.3.14. Mitsubishi Chemical Holdings Corporation
 8.3.15. Asahi Kasei Corporation
Chapter 9. Research Process
9.1. Research Process
 9.1.1. Data Mining
 9.1.2. Analysis
 9.1.3. Market Estimation
 9.1.4. Validation
 9.1.5. Publishing
9.2. Research Attributes

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

Bizwit Research & Consulting LLP社の自動車・ロジスティクス・交通分野での最新刊レポート

本レポートと同じKEY WORD(polymer)の最新刊レポート


よくあるご質問


Bizwit Research & Consulting LLP社はどのような調査会社ですか?


Bizwit Research & Consulting (Bizwit Research & Consulting LLP)は世界の多様なマクロおよびマイクロ経済の動向を継続的に調査しています。 ... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2025/04/22 10:26

141.96 円

163.38 円

192.36 円

ページTOPに戻る