世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

リチウムイオン電池のサプライチェーン 2020-2030 年:生素材、地域分布、費用分析と需要予測


The Li-ion Battery Supply Chain 2020-2030

このレポートは世界のリチウムイオン電池のサプライチェーンを調査し、リチウムイオン技術や費用、素材について言及しています。   主な掲載内容  ※目次より抜粋 エグゼクティブサマ... もっと見る

 

 

出版社 出版年月 価格 ページ数 言語
IDTechEx
アイディーテックエックス
2019年10月21日 お問い合わせください
ライセンス・価格情報
注文方法はこちら
210 英語

※価格はデータリソースまでお問い合わせください。


 

サマリー

このレポートは世界のリチウムイオン電池のサプライチェーンを調査し、リチウムイオン技術や費用、素材について言及しています。
 
主な掲載内容 ※目次より抜粋
  • エグゼクティブサマリー
  • リチウムイオン電池の概要
  • リチウムイオン電池の内容物
    • リチウム
    • コバルト
    • ニッケル
  • セル構成-正極
  • セル生成と費用分析
  • リチウムイオンのライフサイクル
  • ポリシーの効果についての議論
  • 企業分析
Report Details
The expanding growth of electric vehicles is creating a huge demand for Li-ion batteries (LIBs). The demand for raw materials will therefore be hugely impacted and production in many cases will need to scale up rapidly.
 
Investment in the supply chain requires clarity on the technologies and chemistries that will be used over the coming decade but there are many types of LIB chemistries in use. Furthermore, considerable investment is being poured into the research and development of the next generation of LIBs with news items on the next battery breakthrough a regular occurrence - stakeholders want clarity on the chemistries that will be used over the coming decade. IDTechEx analysts appraise the possible LIB technology developments over the next decade, including alternative anodes, high-nickel cathodes and solid-state electrolytes. An analysis of the technical challenges and market activity for these key technological developments allows a technology outlook to be mapped, evaluating the evolving shares that different LIB chemistries and technologies will hold from 2020 to 2030.
 
With a technology outlook in place, future material demand can be forecasted. The need for lithium, cobalt, graphite and nickel are all set to grow. Where are these materials mined and produced, do we have enough of them, and will there be supply disruptions? These are some key questions addressed in this report. China has a strong position in various segments of the supply chain and will continue to do so. However, production capacity will grow in Europe and the US as auto manufacturers seek greater control and proximity to cell production. Both areas are also seeking to develop domestic supplies of raw materials, with a number being deemed critical and of strategic importance. IDTechEx analyses the different segments of the Li-ion supply chain, breaking down the anode, cathode, component and raw material markets and the players involved.
 
 
Historic price reductions for LIBs have been well documented. However, the battery still accounts for a significant percentage of a battery electric vehicles (BEV) cost. To enable price parity between BEVs and internal combustion engine vehicles, further price reductions in LIBs are needed. This new report presents a LIB price forecast from 2020 to 2030 based on a detailed analysis of cell materials, their performance and the effect of increasing economies of scale.
 
By 2030, there could be over 250 GWh of LIB reaching end-of-life from electric vehicles alone. These batteries cannot just be landfilled. A number of jurisdictions are imposing collection requirements for automotive LIB packs. Re-purposing used EV batteries for 2nd-use presents an appealing opportunity to extend battery life and obtain additional values. However, given the costs associated with testing and re-purposing a used battery, there may be more value in recycling. Recycling will become increasingly important as a source of raw material to mitigate supply risks. IDTechEx outlines the methods that can be used to extract usable materials and the players actively recycling LIBs.
 
The forecasted growth in LIB demand makes it increasingly important to understand its supply chain. This new report provides insight on where materials come from, market players, recent investments in production and developments in the LIB technology. In addition to our 10-year demand forecasts and price analysis, the report will provide a comprehensive overview of the LIB supply chain.
 
The key issues addressed in this report:
• Overview and introduction to the Li-ion technology and supply chain
• How will LIB technology evolve, and which chemistries will win?
• Material and cost breakdowns
• Battery, material and price forecasts
• Is there enough raw material, can mining cope and will there be supply disruption?
• A dive into the recycling methods available for LIBs.
• Market analysis for materials, components, production and recycling.
 


ページTOPに戻る


目次

Table of Contents
 
1. EXECUTIVE SUMMARY
1.1. The Li-ion supply chain
1.2. Conclusions on the state of the Li-ion supply chain
1.3. Electric vehicles needed
1.4. Li-ion battery demand
1.5. How will Li-ion technology develop?
1.6. What materials will be used?
1.7. How does material intensity change?
1.8. Material demand forecast - Cobalt
1.9. Material demand forecast - Lithium
1.10. Material demand forecast - Nickel
1.11. Production output of natural graphite
1.12. Cathode material outlook
1.13. Cathode demand forecast, ktpa
1.14. Cathode market forecast, $bn
1.15. The cost of Li-ion cells
1.16. Li-ion price outlook
1.17. Li-ion cell price forecast
1.18. Asia (China) dominating?
1.19. Lithium producers
1.20. Building cell capacity
1.21. Gigafactory build-out
1.22. Production build-out timeframe
1.23. Is there enough global resource?
1.24. Physical raw material usage
1.25. Geographic distribution - short term supply risk?
1.26. Obtaining cobalt from recycling
1.27. Overview of recycling methods
1.28. Global involvement in LIB recycling
2. AN OVERVIEW OF LI-ION BATTERIES
2.1. What is a Li-ion battery?
2.2. Why lithium?
2.3. Ragone plots
2.4. There is more than one type of LIB
2.5. The battery trilema
2.6. Timeline
2.7. Understanding cathodes
3. WHAT IS IN A LI-ION BATTERY?
3.1.1. More than one type of cell design
3.1.2. Material Intensities
3.1.3. How does material intensity change?
3.1.4. Inactive material intensities (exc. casings)
3.1.5. Energy density of Li-ion cathodes
3.2. Raw materials
3.2.1. The elements used in Li-ion batteries
3.2.2. EU critical raw materials
3.2.3. Raw materials critical to Li-ion
3.2.4. Li-ion raw material geographical distribution
3.3. Lithium
3.3.1. Lithium introduction
3.3.2. Where is lithium located?
3.3.3. Lithium extraction from brines
3.3.4. Lithium extraction from hard rock
3.3.5. Major producers of refined lithium
3.3.6. Lithium producers
3.3.7. New lithium sources
3.3.8. Lithium end uses
3.3.9. Timeline of lithium plays
3.3.10. Forecasted lithium demand
3.4. Cobalt
3.4.1. Introduction to cobalt
3.4.2. Cobalt in the DRC
3.4.3. Changing intensity of cobalt in Li-ion
3.4.4. Forecasted cobalt demand
3.4.5. Questionable mining practice
3.4.6. Cobalt supply
3.4.7. Public scrutiny of cobalt supply
3.5. Nickel
3.5.1. An overview of nickel
3.5.2. Geographic breakdown of nickel mining
3.5.3. Forecast nickel demand
3.5.4. Nickel supply
4. CELL COMPONENTS - CATHODES
4.1.1. Cathode recap
4.1.2. Cathode performance recap
4.1.3. Cathode material intensities
4.1.4. Cathode powder synthesis (NMC)
4.1.5. Geographical breakdown of cathode production
4.1.6. Top cathode producers
4.1.7. Chemistry production spread
4.1.8. Cathode supply relationships
4.1.9. NMC development - from 111 to 811
4.1.10. NMC development - stabilising high-nickel NMC
4.1.11. Outlook - which cathodes will be used?
4.1.12. Cathode demand forecast
4.2. Cell components - Anodes
4.2.1. Introduction to graphite
4.2.2. Natural or synthetic in LIB?
4.2.3. Natural graphite for LIBs
4.2.4. Natural graphite mining
4.2.5. (Uncoated) spherical purified graphite
4.2.6. Natural graphite in the pipeline
4.2.7. Where will new capacity come from?
4.2.8. How much graphite capacity will there be?
4.2.9. Movement downstream in the graphite business?
4.2.10. Coated spherical purified graphite (CSPG)
4.2.11. Synthetic graphite producers
4.2.12. Graphite anode suppliers
4.2.13. Forecast graphite demand
4.2.14. Introduction to silicon anodes
4.2.15. Benefits from incorporating silicon
4.2.16. Electrode material trends
4.2.17. How much does silicon improve energy density?
4.2.18. Lithium titanate oxide (LTO) batteries
4.2.19. Comparing LTO and Graphite
4.2.20. Toshiba's titanium niobite anode
4.2.21. Comparing LTO performance
4.2.22. High rate batteries
4.3. Cell components - Electrolyte
4.3.1. Introduction to Li-ion electrolytes
4.3.2. Electrolyte suppliers
4.4. Cell components - Separators
4.4.1. Introduction to Separators
4.4.2. Separator players
4.4.3. Separator market overview
4.4.4. Ceramic coatings
4.4.5. Separator capacity announcements
4.4.6. Separator players - Asahi Kasei
4.5. Cell components - Solid-state
4.5.1. Overview of the solid-state battery value chain
4.5.2. Solid-state battery value chain
4.5.3. Solid-state electrolyte technology approach
4.5.4. Solid state battery collaborations / acquisitions by OEMs
4.5.5. Manufacturability of solid-state batteries
4.5.6. Supply issues for lithium metal
4.5.7. Lithium metal - Hydro-Quebec
4.5.8. Overview of electrode binders
4.5.9. Binder processing
4.5.10. Binder manufacturers
4.5.11. Dry electrode manufacturing
5. CELL PRODUCTION AND COST ANALYSIS
5.1.1. Cell production
5.1.2. Cell production overview
5.1.3. Areas for improvement in cell production
5.1.4. Largest gigafactories
5.1.5. Panasonic and Tesla
5.1.6. Forecast LIB demand
5.1.7. Can Li-ion supply meet demand?
5.1.8. How long to build a Gigafactory?
5.1.9. Gigafactory investment in Europe
5.1.10. Chinese EV battery value chain
5.1.11. The price of Li-ion cells
5.1.12. The cost of Li-ion cells
5.1.13. Considering the cost of NMC 811
5.1.14. Commodity price volatility
5.1.15. BEV cell price forecast
5.1.16. Li-ion price outlook
5.1.17. Li-ion battery price outlook
6. THE LI-ION LIFE-CYCLE
6.1.1. Battery second use connects the electric vehicle and battery recycling value chains
6.1.2. Battery second use or recycling?
6.1.3. Retired EV battery capacity in the next decade
6.1.4. Is there enough global resource?
6.1.5. Drivers for recycling Li-ion batteries
6.1.6. Overview of LIB recycling
6.1.7. Recycling pre-treatments and processing - mechanical
6.1.8. Recycling pre-treatments and processing - chemical and thermal
6.1.9. Pyrometallurgical recycling
6.1.10. Hydrometallurgical recycling
6.1.11. Recycling example via hydrometallurgy
6.1.12. Recycling methods map
6.1.13. Flow diagrams of commercial LIB recycling
6.1.14. Pyro- and hydro-metallurgy reviewed
6.1.15. Global involvement in LIB recycling
6.1.16. LIB recycling players
7. DISCUSSION ON THE EFFECTS OF POLICY
7.1.1. Desired impact of policy
7.1.2. Incentivising electric vehicles
7.1.3. NEV sales in China
7.1.4. European investment in the supply chain
7.1.5. Material export restrictions
7.1.6. Conclusions
8. COMPANY PROFILES

 

 

ページTOPに戻る


 

Summary

このレポートは世界のリチウムイオン電池のサプライチェーンを調査し、リチウムイオン技術や費用、素材について言及しています。
 
主な掲載内容 ※目次より抜粋
  • エグゼクティブサマリー
  • リチウムイオン電池の概要
  • リチウムイオン電池の内容物
    • リチウム
    • コバルト
    • ニッケル
  • セル構成-正極
  • セル生成と費用分析
  • リチウムイオンのライフサイクル
  • ポリシーの効果についての議論
  • 企業分析
Report Details
The expanding growth of electric vehicles is creating a huge demand for Li-ion batteries (LIBs). The demand for raw materials will therefore be hugely impacted and production in many cases will need to scale up rapidly.
 
Investment in the supply chain requires clarity on the technologies and chemistries that will be used over the coming decade but there are many types of LIB chemistries in use. Furthermore, considerable investment is being poured into the research and development of the next generation of LIBs with news items on the next battery breakthrough a regular occurrence - stakeholders want clarity on the chemistries that will be used over the coming decade. IDTechEx analysts appraise the possible LIB technology developments over the next decade, including alternative anodes, high-nickel cathodes and solid-state electrolytes. An analysis of the technical challenges and market activity for these key technological developments allows a technology outlook to be mapped, evaluating the evolving shares that different LIB chemistries and technologies will hold from 2020 to 2030.
 
With a technology outlook in place, future material demand can be forecasted. The need for lithium, cobalt, graphite and nickel are all set to grow. Where are these materials mined and produced, do we have enough of them, and will there be supply disruptions? These are some key questions addressed in this report. China has a strong position in various segments of the supply chain and will continue to do so. However, production capacity will grow in Europe and the US as auto manufacturers seek greater control and proximity to cell production. Both areas are also seeking to develop domestic supplies of raw materials, with a number being deemed critical and of strategic importance. IDTechEx analyses the different segments of the Li-ion supply chain, breaking down the anode, cathode, component and raw material markets and the players involved.
 
 
Historic price reductions for LIBs have been well documented. However, the battery still accounts for a significant percentage of a battery electric vehicles (BEV) cost. To enable price parity between BEVs and internal combustion engine vehicles, further price reductions in LIBs are needed. This new report presents a LIB price forecast from 2020 to 2030 based on a detailed analysis of cell materials, their performance and the effect of increasing economies of scale.
 
By 2030, there could be over 250 GWh of LIB reaching end-of-life from electric vehicles alone. These batteries cannot just be landfilled. A number of jurisdictions are imposing collection requirements for automotive LIB packs. Re-purposing used EV batteries for 2nd-use presents an appealing opportunity to extend battery life and obtain additional values. However, given the costs associated with testing and re-purposing a used battery, there may be more value in recycling. Recycling will become increasingly important as a source of raw material to mitigate supply risks. IDTechEx outlines the methods that can be used to extract usable materials and the players actively recycling LIBs.
 
The forecasted growth in LIB demand makes it increasingly important to understand its supply chain. This new report provides insight on where materials come from, market players, recent investments in production and developments in the LIB technology. In addition to our 10-year demand forecasts and price analysis, the report will provide a comprehensive overview of the LIB supply chain.
 
The key issues addressed in this report:
• Overview and introduction to the Li-ion technology and supply chain
• How will LIB technology evolve, and which chemistries will win?
• Material and cost breakdowns
• Battery, material and price forecasts
• Is there enough raw material, can mining cope and will there be supply disruption?
• A dive into the recycling methods available for LIBs.
• Market analysis for materials, components, production and recycling.
 


ページTOPに戻る


Table of Contents

Table of Contents
 
1. EXECUTIVE SUMMARY
1.1. The Li-ion supply chain
1.2. Conclusions on the state of the Li-ion supply chain
1.3. Electric vehicles needed
1.4. Li-ion battery demand
1.5. How will Li-ion technology develop?
1.6. What materials will be used?
1.7. How does material intensity change?
1.8. Material demand forecast - Cobalt
1.9. Material demand forecast - Lithium
1.10. Material demand forecast - Nickel
1.11. Production output of natural graphite
1.12. Cathode material outlook
1.13. Cathode demand forecast, ktpa
1.14. Cathode market forecast, $bn
1.15. The cost of Li-ion cells
1.16. Li-ion price outlook
1.17. Li-ion cell price forecast
1.18. Asia (China) dominating?
1.19. Lithium producers
1.20. Building cell capacity
1.21. Gigafactory build-out
1.22. Production build-out timeframe
1.23. Is there enough global resource?
1.24. Physical raw material usage
1.25. Geographic distribution - short term supply risk?
1.26. Obtaining cobalt from recycling
1.27. Overview of recycling methods
1.28. Global involvement in LIB recycling
2. AN OVERVIEW OF LI-ION BATTERIES
2.1. What is a Li-ion battery?
2.2. Why lithium?
2.3. Ragone plots
2.4. There is more than one type of LIB
2.5. The battery trilema
2.6. Timeline
2.7. Understanding cathodes
3. WHAT IS IN A LI-ION BATTERY?
3.1.1. More than one type of cell design
3.1.2. Material Intensities
3.1.3. How does material intensity change?
3.1.4. Inactive material intensities (exc. casings)
3.1.5. Energy density of Li-ion cathodes
3.2. Raw materials
3.2.1. The elements used in Li-ion batteries
3.2.2. EU critical raw materials
3.2.3. Raw materials critical to Li-ion
3.2.4. Li-ion raw material geographical distribution
3.3. Lithium
3.3.1. Lithium introduction
3.3.2. Where is lithium located?
3.3.3. Lithium extraction from brines
3.3.4. Lithium extraction from hard rock
3.3.5. Major producers of refined lithium
3.3.6. Lithium producers
3.3.7. New lithium sources
3.3.8. Lithium end uses
3.3.9. Timeline of lithium plays
3.3.10. Forecasted lithium demand
3.4. Cobalt
3.4.1. Introduction to cobalt
3.4.2. Cobalt in the DRC
3.4.3. Changing intensity of cobalt in Li-ion
3.4.4. Forecasted cobalt demand
3.4.5. Questionable mining practice
3.4.6. Cobalt supply
3.4.7. Public scrutiny of cobalt supply
3.5. Nickel
3.5.1. An overview of nickel
3.5.2. Geographic breakdown of nickel mining
3.5.3. Forecast nickel demand
3.5.4. Nickel supply
4. CELL COMPONENTS - CATHODES
4.1.1. Cathode recap
4.1.2. Cathode performance recap
4.1.3. Cathode material intensities
4.1.4. Cathode powder synthesis (NMC)
4.1.5. Geographical breakdown of cathode production
4.1.6. Top cathode producers
4.1.7. Chemistry production spread
4.1.8. Cathode supply relationships
4.1.9. NMC development - from 111 to 811
4.1.10. NMC development - stabilising high-nickel NMC
4.1.11. Outlook - which cathodes will be used?
4.1.12. Cathode demand forecast
4.2. Cell components - Anodes
4.2.1. Introduction to graphite
4.2.2. Natural or synthetic in LIB?
4.2.3. Natural graphite for LIBs
4.2.4. Natural graphite mining
4.2.5. (Uncoated) spherical purified graphite
4.2.6. Natural graphite in the pipeline
4.2.7. Where will new capacity come from?
4.2.8. How much graphite capacity will there be?
4.2.9. Movement downstream in the graphite business?
4.2.10. Coated spherical purified graphite (CSPG)
4.2.11. Synthetic graphite producers
4.2.12. Graphite anode suppliers
4.2.13. Forecast graphite demand
4.2.14. Introduction to silicon anodes
4.2.15. Benefits from incorporating silicon
4.2.16. Electrode material trends
4.2.17. How much does silicon improve energy density?
4.2.18. Lithium titanate oxide (LTO) batteries
4.2.19. Comparing LTO and Graphite
4.2.20. Toshiba's titanium niobite anode
4.2.21. Comparing LTO performance
4.2.22. High rate batteries
4.3. Cell components - Electrolyte
4.3.1. Introduction to Li-ion electrolytes
4.3.2. Electrolyte suppliers
4.4. Cell components - Separators
4.4.1. Introduction to Separators
4.4.2. Separator players
4.4.3. Separator market overview
4.4.4. Ceramic coatings
4.4.5. Separator capacity announcements
4.4.6. Separator players - Asahi Kasei
4.5. Cell components - Solid-state
4.5.1. Overview of the solid-state battery value chain
4.5.2. Solid-state battery value chain
4.5.3. Solid-state electrolyte technology approach
4.5.4. Solid state battery collaborations / acquisitions by OEMs
4.5.5. Manufacturability of solid-state batteries
4.5.6. Supply issues for lithium metal
4.5.7. Lithium metal - Hydro-Quebec
4.5.8. Overview of electrode binders
4.5.9. Binder processing
4.5.10. Binder manufacturers
4.5.11. Dry electrode manufacturing
5. CELL PRODUCTION AND COST ANALYSIS
5.1.1. Cell production
5.1.2. Cell production overview
5.1.3. Areas for improvement in cell production
5.1.4. Largest gigafactories
5.1.5. Panasonic and Tesla
5.1.6. Forecast LIB demand
5.1.7. Can Li-ion supply meet demand?
5.1.8. How long to build a Gigafactory?
5.1.9. Gigafactory investment in Europe
5.1.10. Chinese EV battery value chain
5.1.11. The price of Li-ion cells
5.1.12. The cost of Li-ion cells
5.1.13. Considering the cost of NMC 811
5.1.14. Commodity price volatility
5.1.15. BEV cell price forecast
5.1.16. Li-ion price outlook
5.1.17. Li-ion battery price outlook
6. THE LI-ION LIFE-CYCLE
6.1.1. Battery second use connects the electric vehicle and battery recycling value chains
6.1.2. Battery second use or recycling?
6.1.3. Retired EV battery capacity in the next decade
6.1.4. Is there enough global resource?
6.1.5. Drivers for recycling Li-ion batteries
6.1.6. Overview of LIB recycling
6.1.7. Recycling pre-treatments and processing - mechanical
6.1.8. Recycling pre-treatments and processing - chemical and thermal
6.1.9. Pyrometallurgical recycling
6.1.10. Hydrometallurgical recycling
6.1.11. Recycling example via hydrometallurgy
6.1.12. Recycling methods map
6.1.13. Flow diagrams of commercial LIB recycling
6.1.14. Pyro- and hydro-metallurgy reviewed
6.1.15. Global involvement in LIB recycling
6.1.16. LIB recycling players
7. DISCUSSION ON THE EFFECTS OF POLICY
7.1.1. Desired impact of policy
7.1.2. Incentivising electric vehicles
7.1.3. NEV sales in China
7.1.4. European investment in the supply chain
7.1.5. Material export restrictions
7.1.6. Conclusions
8. COMPANY PROFILES

 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同じKEY WORD(リチウムイオン電池)の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/21 10:26

156.13 円

165.08 円

200.38 円

ページTOPに戻る